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Abstract

In this paper, we consider undirected network design games with
fair cost allocation. We introduce two concepts Potential-Optimal
Price of Anarchy (POPoA) and Potential-Optimal Price of Stability
(POPoS), where POPoA is the ratio between the worst cost of Nash
equilibria with optimal potential and the minimum social cost, and
POPoS is the ratio between the best cost of Nash equilibria with opti-
mal potential and the minimum social cost, and show that

• The POPoA and POPoS for undirected broadcast games with n
players are O(

√
logn).

• The POPoA and POPoS for undirected broadcast games with |V |
vertices are O(log |V |).

• There exists an undirected broadcast game with n players such
that POPoA, POPoS = Ω(

√
log log n).

• There exists an undirected broadcast game with |V | vertices such
that POPoA,POPoS = Ω(log |V |).

1 Introduction

The inefficiency of equilibria in noncooperative games have been extensively
investigated in recent years. The price of anarchy (PoA) was introduced
by Koutsoupias and Papadimitriou [12] as the ratio between the cost of the
worst Nash equilibria and the optimal social cost, and the price of stability
(PoS) was introduced by Anshelevich et al. [2] as the ratio between the cost
of the best Nash equilibria and the optimal social cost. Quantifying PoA
and PoS is one of the most active research areas in algorithmic game theory.
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Network design games introduced by Anshelevich et al. [2] are funda-
mental and well-studied noncooperative games [1–3, 5, 7–9, 11, 13]. In the
games, we are given a network and n selfish players. Each player i chooses
a path from source vertex si to sink vertex ti. The cost of each edge is
shared equally by all players whose paths contain it, where this cost-sharing
scheme is referred as the Shapley cost-sharing mechanism. The goal of each
player is to minimize the sum of its own costs. A network design game
is called a multicast game if ti = t holds for all players i, and a broadcast
game if in addition, each vertex v ̸= t has a player i with si = v. In the
standard setting of broadcast games, each vertex v ̸= t is associated with
exactly one player, but we here allow more than one player to share the
same vertex. It is known [2] that the worst PoA for broadcast, multicast
and network design games with n players is equals to n, which also implies
that the worst PoA is +∞ in terms of the number of vertices in the net-
work. On the other hand, determining PoS for undirected network design
games is a long-standing important open problem. As for PoS, it was shown
that it has an upper bound of nth Harmonic number H(n) for network de-
sign games [2], O(log n/ log logn) for undirected multicast games [13], and
O(log logn) for undirected broadcast games [11]. Bilò et al. [5] presented
undirected network design, multicast, and broadcast games that have PoS
at least 2.245, 1.862, and 1.818, respectively.

Potential games were proposed by Monderer and Shapley [14], which
has a property that the incentive of all players to change their strategy can
be expressed in one global function, called potential. Note that for every
potential game, the potential is unique up to an additive constant. Poten-
tial games contain many important games such as network design games
and congestion games. In fact, it is known that finite potential games are
isomorphic to congestion games [14]. Various properties of potential games
were proven due to the existence of potential functions [2, 4, 10, 11, 13–16].
For example, the H(n)-bound for PoS of network design games mentioned
above was shown by potential functions.

In potential games, a strategy profile with optimal potential is a Nash
equilibrium. More precisely, there exists a one-to-one correspondence be-
tween Nash equilibria and local optimizers of the potential function. A
strategy profile with the optimal potential has good properties, called ro-
bustness [17] and stability [4]. Furthermore, Blume’s logit response dynam-
ics [6] always converges to the set of Nash equilibria with optimum potential.
Therefore, it is natural and important to evaluate the inefficiency of those
equilibria, i.e., Nash equilibria with optimal potential. We note that Nash
equilibria is optimal with respect to some potential if and only if it is op-
timal with respect to any potential, since the potential is unique up to an
additive constant.

In this paper, we define two concepts Potential-Optimal Price of Anarchy
(POPoA) and Potential-Optimal Price of Stability (POPoS), and evaluate
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them for broadcast games. Here POPoA is the ratio between the worst cost
of Nash equilibria with optimal potential and the minimum social cost, and
POPoS is the ratio between the best cost of Nash equilibria with optimal
potential and the minimum social cost. We note that POPoA has been
already studied about some other games under the name of Inefficiency
Ratio of Stable Equilibria by Asadpour and Saberi [4], whereas POPoS is
a new measure of inefficiency of stable equilibria. We further note that
several researchers makes use of potential minimizers as evaluations of PoS,
e.g., [2,13]. Namely, they implicitly evaluated POPoA to obtain bounds for
PoS.

The results obtained in this paper

In this paper, we consider POPoA and POPoS for undirected broadcast
games. We first show that the worst POPoA coincides with the worst POPoS
in multicast and broadcast games, and obtain the following upper and lower
bounds for POPoA and POPoS:

• The POPoA and POPoS for undirected broadcast games with n players
are O(

√
logn).

• The POPoA and POPoS for undirected broadcast games with |V | ver-
tices are O(log |V |).

• There exists an undirected broadcast game with n players such that
POPoA, POPoS = Ω(

√
log log n).

• There exists an undirected broadcast game with |V | vertices such that
POPoA, POPoS = Ω(log |V |).

Since each vertex without sink allows to have multiple players, the number
of players n might be larger than |V | − 1. We remark that all the results
except for the last one are true in the setting that each vertex without sink
is associated with exactly one player. Since the third result is obtained
by replacing each vertex with multiple players by a star such that each
vertex has exactily one player. We also note that from the second and
fourth results, the tight bounds on POPoA and POPoS are obtained for
undirected broadcast games with |V | vertices. We summarize the inefficiency
of equilibria for undirected broadcast games in Table 1, where our results
are written in bold letters.

