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Abstract

A Γ-labeled graph is a directed graph G in which each edge is associated with
an element of a group Γ by a label function ψ : E(G) → Γ. For a vertex subset
A ⊆ V (G), a path (of the underlying undirected graph) is called an A-path if its start
and end vertices belong to A and does not intersect A in between, and an A-path is
called non-zero if the product of the labels along the path is not equal to the identity.
Chudnovsky, et al. (2006) introduced the problem of packing non-zero A-paths and
gave a min-max formula for characterizing the maximum number of vertex-disjoint
non-zero A-paths. In this paper we show that the problem of packing non-zero A-
paths can be reduced to the matroid matching problem on a certain combinatorial
matroid, and discuss how to derive the min-max formula based on Lovász’s idea of
reducing Mader’s S-path problem to a matroid matching problem.

1 Introduction

Let G be a directed graph which may contain multiple edges and loops, and let Γ be a
group. A function ψ : E(G) → Γ on the edge set is called a label function if the following
condition holds: we can change orientation of each edge as we like by inverting its label,
i.e., if ψ assigns a label γ ∈ Γ to an edge in one direction, then ψ assigns γ−1 to the edge
in the other direction. A pair (G,ψ) of a directed graph G and a label function ψ is called
a Γ-labeled graph.

Let (G,ψ) be a Γ-labeled graph and A ⊆ V (G). An A-path is a path (of the underlying
undirected graph) which starts and ends in A and does not intersect A in between. An
A-path P is called non-zero if the product of the labels through the path is not equal to the
identity, where we multiply the inverse ψ(e)−1 if e is traversed in the reverse direction. Let
µ(G,ψ,A) be the maximum number of (fully) vertex-disjoint non-zero A-paths in (G,ψ).
Chudnovsky, et al. [1] gave a min-max formula for µ(G,ψ,A). An efficient algorithm for
computing µ(G,ψ,A) is presented in [2]. Later, Pap [12] gave a simpler proof for the
min-max theorem in a slightly generalized setting.

The problem of packing non-zero A-paths generalizes Mader’s S-path problem, where
we are given a partition S of a terminal set A and A-paths connecting distinct classes
in S are allowed to be packed. Mader’s S-path problem includes the problem of packing
A-paths both in vertex-disjoint setting and in edge-disjoint setting, and, as a result, in-
clude several fundamental problems in combinatorial optimization such as the maximum
matching problem and Menger’s disjoint path problem. Another important example of
packing non-zero A-paths is packing odd-length A-paths. More examples are given in [1].
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In [7] Lovász showed that the problem of packing S-paths can be reduced to the ma-
troid matching problem on a certain combinatorial matroid, and Schrijver [13] (implicitly)
showed that the matroid that appears in this reduction has a linear representation, which
means that the problem can be solved by a linear matroid matching algorithm. In this
paper, extending Lovász’s idea, we show that the problem of packing non-zero A-paths
can also be reduced to the matroid matching problem of a combinatorial matroid.

To explain our contribution more specifically, let us briefly review the matroid matching
problem by listing preliminary facts on 2-polymatroids, which will be used throughout the
paper. Let M be a matroid with ground set S. A set of pairs X ⊆

(
S
2

)
is called a matching

if the rank of the set of elements in X is equal to 2|X| in M. In the matroid matching
problem for a matroid M on a finite set S, we are given X ⊆

(
S
2

)
and are asked to find a

matching of maximum size in X.
A pair (S, f) of a finite set S and a set function f : 2S → Z is called a d-polymatroid

if f is a monotone submodular function with f(∅) = 0 and f({e}) ≤ d for every e ∈ S.
We say that F ⊆ S is a feasible set in a 2-polymatroid (S, f) if f(F ) = 2|F |. The size
of a maximum feasible set in (S, f) is denoted by ν(S, f). It is known that the matroid
matching problem is equivalent to the problem of finding a maximum feasible set in a
2-polymatroid (see, e.g., [9]).

For a 2-polymatroid (S, f) and a subset Z ⊆ S, the contraction of Z is defined as
2-polymatroid (S \Z, fZ) with fZ(X) = f(X ∪Z)− f(Z) for each X ⊆ S \Z. For X ⊆ S,
let spf (X) := {e ∈ S | f(X + e) = f(X)}.

The matroid matching problem is a hard problem in general, and there is no polynomial
time algorithm for finding an optimal solution [6, 8]. However, there are a number of special
classes of matroids for which the min-max formula of ν(S, f) is known or even the problem
can be solved in polynomial time. In particular, Lovász [8] showed that the matroid
matching problem can be solved in polynomial time for linearly represented matroids.
Lovász [7] (or formally Dress and Lovász [3]) also showed that, if the (poly)matroid satisfies
a certain property (discussed below), then the min-max formula can be derived.

A subset C ⊆ S is called a circuit in a 2-polymatroid (S, f) if f(C) = 2|C|−1 and S−e
is a feasible set for every e ∈ S. A subset D ⊆ S is called a double circuit if f(D) = 2|D|−2
and f(D − e) = 2|D| − 3 for every e ∈ D. It is known that, if D is a double circuit, then
there is a unique partition D1, . . . , Dd of D into nonempty subsets such that D \Di is a
circuit for every 1 ≤ i ≤ d and every circuit in D is written in this form. A double circuit
is called nontrivial if d ≥ 3. The kernel of D is defined to be

∩
1≤i≤d spf (D \Di).