The rest of the paper is organized as follows. In Section 2, we define
network design games and the measures for the inefficiency of equilibria, and
show that the worst POPoA coincides with the worst POPoS in multicast
and broadcast games. In Section 3, we present upper bounds for POPoS
and POPoA of broadcast games, and in Section 4, we present lower bounds
for POPoS and POPoA of broadcast games.
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Table 1: Inefficiency of equilibria for undirected broadcast games, where our
results are written in bold letters.

PoS POPoS, POPoA PoA

n players Upper Bound O(log log n) [11] O(
√
logn) n [2]

Lower Bound 1.818 [5] Ω(
√
log logn) n [2]

|V | vertices Upper Bound O(log |V |) O(log |V |) +∞ [2]

Lower Bound 1.818 [5] Ω(log |V |) +∞ [2]

Due to the space limitation, some of the proofs are omitted, where they
can be found in the appendix.

2 Definitions

We define undirected network design games as follows. Consider an undi-
rected graph G = (V,E) with a positive cost function c : E → R++ on the
edges 1. There exist n players associated with G, where N = {1, 2, . . . , n}
denotes the set of n players. Each player i ∈ N has a source-sink pair
(si, ti) ∈ V 2 that it wishes to connect. A strategy of player i consists of
a si-ti path Pi ⊆ E in G, where we denote by Pi the set of strategies of
player i. In this paper, we assume that Pi ̸= ∅ holds for all i ∈ N . Network
design games are called multicast games if ti = t holds for all players i, and
broadcast games if in addition, each vertex v ̸= t has a player i with si = v.

For a strategy profile (or vector) P = (P1, P2, . . . , Pn) ∈
∏

i∈N Pi, let
ξP (e) denotes the number of players i that use edge e, i.e., ξP (e) = |{i ∈
N | Pi ∋ e}|, and the cost of player i that i minimizes is defined as

costi(P ) =
∑
e∈Pi

c(e)/ξP (e). (1)

The total cost of all players

cost(P ) =
∑
i∈N

costi(P ) (=
∑

e∈
∪

i∈N Pi

c(e)) (2)

is called social cost (or simply cost) of P .
A strategy profile (P1, . . . , Pn) is said to be a Nash equilibrium if no

player has an incentive to change its strategy, assuming that the strategies
1In the network design game, the edge cost is usually assumed to be nonnegative, but

in this paper, we assume that it is positive, since we can contract all the edges with zero
cost, without changing minimum social cost, minimum potential value, and etc. In fact,
our main results are applicable to graphs with nonnegative edge cost.
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of the other players are fixed, i.e., costi(P1, . . . , Pi−1, Pi, Pi+1, . . . , Pn) ≤
costi(P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pn) holds for any player i ∈ N and any

strategy P ′
i ∈ Pi. A function Φ : P → R is called a potential function

if for any strategy profile P = (P1, . . . , Pi−1, Pi, Pi+1, . . . , Pn) and any de-
viation P ′ = (P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pn) from P of a single player i, it

holds that

Φ(P )− Φ(P ′) = costi(P )− costi(P
′). (3)

It is known [2] that network design games admit potential functions, which
can be represented as

Φ(P ) =
∑
e∈E

c(e) ·H(ξP (e)), (4)

where H(n) = 1 + 1/2 + 1/3 + · · ·+ 1/n is the nth Harmonic number with
H(0) = 0. By the definition of potential function, a strategy profile is a
Nash equilibrium if and only if it is locally minimal in the potential. In fact,
a strategy profile with minimum potential is a Nash equilibrium, which has
additional properties, called robustness [17] and stability [4].

Price of Anarchy (PoA) is defined as the ratio between the cost of the
worst Nash equilibrium and the minimum social cost [12], and Price of Sta-
bility (PoS) is defined as the ratio between the cost of the best Nash equi-
librium and the minimum social cost [2]. In this paper, we study Potential-
Optimal Price of Anarchy (POPoA) and Potential-Optimal Price of Stability
(POPoS) for broadcast games, in order to evaluate the quality of potential-
optimal strategy profiles. POPoA is the ratio between the worst cost of
strategy profiles with optimal potential and the minimum social cost, and
POPoS is the ratio between the best cost of strategy profiles with optimal
potential and the minimum social cost. Namely, we have

POPoA =
maxP∈argminΦ cost(P )

minP∈P cost(P )
, (5)

POPoS =
minP∈argminΦ cost(P )

minP∈P cost(P )
. (6)

POPoA was studied under the name of Inefficiency Ratio of Stable Equilibria
by Asadpour and Saberi [4], whereas POPoS is a new measure of inefficiency
of stable equilibria. By definitions, we have

PoS ≤ POPoS ≤ POPoA ≤ PoA. (7)

The following example shows that POPoS < POPoA for some broadcast
game.

Example 1. Consider a broadcast game with two players 1 and 2 in G =
(V = {s1, s2, t}, E = {(s1, s2), (s1, t), (s2, t)}) such that c(s1, s2) = 1 and
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c(si, t) = 2 for i = 1, 2 (see Figure 1). In this game, the following three
strategy profiles have minimum potential 4.

P = ({(s1, t)}, {(s2, t)}), P ′ = ({(s1, t)}, {(s2, s1), (s1, t)}),
P ′′ = ({(s1, s2), (s2, t)}, {(s2, t)}). (8)

Since minimum social cost (which is attained by P ′ and P ′′) is 3, we have
POPoS = 1 and POPoA = 4/3.

Figure 1: A broadcast game with POPoS ̸= POPoA

However, if we deal with the classes of undirected multicast and broad-
cast games, the supremum of POPoS coincides with the one of POPoA.

Lemma 2. (1) The supremum of POPoA in undirected multicast (resp.,
broadcast) games with n players coincides with the one of POPoS in undi-
rected multicast (resp., broadcast) games with n players.

(2) The supremum of POPoA in undirected multicast (resp., broadcast)
games with |V | vertices coincides with the one of POPoS in undirected mul-
ticast (resp., broadcast) games with |V | vertices.

Proof. We only show broadcast games with n players, since the other cases
can be shown similarly. Let α and σ respectively denote the supremum of
POPoA and POPoS in undirected broadcast games with n players. Since
α ≥ σ by definition, it is sufficient to prove that α ≤ σ. For any positive
ε, there exists a broadcast game I = (G = (V,E), c,N, {si}i∈N , t) such that
POPoA(I) ≥ α− ε, where POPoA(I) denote POPoA for the game I.

For the game I, let P be a worst potential-optimal strategy profile
and P ∗ be a strategy profile with minimum cost. By definition, we have
POPoA(I) = costI(P )/costI(P

∗), where for a strategy profile Q, costI(Q)
denotes the social cost of Q in the game I. Let I ′ denote the broadcast game
obtained from I by modifying edge cost c to c′:

c′(e) =

{
c(e) if e ∈

∪
i Pi,

c(e) + costI(P
∗)

|V |−1 ε otherwise.
(9)
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We note that the minimum social cost in the modified game I ′ is at most
(1+ε)costI(P

∗), and P is the unique strategy profile with minimum potential
in the modified game I ′, since

∪
i Pi is a tree in G and any other profile uses

at least one edge not in P . Therefore, we have

σ ≥ costI(P )

(1 + ε) · costI(P ∗)
≥ α− ε

1 + ε
. (10)

By taking ε → 0, we have σ ≥ α, which completes the proof.

Unfortunately, this proof cannot be applied to general network design
games.

3 Upper bounds of POPoA and POPoS for broad-
cast games

In this section, we show the following theorems.

Theorem 3. For any undirected broadcast game with n players, we have

POPoA = O(
√

logn).

Theorem 4. For any undirected broadcast game with |V | vertices, we have

POPoA = O(log |V |).

Note that we have no better bounds for POPoS, since by Lemma 2 it
immediately implies a better bounds for POPoA.

Before proving these theorems, we note that POPoA = O(logn) holds
for any undirected broadcast game with n players. This can be shown by
the following potential function method introduced by Anshelevich et al. [2].
Let P and P ∗ be strategy profiles with minimum potential and minimum
cost, respectively. Then by (4) we have

cost(P ) ≤ Φ(P ) ≤ Φ(P ∗) ≤ H(n) · cost(P ∗). (11)

By
√
log n, log |V | ≤ log n, our theorems improve upon this simple result.

In order to obtain our results, we first show properties of POPoA and
POPoS for undirected broadcast games with respect to metric closure.

3.1 Metric closure

In this subsection, we show that taking the metric closure does not affect
POPoA or POPoS for undirected network design games.

The metric closure of a network (G = (V,E), c : E → R++) is a network
(Ĝ = (V, Ê =

(
V
2

)
), ĉ : Ê → R++) where ĉ(u, v) is defined as the cost
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of a shortest path from u to v in (G, c). For a network design game I =
(G, c,N, (si, ti)i∈N ), we denote the corresponding game on (Ĝ, ĉ) by Î =
(Ĝ, ĉ, N, (si, ti)i∈N ). For a game I, let costI , ΦI , and PI denote the cost,
potential and the set of strategy profiles in I, respectively.

We first show that taking the metric closure does not affect the minimum
social cost.

Lemma 5.

min
P∈PI

costI(P ) = min
Q∈PÎ

costÎ(Q). (12)

Proof. Since c(e) ≥ ĉ(e) holds for any edge e ∈ E, we have minP∈PI
costI(P )

≥ minQ∈PÎ
costÎ(Q). On the other hand, for any edge (u, v) in Ê, (G, c)

has a u-v path with cost ĉ(u, v). Therefore, for any strategy profile Q in
PÎ , replacing all edges in Q by the corresponding shortest path does not
increase the cost, which implies minP∈PI

costI(P ) ≤ minQ∈PÎ
costÎ(Q).

Next, we show that taking the metric closure does not affect the best or
worst social cost among minimum potential strategies.

Lemma 6.

min
P∈argminΦI

costI(P ) = min
Q∈argminΦÎ

costÎ(Q), (13)

max
P∈argminΦI

costI(P ) = max
Q∈argminΦÎ

costÎ(Q). (14)

Proof. Let us first show the following equation:

min
P∈PI

ΦI(P ) = min
Q∈PÎ

ΦÎ(Q). (15)

Since c(e) ≥ ĉ(e) holds for any edge e ∈ E, we have

ΦI(P ) ≥ ΦÎ(P ) (16)

for any strategy profile P of I. On the other hand, for any edge e = (u, v)
in Ê, let π(e) denote a u-v path in G with cost ĉ(e). Let Q be a strategy
profile of Î, and let P be a strategy profile of I which is obtained from Q by
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replacing all edges e in Q by π(e). Then, we have

ΦÎ(Q) =
∑
e∈Ê

ĉ(e)H(ξQ(e))

=
∑
e∈Ê

 ∑
f∈π(e)

c(f)

H(ξQ(e)) =
∑
f∈E

c(f)

 ∑
e∈Ê:π(e)∋f

H(ξQ(e))


≥
∑
f∈E

c(f)H

 ∑
e∈Ê:π(e)∋f

ξQ(e)


=
∑
f∈E

c(f)H(ξP (f)) = ΦI(P ), (by concavity of harmonic number)

(17)

which together with (16) implies (15). Moreover, by (15), inequality (17)
holds with equality if Q minimizes the potential function ΦÎ . This implies

that for any f ∈ E, at most one edge e ∈ Ê satisfies both π(e) ∋ f and
ξQ(e) ≥ 1. Hence we have costÎ(Q) = costI(P ) for Q ∈ argminΦÎ , which
implies

min
P∈argminΦI

costI(P ) ≤ min
Q∈argminΦÎ

costÎ(Q), (18)

max
P∈argminΦI

costI(P ) ≥ max
Q∈argminΦÎ

costÎ(Q). (19)

On the other hand, let P be a strategy profile of I that minimizes the po-
tential function ΦI . By (15) and (16), ΦI(P ) = ΦÎ(P ) and P also minimizes
ΦÎ . By ΦI(P ) = ΦÎ(P ), we have costI(P ) = costÎ(P ), which implies

min
P∈argminΦI

costI(P ) ≥ min
Q∈argminΦÎ

costÎ(Q), (20)

max
P∈argminΦI

costI(P ) ≤ max
Q∈argminΦÎ

costÎ(Q). (21)

This completes the proof.