Let k be a positive integer. A subset F ⊆ S is called a k-flower if there exist a circuit
C and a feasible set M such that F = C ∪M and f(F ) = f(C) + f(M) = 2k + 1. A
subset F is called a k-double-flower if there exist a double circuit D and a feasible set M
such that F = D ∪M and f(F ) = f(D) + f(M) = 2k+2. One can easily observe that F
is a k-flower if and only if f(F ) = 2k+1 and |F | = k+1, and that F is a k-double-flower
if and only if f(F ) = 2k + 2, |F | = k + 2, and F contains no feasible set of size k + 1 [7].

Lovász showed the following deep theorem for general 2-polymatroids.

Theorem 1.1 ([7], see also Theorem 11.2.7 in [9]). Let (S, f) be a 2-polymatroid and let
ν = ν(S, f). Then at least one of the following holds.

(i) f(S) = 2ν + 1.

(ii) S has a partition {S1, S2} into nonempty subsets such that ν = ν(S1, f) + ν(S2, f).

(iii) S has an element e which is contained in the span of every maximum feasible set.

(iv) (S, f) contains a nontrivial ν-double-flower.
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Theorem 1.1 suggests an algorithmic approach to the matroid matching problem as
follows. If we encounter (i) or (ii) when applying Theorem 1.1, then we can identify a
solution or reduce the problem to smaller ones. Similarly, if we encounter (iii), we can
consider the contraction of {e}, which reduces the problem size. So, the only difficult
situation is the case (iv). However, as shown in [7], if the rank of the kernel is not equal
to zero for every nontrivial double circuit of any contraction of (S, f), then the problem
can be reduced to a smaller one by contracting an element in the kernel of the double
circuit in a ν-double-flower.

As an application of his theory, Lovász showed how to derive Mader’s min-max formula
from Theorem 1.1, where he reduced the problem to a matroid matching problem on a
2-polymatroid defined by combinatorial conditions. Within his reduction framework, the
class of 2-polymatroid is not closed under contractions, and hence he gave a slightly
involved argument to derive Mader’s min-max formula. However, it turns out that the
2-polymatroid admits a linear representation as (implicitly) pointed out by Schrijver [13].

In this paper, we shall show that the problem of packing non-zero A-paths can be re-
duced to a matroid matching problem on a combinatorial 2-polymatroid. To demonstrate
the meaning of the reduction, we show how to derive the min-max formula described in
[1] from Theorem 1.1 by using Lovász’s idea. A companion paper [15] by the second au-
thor shows the applicability of Schrijver’s idea, which leads to more efficient solvability
for a special case. It turns out that Schrijver’s reduction technique can be adapted only
when the underlying group Γ has a two-dimensional linear representation, but it can be
adapted even to a slightly generalized problem introduced by Pap [12]. This suggests the
importance of Lovász’s combinatorial argument.

Our reduction is based on a recent work on polymatroid constructions on group-labeled
graphs by the first author. A frame matroid (or bias matroid) is a well-known matroid
on the edge set of a group-labeled graph, which plays an important role in the matroid
representation theory (see, e.g. [11].) Motivated by recent works in combinatorial rigid-
ity theory, the first author [14] proposed a polymatroid construction on the edge set of
group-labeled graphs, where the rank formula of frame matroids is generalized based on
submodular functions on the power set of the underlying group. The 2-polymatroid pro-
posed in this paper is a special case of this construction, and our construction and reduction
exhibit a clear connection of the problem of packing non-zero A-paths to well-investigated
frame matroids.

2 Preliminaries

In this section we shall review preliminary facts on group-labeled graphs in Section 2.1
and then introduce a polymatroid construction given in [14] in Section 2.2.

2.1 Group-labeled graphs

Let (G,ψ) be a Γ-labeled graph. A walk is a sequenceW = (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk)
of vertices and edges such that vi−1 and vi are endvertices of ei for 1 ≤ i ≤ k. A walk
is called closed if the start vertex and the end vertex coincide. The label of a walk W is
defined as ψ(W ) = ψ(ek) · · ·ψ(e2) · ψ(e1) if each edge is oriented in the forward direction
through W , and for a backward edge ei we replace ψ(ei) with ψ(ei)

−1 in the formulation.
Let (G,ψ) be a Γ-labeled graph for a group Γ. For v ∈ V (G), we denote by π1(G, v) the

set of closed walks starting at v. Similarly, for X ⊆ E(G) and v ∈ V (G), π1(X, v) denotes
the set of closed walks starting at v and using only edges of X, where π1(X, v) = ∅
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if v /∈ V (X). For X ⊆ E(G), the subgroup induced by X relative to v is defined as
⟨X⟩ψ,v = {ψ(W ) |W ∈ π1(X, v)}.

Proposition 2.1. For any connected X ⊆ E(G) and two vertices u, v ∈ V (X), ⟨X⟩ψ,u is
conjugate to ⟨X⟩ψ,v.

For v ∈ V (G) and γ ∈ Γ, a switching at v with γ changes the label function ψ on E(G)
to ψ′ : E(G) → Γ defined as

ψ′(e) =


ψ(e) · γ−1 if e is directed from v

γ · ψ(e) if e is directed to v

ψ(e) otherwise.

By definition, ψ′(e) = γ ·ψ(e) ·γ−1 if e is a loop attached at v. We say that a label function
ψ′ on E(G) is equivalent to another label function ψ on E(G) if ψ′ is obtained from ψ by
a sequence of switchings.

The following properties of label functions are well-known and are easily shown.

Proposition 2.2. If ψ′ is equivalent to ψ, then, for any X ⊆ E(G) and any v ∈ V (G),
⟨X⟩ψ′,v is conjugate to ⟨X⟩ψ,v.

Proposition 2.3. Let (G,ψ) be a group-labeled graph. Then, for any forest F ⊆ E(G),
there is a label function ψ′ equivalent to ψ such that ψ′(e) is identity for every e ∈ F .