It follows from Lemmas 5 and 6 that metric closure does not affect
POPoA or POPoS for undirected network design games.

For a network design game I, let POPoA(I) and POPoS(I) denote
POPoA and POPoS for I.

Lemma 7. For any network design game I, it holds that

POPoA(I) = POPoA(Î), (22)

POPoS(I) = POPoS(Î). (23)
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However, there exists a network design game I such that PoA(I) ̸=
PoA(Î) or PoS(I) ̸= PoS(Î), where PoA(I) and PoS(I) denote PoA and
PoS for a game I (see Examples 8 and 9).

Example 8. Consider a broadcast game I in G = (V = {v1, v2}, E =
{e1 = (v1, v2), e2 = (v1, v2)}) with c(e1) = 1 and c(e2) = n. The game has
n players each of which has a source-sink pair (v1, v2). See Figure 2. It is
not difficult to see that I and Î both has minimum social cost 1, the worst
Nash equilibrium of I is {e2} with cost n, and the worst Nash equilibrium of
Î has cost 1. Therefore, we have PoA(I) (= n) ̸= PoA(Î) (= 1).

Figure 2: A broadcast game I with PoA(I) ̸= PoA(Î)

Example 9. Consider a multicast game I shown in Figure 3, where ε > 0 is
arbitrarily small. Both games have minimum social cost 24. In the game I,
there exists a unique Nash equilibrium that uses {(v1, v2), (v2, t), (v2, v3), (v4, t)}
and its cost is 25 − ε. In the game Î, the best Nash equilibrium uses
{(v1, t), (v3, v4), (v4, t)} with cost 24. Therefore, PoS(I) = (25 − ε)/24 and
PoS(Î) = 1.

Figure 3: A multicast game I with PoS(I) ̸= PoS(Î)

3.2 The proof of Theorem 4

Let (G = (V,E), c,N, {si}i∈N , t) be a broadcast game. By Lemma 7, we
can assume that (G, c) is a metric network. Let P be a strategy profile with
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minimum potential, and let T =
∪

i∈N Pi. Since c is positive, T is a spanning
tree in G. We regard T as a directed tree of root t, by directing every edge
toward t. For v ∈ V \ {t}, let ev denotes the edge in T whose tail is v.

For any two vertices u, v ∈ V \ {t}, we estimate the cost c(u, v) of u-v
path in T in terms of c(eu) and c(ev).

Lemma 10. Let u, v ∈ V \{t} be vertices such that u is neither an ancestor
nor a descendant of v in T , and let k = ξP (eu), l = ξP (ev). Then we have

c(u, v) ≥ (k + l)H(k)− kH(k + l)

lH(k) + kH(l)
c(eu) +

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
c(ev).

(24)

Proof. Let w be the least common ancestor of u and v in T . Let P u→v

be a strategy profile such that
∪

i∈N P u→v
i = T \ {eu} ∪ {(u, v)}. Since

T \ {eu} ∪ {(u, v)} is a tree, P u→v is unique. Similarly, let P v→u be a
strategy profile such that

∪
i∈N P v→u

i = T \ {ev} ∪ {(u, v)}. Since P has a
minimum potential, we have that

0 ≥ Φ(P )− Φ(P u→v)

=
∑

e∈Tu,w

c(e)H(ξP (e), ξP (e)− k)

+
∑

e∈Tv,w

c(e)H(ξP (e), ξP (e) + k)− c(u, v)H(k), (25)

where H(m,n) = H(m)−H(n), and for two vertices x and y, Tx,y denotes
x-y path in T . Similarly, we have

0 ≥ Φ(P )− Φ(P v→u)

≥
∑

e∈Tu,w

c(e)H(ξP (e), ξP (e) + l)

+
∑

e∈Tv,w

c(e)H(ξP (e), ξP (e)− l)− c(u, v)H(l). (26)

From (25) and (26),

c(u, v)(lH(k) + kH(l))

≥
∑

e∈Tu,w

c(e) (kH(ξP (e), ξP (e) + l) + lH(ξP (e), ξP (e)− k))

+
∑

e∈Tv,w

c(e) (kH(ξP (e), ξP (e)− l) + lH(ξP (e), ξP (e) + k)) . (27)

From Proposition 21,

kH(ξP (e), ξP (e) + l) + lH(ξP (e), ξP (e)− k) ≥ −k · l

ξP (e) + 1
+ l · k

ξP (e)
> 0,

kH(ξP (e), ξP (e)− l) + lH(ξP (e), ξP (e) + k) ≥ k · l

ξP (e)
− l · k

ξP (e) + 1
> 0.
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Therefore, we obtain

c(u, v) ≥ kH(k, k + l) + lH(k, k − k)

lH(k) + kH(l)
c(eu) +

kH(l, l − l) + lH(l, l + k)

lH(k) + kH(l)
c(ev)

=
(k + l)H(k)− kH(k + l)

lH(k) + kH(l)
c(eu) +

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
c(ev).

(28)

We use the following propositions, where the proofs can be found in
Appendix

Proposition 11. Let k, l be positive integers. If k ≤ l, then we have

(k + l)H(k)− kH(k + l)

lH(k) + kH(l)
≥ 1

4
. (29)

Proposition 12. Let k, l be positive integers. If l/2 ≤ k ≤ l, then

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
≥ 1

12
. (30)

Lemma 13. If a vertex v is a proper ancestor of a vertex u in T , then
c(u, v) ≥ c(eu).

Proof. Since P is a strategy profile with minimum potential, we have

0 ≥ Φ(P )− Φ(P u→v)

≥
∑

e∈Tu,v

c(e) (H(ξP (e))−H(ξP (e)− k))− c(u, v)H(k)

≥ c(eu)H(k)− c(u, v)H(k). (31)

Therefore, we obtain c(u, v) ≥ c(eu).

Lemma 14. Let u ∈ V \ {t} and v ∈ V with u ̸= v, k = ξP (eu) and

l = ξP (ev). If k ≤ l, then we have c(u, v) ≥ c(eu)
4 .

Proof. Since k ≤ l, u is not a proper ancestor of v. If v is an ancestor of u,
the inequality c(u, v) ≥ c(eu) ≥ c(eu)/4 holds by Lemma 13. Otherwise, by
Lemma 10, we have

c(u, v) ≥ (k + l)H(k)− kH(k + l)

lH(k) + kH(l)
c(eu) +

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
c(ev)

≥ c(eu)

4
+

c(ev)

12
≥ c(eu)

4
(by Propositions 11 and 12) (32)
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We are now ready to prove Theorem 4.

Proof of Theorem 4. Let P ∗ be a strategy profile with minimum cost. Since
(G, c) is a metric network, there exists a Hamilton path L = {(v1, v2), (v2, v3),
. . . , (v|V |−1, v|V |)} such that v1 = t and c(L) ≤ 2 · cost(P ∗).

For each i = 1, 2, . . . , ⌊|V |/2⌋, Let xi and yi be two vertices such that
{xi, yi} = {v2i−1, v2i} and ξP (exi) ≤ ξP (eyi), where we assume ξP (ev1) =
+∞. By Lemma 14, we have

⌊|V |/2⌋∑
i=1

c(exi) ≤
⌊|V |/2⌋∑
i=1

4c(v2i−1, v2i) ≤ 8cost(P ∗). (33)

By repeatedly applying the same argument to the remaining vertices, we
obtain

cost(P )

cost(P ∗)
= O(log |V |). (34)

3.3 The proof of Theorem 3

We need further lemmas to show Theorem 3.

Lemma 15. Let u, v ∈ V \{t} be vertices such that u is neither an ancestor
nor a descendant of v in T , and let k = ξP (eu), l = ξP (ev). If l/2 ≤ k ≤ l,
then we have

c(u, v) ≥ 1

12
(c(eu) + c(ev)) . (35)

Proof. By Lemma 10, we have that

c(u, v) ≥ (k + l)H(k)− kH(k + l)

lH(k) + kH(l)
c(eu) +

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
c(ev)

≥ c(eu)

4
+

c(ev)

12
(by Propositions 11 and 12)

≥ 1

12
(c(eu) + c(ev)). (36)

For a positive integer α, let Vα = {v ∈ V | α ≤ ξP (ev) < 2α}. We then
show that

∑
v∈Vα

c(ev) = O(cost(P ∗)).
We partition Vα into connected components W1,W2, . . . ,Wp in T (see

Figure 4). Suppose that two vertices u, v are in Vα and u is an ancestor of
v. Then any vertex w in the u-v path in T also satisfies α ≤ ξP (ew) < 2α,
and hence w ∈ Vα, which implies that there exists a connected component
Wi that contains both u and v. This leads to the following lemma.

13



Lemma 16. For i ̸= j, let Wi and Wj be defined as above, and let u and w
be vertices in Wi and Wj, respectively. Then u is neither an ancestor nor a
descendant of v.

Figure 4: The vertices Vα in the strategy profile P

Lemma 17. Let Vα be defined as above, and P ∗ be a strategy profile with
minimum cost. Then we have

∑
v∈Vα

c(ev) ≤ 27cost(P ∗).

Proof. We first analyze the sum of the costs c(ev) for v ∈ Wi. Let L be a
Hamilton path in G such that t is the initial vertex and c(L) ≤ 2 · cost(P ∗).
We index vertices in Wi by v1, v2, . . . , vli in the increasing order of the dis-
tance from t in L, i.e., in L, vk is closer to t than vh if k < h. We further
partition Wi into

∪
k Wik such that each Wik is the maximum set that for

any two vertices u and v in Wik, the u-v path in L contains no vertex in Wj ,
j ̸= i. Let Wik = {vqk , vqk+1 . . . , vqk+1−1}. For each Wik, let vrk denote the
vertex which is the closest to t in T . For h = qk, qk + 1, . . . , qk+1 − 1 with
h ̸= rk, let e

′
vh

= (vh, vh+1) if h < rk, and (vh, vh−1) if h > rk. Let

T ′ =

(
T \ (

∪
k

{ev | v ∈ Wik \ {vrk}})

)
∪ (
∪
k

{e′v | v ∈ Wik \ {vrk}}), (37)

and let P ′ be the strategy profile that corresponds to T ′. Then we have

0 ≤ Φ(P ′)− Φ(P )

≤
∑
k

qk+1−1∑
h=qk

[h ̸= rk]
(
c(e′vh)H(ξP ′(e′vh))− c(evh)H(ξP (evh))

)
, (38)

where [·] is the Iverson bracket that returns one if the condition in the bracket
is true, and zero otherwise. By ξP ′(e′vh) < 2α, ξP (evh) ≥ α, an upper bound

14



in the right-hand side of (38) is:

∑
k

qk+1−1∑
h=qk

[h ̸= rk]
(
c(e′vh)H(2α)− c(evh)H(α)

)

≤
∑
k

qk+1−2∑
h=qk

c(vh, vh+1)H(2α)−
∑
k

qk+1−1∑
h=qk

[h ̸= rk]c(evh)H(α)

≤
∑
k

d(vqk , vqk+1−1)H(2α)−
∑

v∈Wi\Ui

c(ev)H(α), (39)

where Ui =
∪

k{vrk}, and for two vertices u and w, d(u,w) denotes the
distance between u and w in L. The last inequality holds since the network
is metric.