Proposition 2.3 suggests a simple way to compute ⟨F ⟩ψ,v up to congruence, in analogy
with the fact that a cycle space of a graph is spanned by fundamental cycles.

Proposition 2.4. For a connected X ⊆ E(G) and a spanning tree T of graph (V (X), X),
suppose that ψ(e) is identity for all e ∈ T . Then, ⟨X⟩ψ,v = ⟨ψ(e) : e ∈ X \T ⟩, the subgroup
generated by ψ(e) for e ∈ X \ T .

A connected edge subset F in a group-labeled graph (G,ψ) is called balanced if ⟨F ⟩ψ,v
is the trivial group for some v ∈ V (F ). F is called unbalanced if it is not balanced. By
Proposition 2.1, this property is invariant under the choice of the base vertex v ∈ V (F ),
and F is unbalanced if and only if F contains an unbalanced cycle. Thus, we can extend
this notion to any F ⊆ E(G) (possibly disconnected sets) such that F is unbalanced if and
only if F contains an unbalanced cycle.

For the analysis of disjoint non-zero A-paths, we shall extend these notions as follows.
Let A ⊆ V (G). We say that ψ′ is A-equivalent to ψ if ψ′ is obtained from ψ by a sequence
of switchings at vertices in V (G) \A. An edge set F is called A-balanced if F is balanced
and contains no non-zero A-path. This property is invariant up to the A-equivalence of
label functions. As in Propositions 2.3 and 2.4, we have the following.

Proposition 2.5. Let (G,ψ) be a group-labeled graph and A ⊆ V (G). If an edge set F is
A-balanced, then there is a label function ψ′ A-equivalent to ψ such that ψ′(e) is identity
for every e ∈ F .

2.2 Frame matroids and their extensions

Let (G,ψ) be a Γ-labeled graph for a group Γ. The frame matroid (or bias matroid)
of (G,ψ) is defined such that F ⊆ E(G) is independent if and only if each connected
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component of F contains no cycle or just one cycle, which is unbalanced [16, 17]. The
rank function gΓ : 2E(G) → Z is written by

gΓ(F ) =
∑

X∈C(F )

{|V (X)| − 1 + αΓ(X)} (F ⊆ E(G)),

where C(F ) denotes the partition of F into the edge sets of the connected components
induced by F and

αΓ(X) =

{
1 if X is unbalanced

0 otherwise.

In [14], Tanigawa extended the construction of the union of frame matroids by using
structures of the underlying group. The idea is to replace the term αΓ by a function taking
fractional values.

For a group Γ, we consider a function ρ : 2Γ → R+ satisfying the following properties:

(Normalized) ρ(∅) = 0;

(Monotonicity) ρ(X) ≤ ρ(Y ) for any X ⊆ Y ⊆ Γ;

(Submodularity) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ) for any X,Y ⊆ Γ;

(Invariance under closure) ρ(X) = ρ(⟨X⟩) for any nonempty X ⊆ Γ;

(Invariance under conjugate) ρ(X) = ρ(γXγ−1) for any nonempty X ⊆ Γ and γ ∈ Γ.

We say that ρ : 2Γ → R+ is a symmetric polymatroidal function over Γ if ρ satisfies these
five conditions.

Let (G,ψ) be a Γ-labeled graph. We consider ρ(⟨F ⟩ψ,v) for a connected F ⊆ E(G)
and v ∈ V (F ). By Proposition 2.1, ⟨F ⟩ψ,v is conjugate to ⟨F ⟩ψ,u for any u, v ∈ V (F ) for
F ⊆ E(G), and hence ρ(⟨F ⟩ψ,u) = ρ(⟨F ⟩ψ,v) for any u, v ∈ V (F ). Also, by Proposition 2.2,
ρ(⟨F ⟩ψ,v) is invariant with respect to the choice of equivalent label functions ψ. We hence
simply denote ρ(⟨F ⟩ψ,v) by ρ⟨F ⟩, implicitly assuming a label function ψ and the base
vertex v ∈ V (F ). We can then define a set function gρ : 2

E(G) → R by

gρ(F ) =
∑

X∈C(F )

{|V (X)| − 1 + ρ⟨X⟩} (F ⊆ E(G)). (1)

Theorem 2.6 ([14]). Let ρ : 2Γ → [0, 1] be a symmetric polymatroidal function over a
group Γ, and let (G,ψ) be a Γ-labeled graph. Then, gρ is a monotone submodular function
over E(G).

For the reader’s convenience we put a copy of the proof in the appendix.
Suppose that a symmetric polymatroidal function ρ takes fractional values, that is, ρ :

2Γ → {0, 1d , . . . ,
d−1
d , 1} for some finite positive integer d. Then, if we define fρ : 2

E(G) → Z
by

fρ(F ) := dgρ(F ) (F ⊆ E(G)), (2)

fρ is a normalized integer-valued monotone submodular function, and (E(G), fρ) is a
d-polymatroid.

Notice that the frame matroid is a special case, where ρ is defined by ρ(X) = 0 for
X = ∅ or X = {1Γ}, and otherwise ρ(X) = 1 for X ⊆ Γ.

Now we construct a symmetric polymatroidal function of rank two. For nontrivial
groups Γ1 and Γ2, the free product Γ1 ∗ Γ2 is the group consisting of all words γ1γ2 . . . γm
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of arbitrary finite length m ≥ 0, where each letter γi is non-identity element of Γ1 or Γ2

and adjacent letters γi and γi+1 belong to different groups. The identity element of Γ1 ∗Γ2

is defined to be the empty word. See, e.g., [5] for more details on the free product.