Therefore, we have∑
v∈Wi\Ui

c(ev) ≤
H(2α)

H(α)

∑
k

d(vqk , vqk+1−1)

=

(
1 +

H(2α, α)

H(α)

)∑
k

d(vqk , vqk+1−1)

≤
(
1 + max

1≤i≤α

{
1/(α+ i)

1/i

})∑
k

d(vqk , vqk+1−1)

=
3

2

∑
k

d(vqk , vqk+1−1). (40)

Now we evaluate the sum of the costs c(ev) such that v ∈ Vα. Let
U =

∪p
i=1 Ui. For Vα \ U , we obtain∑

v∈Vα\U

c(ev) =

p∑
i=1

∑
v∈Wi\Ui

c(ev)

≤
p∑

i=1

3

2

∑
k

d(vqk , vqk+1−1) (by (40))

≤ 3

2
c(L) ≤ 3cost(P ∗). (41)

For U , let us index vertices in U by u1, u2, . . . in the increasing order of
the distance from t in L. Then Lemma 16 implies that, for any j, uj is neither
an ancestor nor a descendant of uj+1. Since α ≤ ξP (euj ), ξP (euj+1) < 2α
yield ξP (euj )/2 ≤ ξP (euj+1) ≤ ξP (euj ) or ξP (euj+1)/2 ≤ ξP (euj ) ≤ ξP (euj+1),
we have∑

u∈U
c(eu) =

∑
j

c(euj ) ≤
∑
j

12c(uj , uj+1) (by Lemma 15)

≤ 12c(L) ≤ 24cost(P ∗). (42)
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Combining inequalities (41) and (42), we obtain∑
v∈Vα

c(ev) =
∑

v∈Vα\U

c(ev) +
∑
v∈U

c(ev) ≤ 27cost(P ∗). (43)

Let γ be a positive integer. The total cost of the edges used by at most
γ players is

∑
e:1≤ξP (e)≤γ

c(e) ≤
⌊lg γ⌋∑
k=0

∑
e:2k≤ξP (e)<2k+1

c(e)

≤
⌊lg γ⌋∑
k=0

∑
v∈V

2k

c(ev) = O(log γ)cost(P ∗). (by Lemma 17)

(44)

On the other hand, the total cost of the edges used by at least γ players is∑
e:1≤γ≤ξP (e)

c(e) =
H(n)

H(γ)
· cost(P ∗) = O

(
log n

log γ

)
cost(P ∗) (45)

since
∑

e:1≤γ≤ξP (e) c(e)H(γ) ≤ Φ(P ) ≤ Φ(P ∗) ≤ cost(P ∗)H(n).
From inequalities (44) and (45), we have that

cost(P ) =
∑

e:1≤ξP (e)<γ

c(e) +
∑

e:γ≤ξP (e)

c(e)

= O

(
log γ +

log n

log γ

)
cost(P ∗). (46)

By choosing γ = exp(
√
log n), we obtain

cost(P )

cost(P ∗)
= O(

√
log n). (47)

4 Lower bounds of POPoA and POPoS for broad-
cast games

In this section, we show the following theorems.

Theorem 18. There exists a broadcast game with n players such that

POPoS = Ω(
√

log logn).

Theorem 19. There exists a broadcast game with |V | vertices such that

POPoS = Ω(log |V |).
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For positive integer d, let lsb(d) denote the maximum number 2p which
divides d, where p denotes a nonnegative integer. For example, lsb(12) = 4,
lsb(5) = 1, and lsb(8) = 8.

We construct a family of broadcast games I with POPoS(I) = Ω(
√
log log n),

Ω(log |V |).
Our graph G = (V,E) is defined as V = {0, 1, 2, 3, . . . , 2m} and E =∪3

i=0Ei, where

E0 = {(v − 1, v) | v = 1, 2, 3, . . . , 2m},
E1 = {(0, 2m)},
E2 = {(v, v − lsb(v)/2) | v = 4 · 1, 4 · 2, 4 · 3, . . . , 4 · 2m−2},
E3 = {(v, v + lsb(v)/2) | v = 4 · 1, 4 · 2, 4 · 3, . . . , 4 · (2m−2 − 1)},

and the edge cost c : E → R++ is given as

c(e) =


1, e ∈ E0,

2m−1, e ∈ E1,

lsb(v)/4, e = (v, v − lsb(v)/2) ∈ E2,

lsb(v)/4, e = (v, v + lsb(v)/2) ∈ E3.

An edge in E1 ∪ E2 ∪ E3 with cost 2k−1 is called k-shortcut (or simply
shortcut). For a vertex v ∈ V with lsb(v) = 2k, let Vv = {u ∈ V | v−lsb(v) <
u < v + lsb(v)}. The subgraph induced by Vv (denoted by G[Vv]) is called
k-block, and v is called a root of the block.

All the players have a sink t = 0, and each vertex v ∈ V \ {t} has

f(lsb(v)) players as their sources, where f(k) = 22
(lg k)2

. Thus, this game has

n =
∑2m

v=1 f(lsb(v)) = Θ(22
m2

) players. We note that m = Θ(
√
log log n).

This games are depicted in Figures 5 and 6.

Figure 5: A family of broadcast games to prove Theorems 18 and 19

17



Figure 6: A broadcast game for m = 4 in Figure 5

Let P ∗ and P denote strategy profiles with minimum cost and potential,
respectively. Then it is not difficult to see that

∪
i∈N P ∗

i = E0, where N
denotes the set of all players. This is because E0 is a spanning tree of cost
2m, and any spanning tree has cost at least 2m. Therefore it is sufficient to
show cost(P ) = Ω(m · 2m), since it implies

POPoS = Ω(m) = Ω(
√

log log n) = Ω(log |V |), (48)

i.e., Theorems 18 and 19.
To prove our claim, we show that P contains all k-shortcut edges with

k ≥ 4 by using the following propositions on harmonic number, where the
proofs can be found in Appendix.

Proposition 20. For all nonnegative integer m, we have

1 +
m

2
≤ H(2m) ≤ 1 +m. (49)

Proposition 21. Let m,n be positive integers. If m ≥ n, then we have

m− n

m
≤ H(m,n) ≤ m− n

n+ 1
. (50)

For a nonnegative integer k, letGk be a k-block, and let g(k) =
∑k

l=0 2
2l

2

·
2k−l be the number of players whose source vertex is in Gk.

Proposition 22. g(k) is at most 2f(2k) = 2 · 22k
2

.

Proof. The proof is by induction on k. When k < 2, we have g(0) = 2 ≤
4 = 2 · 220

2

, g(1) = 8 = 2 · 221
2

.
Assuming that the induction hypothesis is true for some k ≥ 2, we

consider the case of k + 1. Since (k + 1)-block consists of two k-blocks and

its root, we have g(k + 1) = 2g(k) + 22
(k+1)2

.
Then we have:

g(k + 1) = 2g(k) + 22
(k+1)2

≤ 22
k2+2 + 22

(k+1)2

(by induction hypothesis)

≤ 22
(k+1)2

+ 22
(k+1)2

= 2 · 22(k+1)2

. (by k ≥ 2) (51)
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This completes the proof.

Lemma 23. For m ≥ 3, any strategy profile with minimum potential con-
tains the m-shortcut edge.

Proof. Let

φ1 = min{Φ(Q) | Q : a strategy profile with m-shortcut edge},
φ2 = min{Φ(Q) | Q : a strategy profile without m-shortcut edge}.

We claim that φ1 < φ2, which proves the lemma.
In order to estimate φ1, consider a spanning tree T = (E0 \ {(2m −

1, 2m)})∪E1 and the corresponding strategy profile Q. In Q, e ∈ E1 is used
by f(2m) players, each of which has a source 2m, and any e ∈ E0 \ {(2m −
1, 2m)}) is used by at most g(m− 1) players. Hence we have

φ1 ≤ Φ(Q) ≤ 2m−1H(f(2m))︸ ︷︷ ︸
m-shortcut edge

+(2m − 1)H(g(m− 1))︸ ︷︷ ︸
edges in E0\{(2m−1,2m)}

≤ 2m−1H(f(2m)) + 2MC(2 · 22(m−1)2

) (by Proposition 22)

≤ 2m−1H(f(2m)) + 2m(1 + 1 + 2(m−1)2) (by Proposition 20)

≤ 2m−1H(f(2m)) + 2m+1 + 2m
2−m+1. (52)

We next estimate φ2. Let T be a spanning tree that does not contain the
m-shortcut edge. Then the cost of the 2m-t path in T is at least 2m−1 + 1,
which implies

φ2 ≥ (2m−1 + 1)H(22
m2

)

= 2m−1H(22
m2

) +H(22
m2

)

≥ 2m−1H(22
m2

) + 2m
2−1. (by Proposition 20) (53)

By combining (52) and (53), we obtain

φ2 − φ1 ≥ 2m
2−1 − 2m+1 − 2m

2−m+1 > 0,

(54)

since m ≥ 3.

By the following lemma, together with Lemma 23, shows that any strat-
egy profile with minimum potential makes use of all k-shortcut edges with
k ≥ 4.

Lemma 24. Let k be an integer with 4 ≤ k < m. If any strategy profile
with minimum potential contains all the h-shortcut edges of h ≥ k+1, then
it also contains all the k-shortcut edges.
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Figure 7: A k-block Gk of root v

Proof. For a k-block Gk, let v be the root of Gk, and let ek be the k-shortcut
edge of incident on v (see Figure 7). Let

φ1 = min

{
Φ(Q) | Q :

a strategy profile with all h-shortcut
edges of h ≥ k + 1 and ek

}
, (55)

φ2 = min

{
Φ(Q) | Q :

a strategy profile with all h-shortcut
edges of h ≥ k + 1 and no ek

}
. (56)

We claim that φ1 < φ2, which proves the lemma.
In order to estimate φ1, let Q

∗ be a strategy profile such that Φ(Q∗) = φ2

and it satisfies the conditions in (56). We consider the following spanning
tree T in G:

T =
(
E(Gk) ∩E0

)
∪ {ek}

∪
(∪
i∈N

Q∗
i ∩
(
E \ (E(Gk) ∪ {(v − 2k, v − 2k + 1), (v + 2k − 1, v + 2k)}

))
,

where E(Gk) denotes the edge set of Gk. Let Q be the strategy profile
corresponding to T . Note that Q contains all h-shortcut edges of h ≥ k + 1
and ek, and no player i with source si not in Gk uses edge e in Gk. Let

η(e) = |{i ∈ N | e ∈ Q∗
i , si ̸∈ V (Gk)}|, (57)

where V (Gk) denotes the vertex set of Gk, and let φ =
∑

e∈E c(e)H(η(e)).
Then

φ1 ≤ Φ(Q) =
∑
e∈E

c(e)H(ξQ(e))

= φ+
∑

e∈E(Gk)

c(e)H(ξQ(e)) +

m∑
l=k

c(el)H(ξQ(el), η(el)), (58)

where {ek, ek+1, . . . , em} is the v-t path in T . The second term in (58)
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satisfies∑
e∈E(Gk)

c(e)H(ξQ(e)) < 2k+1H(g(k − 1))

≤ 2k+1H(2 · 22(k−1)2

) (by Proposition 22)

≤ 2k+1(2 + 2(k−1)2) (by Proposition 20)

= 2k+2 + 2k
2−k+2. (59)