Lemma 2.7. Let Γ1 and Γ2 be distinct nontrivial groups, and let Γ be the free product of
Γ1 and Γ2. If we define ρ : 2Γ → Z by

ρ(X) :=


0 if X is trivial (i.e., X = ∅ or X = {1Γ})
1 if X is nontrivial and X ⊆ γ−1Γiγ for some i ∈ {1, 2} and some γ ∈ Γ

2 otherwise.

Then ρ is symmetric polymatroidal.

Proof. Clearly ρ is normalized and monotone. Also, it is closed under conjugate and under
closure since γ−1Γiγ is a subgroup.

Let G = {γ−1Γiγ : i ∈ {1, 2}, γ ∈ Γ}. Then we have

X ∩ Y = {1Γ} for any distinct X,Y ∈ G (3)

since Γ is the free product of Γ1 and Γ2.
We show ρ(X)+ ρ(Y ) ≥ ρ(X ∩Y )+ ρ(X ∪Y ) for any X and Y in 2Γ. If ρ(Y ) = 0 (or

symmetrically ρ(X) = 0), then we have ρ(X ∩ Y ) = ρ(Y ) and ρ(X) = ρ(X ∪ Y ). Thus,
the modularity holds.

If ρ(Y ) = 2 (or symmetrically ρ(X) = 2), then we have ρ(Y ) = ρ(X ∪ Y ) and ρ(X) ≥
ρ(X ∩ Y ) since ρ is monotone and the range of the value of ρ is {0, 1, 2}. Thus the
submodularity holds.

Finally, assume ρ(X) = 1 and ρ(Y ) = 1. Note that there is a unique ΓX ∈ G with
X ⊆ ΓX and a unique ΓY ∈ G with Y ⊆ ΓY . By (3), if ΓX ̸= ΓY , then ρ(X ∪ Y ) = 2
and ρ(X ∩ Y ) = 0; otherwise ρ(X ∪ Y ) = 1 and ρ(X ∩ Y ) ≤ 1. Thus we have proved the
submodularity for this case.

3 Packing Non-zero A-paths

Let (G,ψ) be a Γ-labeled graph and A ⊆ V (G). Recall that an A-path P is called non-
zero if ψ(P ) ̸= 1Γ. In Section 3.1 we shall show that finding a maximum packing of size
µ(G,ψ,A) is reduced to finding a maximum feasible set in a 2-polymatroid. Then, in
Section 3.2, we shall show how the min-max formula of Chudnovsky, et al. [1] can be
derived from Theorem 1.1.

3.1 Construction of the corresponding 2-polymatroid

Let (G,ψ) be a Γ-labeled graph and A ⊆ V (G). Let Γ′ be a group consisting of {1Γ′ , •}
and isomorphic to Z/2Z (i.e., •2 is identity), and let Γ• be the free product of Γ′ and the
underlying group Γ of (G,ψ). We then define a function ρ : 2Γ

• → Z by

ρ(X) :=


0 if X is trivial

1 if X is nontrivial and X ⊆ γ−1Γγ or X = {1Γ• , γ−1 • γ} for some γ ∈ Γ•

2 otherwise

,

for each X ⊆ Γ. By Lemma 2.7, ρ is a symmetric polymatroidal function over Γ•.
Let (H,ψ) be a Γ•-labeled graph obtained from (G,ψ) by attaching a new loop ℓv,γ

at each vertex v ∈ V (G) with label ψ(ℓv,γ) = γ−1 • γ for each γ ∈ Γ. (Hence we added
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|V (G)||Γ| loops in total, if Γ is finite.) Let L be the set of the new loops and, for each

U ⊆ V (G), let LψU := {ℓ ∈ L | ℓ is incident to U and ψ(ℓ) = •}. By Theorem 2.6, the
function f : 2E(H) → Z defined by

f(F ) =
∑

Fi∈C(F )

(2|V (Fi)| − 2 + ρ⟨Fi⟩) (F ⊆ E(H)) (4)

is a normalized monotone submodular function, and thus (E(H), f) is a 2-polymatroid.

We consider the contraction of (E(H), f) by LψA and then restrict it to E(G). The

resulting 2-polymatroid on E(G) is denoted by (E(G), fψA). (Note that LψA depends on

ψ, and hence so does fψA .) Then (E(G), fψA) is a 2-polymatroid on E(G) whose rank and
feasible sets are characterized as follows.

Lemma 3.1. For F ⊆ E(G),

fψA(F ) =
∑

Fi∈C(F )

{2|V (Fi)| − 2 + ρψA(Fi)− |V (Fi) ∩A|} (5)

where ρψA is written by

ρψA(F ) =


2 if F has a non-zero A-path, or F is unbalanced with |V (F ) ∩A| ≥ 1

1
if F is A-balanced with |V (F ) ∩A| ≥ 1, or

F is unbalanced with |V (F ) ∩A| = 0

0 otherwise.

Proof. For F ⊆ E(G), let LψA(F ) be the set of loops incident to F with label • in (H,ψ).
Let us first check

ρψA(F ) = ρ⟨F ∪ LψA(F )⟩ (6)

for any connected F ⊆ E(G).

If F is balanced with V (F ) ∩ A = ∅, then ⟨F ∪ LψA(F )⟩ is trivial, which implies

ρ⟨F ∪ LψA(F )⟩ = 0 = ρψA(F ).
If F is unbalanced with V (F ) ∩ A = ∅, then ⟨F ⟩ is a nontrivial subgroup of Γ, so

ρ⟨F ∪ LψA(F )⟩ = 1, which is equal to ρψA(F ).
Suppose next that F is A-balanced with |V (F )∩A| ≥ 1. Take a terminal v ∈ V (F )∩A.