The third term in (58) satisfies

m∑
l=k

c(el)H(ξQ(el), η(el)) ≤ 2k−1H(g(k)) +

m∑
l=k+1

2l−1H(f(2l) + g(k), f(2l)),

(60)

where the first term is bounded as

2k−1H(g(k)) ≤ 2k−1H(2 · 22k
2

) (by Proposition 22)

≤ 2k−1(H(22
k2

) + 1)

= 2k−1H(22
k2

) + 2k−1, (by Proposition 21 with m = 2n)
(61)

and the second term is bounded as
m∑

l=k+1

2l−1 ·H(f(2l) + g(k), f(2l))

≤
m∑

l=k+1

2l−1 · g(k)

f(2l)
(by Proposition 21)

≤
m∑

l=k+1

2l−1 · 2 · 2
2k

2

22l
2 (by Proposition 22)

≤ 2. (by k ≥ 4) (62)

Combining (58), (59), (60), (61), and (62) yields,

φ1 < φ+ 2k+2 + 2k
2−k+2 + 2k−1H(22

k2

) + 2k−1 + 2

< φ+ 2k−1H(22
k2

) + 2k
2−k+3. (by k ≥ 4) (63)

We next estimate φ2. Consider the players i with source v. If ek is not
used by i, then any strategy of i uses a path with cost at least 2k−1 + 1 to
get out of Gk. Therefore, we obtain

φ2 ≥ φ+ (2k−1 + 1)H(f(2k))

≥ φ+ 2k−1H(f(2k)) + 2k
2−1. (by Proposition 20) (64)
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It follows from (63) and (64) that

φ2 − φ1 > 2k
2−1 − 2k

2−k+3 ≥ 0, (65)

since k ≥ 4.

By Lemmas 23 and 24, any strategy profile P with minimum potential
contains all the k-shortcut edges of k ≥ 4. Therefore, we have

cost(P ) ≥ 2m−1 +

m−1∑
l=4

2l−1 · 2m−1−l = (m− 2) · 2m−2 = Ω(m · 2m), (66)

which proves Theorems 18 and 19.
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Appendix

Harmonic number

In this section, we present omitted proofs of properties of harmonic number:

H(n) = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
k=1

1

k
(n ≥ 0). (67)

In addition, for nonnegative integers m and n, we define H(m,n) = H(m)−
H(n).

Proposition 20. For all nonnegative integer m, we have

1 +
m

2
≤ H(2m) ≤ 1 +m. (68)

Proof. For m = 0, the statement is true with equality. For m > 0, we have:

1

2
= 2m−1 · 1

2m
≤ H(2m)−H(2m−1)

=
1

2m−1 + 1
+

1

2m−1 + 2
+ · · ·+ 1

2m
≤ 2m−1 · 1

2m−1
= 1.

(69)

Since 1/2 ≤ H(2m)−H(2m−1) and H(20) = 1, we obtain H(2m) ≥ 1+m/2.
Similarly, as H(2m) − H(2m−1) ≤ 1 and H(20) = 1, we obtain H(2m) ≤
1 +m.

Proposition 25. Let k, l be positive integers. If k ≤ l then,

kH(l) ≤ lH(k). (70)

Proof. Since H(n)/n is the average of 1, 1/2, . . . , 1/n, it is monotone de-
creasing in n. Thus we have

H(l)

l
≤ H(k)

k
. (71)

Proposition 26. Let k, l be positive integers. If k ≤ l then,

H(k + l, k)

l
≤ H(2k, k)

k
≤ H(k)

k
. (72)

Proof. It follows from the fact that H(k + l, k)/l is the average of 1/(k +
1), 1/(k + 2), . . . , 1/(k + l).
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Proposition 21. Let m,n be positive integers. If m ≥ n, then we have

m− n

m
≤ H(m,n) ≤ m− n

n+ 1
. (73)

Proof. It follows from

H(m,n) =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ (m− n)
≤ m− n

n+ 1
, (74)

H(m,n) =
1

m
+

1

m− 1
+ · · ·+ 1

m− (m− n− 1)
≥ m− n

m
. (75)

Proposition 11. Let k, l be positive integers. If k ≤ l, then we have

(k + l)H(k)− kH(k + l)

lH(k) + kH(l)
≥ 1

4
. (76)

Proof. Since proposition 25 implies (k + l)H(k)− kH(k + l) ≥ 0, we have

(k + l)H(k)− kH(k + l)

lH(k) + kH(l)
≥ (k + l)H(k)− kH(k + l)

lH(k) + lH(k)
(by Proposition 25)

=
1

2
− k

2H(k)
· H(k + l, k)

l

≥ 1

2
− k

2H(k)
· H(2k, k)

k
(by Proposition 26)

=
1

2
− 1

2
· H(2k, k)

H(k)

≥ 1

2
− 1

2
· max
1≤i≤k

{
1/(k + i)

1/i

}
=

1

4
. (77)

Proposition 12. Let k, l be positive integers. If l/2 ≤ k ≤ l, then

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
≥ 1

12
. (78)

Proof. If l = k = 1, then we obtain

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
=

2H(1)−H(2)

H(1) +H(1)
=

1

4
≥ 1

12
. (79)
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For l ≥ 2, we have:

(k + l)H(l)− lH(k + l)

lH(k) + kH(l)
≥ (k + l)H(l)− lH(k + l)

lH(k) + lH(k)
(by Proposition 25)

=
kH(l)− lH(k + l, l)

2lH(k)

≥ kH(l)− l · (k/l)
2lH(k)

(by Proposition 21)

=
kH(l)

2lH(k)

(
1− 1

H(l)

)
≥ kH(l)

2lH(k)

(
1− 1

H(2)

)
(by l ≥ 2)

=
kH(l)

6lH(k)

≥ (l/2) ·H(l)

6lH(l)
=

1

12
. (80)
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