Then the label of every path in F from v to any other terminal in V (F )∩A is identity as F is

A-balanced, and hence ⟨F ∪LψA(F )⟩v,ψ = {1Γ• , •}. This means ρ⟨F ∪LψA(F )⟩ = 1 = ρψA(F ).
Finally, suppose that F has a non-zero A-path or is unbalanced with |V (F )∩A| ≥ 1. If

F has a non-zero A-path from one terminal u to another terminal v, then ⟨F ∪LψA(F )⟩v,ψ
contains • and γ−1 • γ, where γ is the label of the non-zero A-path. Since γ is not the
identity, ρ⟨F ∪ LψA(F )⟩v,ψ = 2 = ρψA(F ).

Similarly, if F is unbalanced, then ⟨F∪LψA(F )⟩v,ψ contains • and γ, where v ∈ V (G)∩A
and γ is the non-identity label of a closed walk in F . Thus, we have ρ⟨F ∪ LψA(F )⟩v,ψ =

2 = ρψA(F ), and we have confirmed (6).

Note that, for any U ⊆ V (G), we have f(LψU ) = |LψU |. Therefore, since fψA is defined

7



as the contraction of f by LψA, we have, for any F ⊆ E(G),

fψA(F ) = f(F ∪ LψA)− f(LψA)

= f(F ∪ LψA(F ))− f(LψA(F ))

=
∑

Fi∈C(F )

{2|V (Fi)| − 2 + ρ⟨Fi ∪ LψA(Fi)⟩ − f(LψA(Fi))}

=
∑

Fi∈C(F )

{2|V (Fi)| − 2 + ρψA(Fi)− |V (Fi) ∩A|}.

This completes the proof.

Lemma 3.1 implies that fψA is invariant up to the A-equivalence of ψ.

Lemma 3.2. An edge set F ⊆ E(G) is feasible in (E(G), fψA) if and only if

• F contains no cycle, and

• for each F ′ ∈ C(F ), either |V (F ′) ∩ A| ≤ 1, or |V (F ′) ∩ A| = 2 and the A-path
between the two terminals is non-zero.

Proof. By Lemma 3.1 it is sufficient to check the statement for connected F .
Suppose that F contains a cycle. Since one can easily observe ρψA(F )−|V (F )∩A| ≤ 1,

fψA(F ) ≤ 2|V (F )| − 1 < 2|F | by Lemma 3.1. Hence F is not feasible.

Suppose that F contains no cycle. If |V (F ) ∩ A| ≤ 1, then ρψA(F ) = |V (F ) ∩ A| and
hence fψA(F ) = 2|V (F )| − 2 = 2|F |, implying that F is feasible. If |V (F ) ∩ A| = 2, then

ρψA(F ) = |V (F ) ∩A| if and only if the A-path between the two terminals is non-zero, and
hence F is a feasible set if and only if the A-path is non-zero. If |V (F ) ∩ A| ≥ 3, then

ρψA(F ) < |V (F ) ∩A| and hence fψA(F ) ≤ 2|V (F )| − 1. Thus F is not feasible.

Recall that ν(E(G), fψA) denotes the size of a maximum feasible set in (E(G), fψA).

Theorem 3.3. If G is connected and A ̸= ∅, then ν(E(G), fψA) = |V (G)|−|A|+µ(G,ψ,A).

Proof. Let us simply denote ν = ν(E(G), fψA) and µ = µ(G,ψ,A). Let B be a maximal

feasible set in (E(G), fψA). We denote by ci the number of connected components of the
graph (V (G), B) containing exactly i terminals. By Lemma 3.2 and the maximality of B,
we have 1 ≤ |V (F )∩A| ≤ 2 for each F ∈ C(B), V (B)∪A = V (G), and c2 ≤ µ. Therefore,
ν = |B| = |V (G)| − (c1 + c2) = |V (G)| − |A|+ c2 ≤ |V (G)| − |A|+ µ.

The reverse direction can be easily seen as follows. Let F be the edge set of a maximum
family of vertex-disjoint non-zero A-paths. By Lemma 3.2, F is feasible and can be
extended to a feasible set F ′ so that V (F ′)∪A = V (G) and 1 ≤ |V (F ′′)∩A| ≤ 2 for each
F ′′ ∈ C(F ′). Then, ν ≥ |F ′| = |V (G)| − |A|+ µ.

3.2 Application of Lovász’s theorem

First, we describe the min-max formula of Chudnovsky, et al. [1]. For A,X ⊆ V (G) and
ψ : E(G) → Γ, we define

t(G,ψ,A;X) := |X|+
∑

H∈comp(G′)

⌊
|A ∩ V (H)|

2

⌋
,

where G′ := G −X − {uv ∈ E | u, v ∈ A, ψ(uv) = 1Γ} and comp(G′) denotes the set of
the connected components of G′.
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Theorem 3.4 (Chudnovsky, et al. [1]). Let (G,ψ) be a Γ-labeled graph with terminal set
A. Then

µ(G,ψ,A) = min
ψ′,A′,X

t(G,ψ′, A′;X) (7)

where the minimum is taken over all X ⊆ V (G), all A′ with A \X ⊆ A′ ⊆ V (G) \X, and
all label functions ψ′ A-equivalent to ψ.

The direction of ≤ is easy to see as follows. For any X ⊆ V (G), any A′ with A \X ⊆
A′ ⊆ V (G) \X, and any label function ψ′ A-equivalent to ψ, we have

µ(G,ψ,A) = µ(G,ψ′, A) ≤ µ(G,ψ′, A′ ∪X) ≤ t(G,ψ′, A′;X).

The first equality holds since a sequence of switchings at non-terminals does not change
the label of each A-path. The next inequality holds since each non-zero A-path contains
at least one non-zero (A′ ∪ X)-path as its subpath. The final inequality holds, since at
most |X| paths in a family of vertex-disjoint (A′ ∪ X)-paths can intersect X and each
connected component of G − X contains a family of vertex-disjoint A′-paths of size at
most a half of the number of terminals in it.

We now show the reverse direction by using Lovász’s theorem (Theorem 1.1) for the

corresponding 2-polymatroid (E(G), fψA). The key observation for applying Theorem 1.1

is to enumerate all nontrivial double circuits of (E(G), fψA). The following Lemma 3.5

is an extension of [7, Lemma 3.4]1, and it shows that (E(G), fψA) is a relatively simple
2-polymatroid.

Lemma 3.5. For a Γ-labeled graph (G,ψ) with terminal set A ⊆ V (G), every nontrivial

double circuit D ⊆ E(G) of (E(G), fψA) is a tree all of whose leaves are terminals, and is
one of the following forms (see Figure 1):

D1 V (D) ∩A = {a1, a2, a3}, and all three A-paths contained in D have the identity label
and intersect at a non-terminal v ∈ V (D) \A.

D2 V (D) ∩ A = {a1, a2, a3, a4}, and D contains six A-paths. At most one of the six A-
paths has the identity label, and all A-paths intersect at a non-terminal v ∈ V (D)\A.

D3 V (D)∩A = {a1, a2, a3, a4}, A-paths between a1 and a2 and between a3 and a4 are fully
disjoint, and there exists a nontrivial path between u, v ∈ V (D) \A connecting these
two A-paths. The A-path between a1 and a2 has the identity label and intersects v,
and the other A-paths are non-zero.

D4 V (D) ∩ A = {a1, a2, a3, a4}, and D contains only four A-paths. Three of the four
connecting a1, a2, a3 intersect at a non-terminal v ∈ V (D)\A, and the rest connects
a3 and a4. The A-path between a1 and a2 has the identity label, and the other A-paths
are non-zero.

D5 V (D)∩A = {a1, a2, a3, a4} and D contains only three non-zero A-paths, which inter-
sect at a1.

1We should remark that D4 is a missing case in the list of double circuits given in [7, Lemma 3.4] even
in the case of Mader’s S-path problem.
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a2

a3 a4
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D5

Figure 1: Nontrivial double circuits, where the dashed A-paths have the identity label,
the dotted A-path has an arbitrary label, and the others are non-zero A-paths.

C1

C2 C3

Figure 2: Circuits with no cycle, where the dashed A-path has the identity label and the
others are non-zero A-paths.

Proof. We first enumerate all the patterns of circuits in (E(G), fψA) which contains no

cycle. Let C ⊆ E(G) be such a circuit. From the definition of fψA , one can easily check

that C is connected. Hence we have |V (C)| = |C| + 1, and ρψA(C) = |V (C) ∩ A| − 1 by

Lemma 3.1. This means (ρψA(C), |V (C)∩A|) = (0, 1), (1, 2) or (2, 3). Since |V (C)∩A| ≥ 1

implies ρψA(C) ≥ 1, it suffices to check the latter two cases. Note that, in both cases, each
leaf of C is a terminal, since otherwise the deletion of the edge incident to a non-terminal
leaf decreases |V (C)| by 1 and hence decreases the value of fψA by 2, a contradiction.

If (ρψA(C), |V (C) ∩ A|) = (1, 2), then C forms a zero A-path, i.e., C is of type C1 in

Figure 2. Suppose (ρψA(C), |V (C) ∩ A|) = (2, 3). Then C forms either a path or three
paths joined at a non-terminal (see Figure 2), since F has at most three leaves. In both
cases, if there exists a zero A-path P in C, then C remains infeasible after the deletion of
an edge e ∈ C \ E(P ), a contradiction. Therefore, all A-paths in C is non-zero, i.e., C is
of type C2 or C3 in Figure 2. It follows from Lemma 3.1 that C is indeed a circuit if it
is of type C2 or C3.

Let D ⊆ E(G) be a nontrivial double circuit of (E(G), fψA). We shall prove that D
is connected and contains no cycle. If D is not connected, then D forms two connected
components each of which is a circuit of (E(G), fψA), and hence D is trivial.

Thus 2|D|−2 = fψA(D) = 2|V (D)|−2+ρψA(D)−|V (D)∩A| by Lemma 3.1. Therefore,

by the definition of ρψA, 2(|D| − |V (D)|) = ρψA(D) − |V (D) ∩ A| ≤ 1, and hence we have

10



|D| ≤ |V (D)|. This implies that D has at most one cycle. Suppose that D contains exactly

one cycle C. Then we have ρψA(D) = |V (D) ∩ A|, which implies |V (D) ∩ A| ≤ 2. If D
contains at least two A-paths, then at least one of them is non-zero since D is unbalanced.
Therefore, if D contains no A-path or at least two A-paths, then D−e is feasible for some
e ∈ C. If D contains exactly one A-path, then D is a form like the letter ‘Q’ consisting
of an unbalanced cycle and a zero A-path joined at exactly one vertex. In this case, D is
trivial since the unbalanced cycle and the zero A-path are circuits.

Thus D is a tree, and hence we have |V (D)| = |D|+1 and ρψA(D)− |V (D)∩A| = −2.

Since |V (D)∩A| ≥ 1 implies ρψA(D) ≥ 1, it suffices to consider two cases: |V (D)∩A| = 3
or |V (D) ∩A| = 4. Note that, similarly to the case of circuits, each leaf of D is terminal.

Case 1. Suppose |V (D) ∩A| = 3. Then we have ρψA(D) = 1, and hence D contains no
non-zero A-path. If D contains only two A-paths, then D is trivial. Therefore, D contains
three A-paths, and hence it is of type D1.

Case 2. Suppose |V (D) ∩ A| = 4. Then we have ρψA(D) = 2, and hence D contains
at least one non-zero A-path. Every tree with at most four leaves is one of the following
forms: a path, three paths joined at one vertex (Figure 1, D4 and D5), four paths joined
at one vertex (Figure 1, D2), and two fully disjoint paths connected by a nontrivial path
between thier internal vertices (Figure 1, D3).

If some A-paths in D have labels violating the rule given in Figure 1, then one can
easily check from Lemma 3.2 and the list of circuits given in Figure 2 that (i) D is trivial,

(ii) there is an edge e such that D − e is feasible, or (iii) fψA(D) ̸= 2|D| − 2.

As we reviewed in Section 1, Theorem 1.1 leads to a min-max formula for the matroid
matching problem if the kernel of every double circuit has the rank at least one. By
contracting an element in the kernel, one can reduce the problem to a smaller one. In
our situation, we observe that the kernel of a double circuit of type D1, D2, D3, or
D4 of Lemma 3.5 contains a loop of L in (E(H), f), and hence, contracting it, we can
reduce the problem size appropriately. For the completeness, we shall formalize this fact
in terms of packing non-zero A-paths as follows. In the following Lemmas 3.6 and 3.7, let
ν := ν(E(G), fψA).

Lemma 3.6. Let D be a ν-double-flower containing a double circuit of type D1, D2,
D3, or D4. Then there exists a label function ψ′ A-equivalent to ψ such that ν >

ν(E(G), fψ
′

A+v), where v is the vertex specified in the definition of each type.

Proof. Let D′ be the double circuit in D. By Proposition 2.5, there exists a label function
ψ′ A-equivalent to ψ such that all edges along each zero A-path have the identity label.
Then, observe that every circuit in D spans the loop l in L incindent to v with ψ′(l) = •,
i.e., the kernel of D′ contains l, and hence fψ

′

A+v(C) = fψA(C)− 1 for every circuit C in D.

Now suppose contrary that (E(G), fψ
′

A+v) has a feasible set F of size ν. Let us choose

such F with |F ∩ D| maximum. We then have fψ
′

A+v(D) = fψA(D) − 1 = 2ν + 1 >

2ν = fψ
′

A+v(F ). Thus there exists e ∈ D \ sp
fψ

′
A+v

(F ). Since F + e cannot be feasible in

(E(G), fψA), we have fψA(F + e) ≤ 2ν + 1. Furthermore, since fψ
′

A+v(F + e) ≤ fψA(F + e)

and e /∈ sp
fψ

′
A+v

(F ), we obtain fψA(F + e) = fψ
′

A+v(F + e) = 2ν +1. This implies that F + e

is a ν-flower in both (E(G), fψA) and (E(G), fψ
′

A+v).

Let C ′ be the circuit of F + e in (E(G), fψ
′

A+v). Then C
′ is also the circuit of F + e in

(E(G), fψA) since otherwise F + e becomes feasible. If C ′ ̸⊆ D, then, for any e′ ∈ C ′ \D,
F ′ := F + e − e′ is a feasible set of size ν with |F ′ ∩D| > |F ∩D|. This contradicts the
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choice of F . If C ′ ⊆ D, then fψ
′

A+v(C
′) = fψA(C

′) − 1, contradicing the fact that C ′ is a

circuit in both (E(G), fψA) and (E(G), fψ
′

A+v).

In the redution of Mader’s S-path problem to a matroid matching problem, Lovász
introduced a notion of a regular set to solve the case when we encounter a double circuit of
type D5. He claimed that the set of edges incident to a1 forms a regular set in [7, Lemma
3.5(b)]. This claim turns out to be false, but at least we can apply the proof idea of [7,
Lemma 1.6] to accomplish our purpose as follows.

Lemma 3.7. Let D be a ν-double-flower containing a double circuit of type D5. Then
ν > ν(E(G− a1), f

ψ
A−a1), where a1 is the vertex specified in the definition of type D5.

Proof. Suppose contrary that (E(G − a1), f
ψ
A−a1) has a feasible set F of size ν. Let us

choose such F with |F ∩D| maximum, and let F := sp
fψA

(F ). Let D′ be the double circuit

in D, and let E1 be the set of edges in D′ incident to a1. Observe that E1 ∩ C ̸= ∅ for
every circuit C in D since D′ is of type D5.

Suppose D ̸⊆ F ∪ E1. Take e ∈ D \ (F ∪ E1). Then F + e is ν-flower and the circuit
C in F + e is not contained in D since every circuit in D intersects E1. Therefore, for
an edge e′ ∈ C \D, F ′ := F + e − e′ is a feasible set of size ν with |F ′ ∩D| > |F ∩D|,
contradicting the choice of F .

Suppose D ⊆ F ∪ E1. Recall E1 ⊆ D′ and that every A-path in D′ is non-zero.
Therefore, if there is an edge e ∈ E1 incident to a connected component Fi ∈ C(F )

that does not contain a non-zero A-path, then ρψA(Fi + e) = ρψA(Fi) + 1 holds and hence

fψA(F + e) = fψA(F ) + 2 holds. This however implies fψA(F + e) = fψA(F ) + 2, and hence
F + e is a larger feasible set than F , a contradiction. Otherwise (i.e., each connected

component of F around a1 contains a non-zero A-path), we have f
ψ
A(F∪E1) = fψA(F )+1 =

fψA(F )+1 = 2ν+1. However, sinceD ⊆ F∪E1, we also have f
ψ
A(F∪E1) ≥ fψA(D) = 2ν+2,

a contradiction.

Proof of Theorem 3.4. We have already seen the direction of ≤, and here we prove the
reverse direction. The proof is done by induction on |V (G)\A|+ |E(G)|. We may assume
that G is connected, that A is nonempty, and that there is no A-path consisting of a single
edge with the identity label. By Theorem 1.1, we split the proof into four cases.

Case 1. Suppose (i) of Theorem 1.1 holds. Then fψA(E(G)) = 2ν(E(G), fψA) + 1. By
Theorem 3.3,

µ(G,ψ,A) = ν(E(G), fψA)− |V (G)|+ |A|

=
fψA(E(G))− 1

2
− |V (G)|+ |A|

=
2|V (G)| − 3 + ρψA(E(G))− |A|

2
− |V (G)|+ |A|

=
ρψA(E(G)) + |A| − 3

2
. (8)

If ρψA(E(G)) = 1, then |A| ≥ 2 holds and E(G) is A-balanced, and hence there exists a
label function ψ′ A-equivalent to ψ such that ψ′(e) = 1Γ for every e ∈ E(G). This implies

that t(G,ψ′, V (G); ∅) = 0, which is no more than µ(G,ψ,A) by (8). If ρψA(E(G)) = 2,
then |A| is odd, and hence by (8), we have

µ(G,ψ,A) =
|A| − 1

2
=

⌊
|A|
2

⌋
= t(G,ψ,A; ∅).
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Case 2. Suppose (ii) of Theorem 1.1 holds. Then there exists a partition E1, E2 of

E(G) such that ν(E(G), fψA) = ν(E1, f
ψ
A) + ν(E2, f

ψ
A). By Theorem 3.3,

µ(G,ψ,A) = ν(E(G), fψA)− |V (G)|+ |A|
= ν(E1, f

ψ
A) + ν(E2, f

ψ
A)− |V (G) \A|

=

2∑
i=1

(
ν(Ei, f

ψ
A)− |V (Ei) \A|

)
+ |(V (E1) ∩ V (E2)) \A|

=
2∑
i=1

µ(G[Ei], ψ,A) + |(V (E1) ∩ V (E2)) \A|. (9)

By the induction hypothesis, for each i ∈ {1, 2}, there exist Ai, Xi, ψi such that Xi ⊆
V (Ei), (V (Ei)∩A) \Xi ⊆ Ai ⊆ V (Ei) \Xi, ψi : Ei → Γ is A-equivalent to the restriction
of ψ to Ei, and µ(G[Ei], ψ,A) = t(G[Ei], ψi, Ai;Xi). LetX := X1∪X2∪(V (E1)∩V (E2)\A)
and A′ := A1 ∪ A2 \ X. For each i ∈ {1, 2}, let E′

i be the set of edges in Ei which are
contained in G − X. Since V (E′

1) ∩ V (E′
2) ⊆ A by (V (E1) ∩ V (E2)) \ A ⊆ X, there

exists a label function ψ′ : E(G) → Γ A-equivalent to ψ such that the restriction of
ψ′ to E′

i coincides with the restriction of ψi to E′
i for each i ∈ {1, 2}. Then we have

µ(G,ψ,A) ≥ t(G,ψ′, A′;X) by (9).
Case 3. Suppose (iii) of Theorem 1.1 holds. Then there exists an edge e = uv ∈ E(G)

contained in the span of every maximum feasible set.
Suppose that there is a maximum feasible set F with e /∈ F . We first show that

if e connects distinct connected components, say F1 and F2, of F ,

then Fi contains a non-zero A-path for each i = 1, 2.
(10)

To see this, observe first
∑

i=1,2{ρ
ψ
A(Fi) − |V (Fi) ∩ A|} = 2 + ρψA(F1 ∪ F2 + e) − |V (F1 ∪

F2 + e) ∩ A| by fψA(F ) = fψA(F + e) and Lemma 3.1. Moreover, since F is feasible, we

have ρψA(Fi) = |V (Fi) ∩ A|, which means 2 + ρψA(F1 ∪ F2 + e) = |V (F1 ∪ F2 + e) ∩ A|.
Therefore, (ρψA(F1 ∪ F2 + e), |V (F1 ∪ F2 + e) ∩ A|) = (0, 2), (1, 3) or (2, 4). However, if

|V (F1 ∪ F2 + e) ∩ A| ≥ 1 then ρψA(F1 ∪ F2 + e) ≥ 1, and if |V (F1 ∪ F2 + e) ∩ A| ≥ 3 then

ρψA(F1 ∪F2+ e) ≥ 2 since F1 or F2 contains a non-zero A-path in this case. It thus follows
that |V (F1 ∪ F2 + e)| = 4 holds and Fi contains a non-zero A-path for each i = 1, 2.

Suppose u, v ∈ A. We may assume that ψ(e) ̸= 1Γ since otherwise we can delete e and
use induction. Let EP be the edge set of a maximum family of vertex-disjoint non-zero
A-paths, and suppose u ̸∈ V (EP). Then we must have v ∈ V (EP). If we extend EP
to a maximum feasible set F , then u and v belong to distinct connected components of
F and moreover the component to which u belongs does not contain a non-zero A-path.
This however contradicts (10). Thus every maximum family of vertex-disjoint non-zero
A-paths uses terminal u, and hence we can delete u (by adding u to X) and use induction
to complete the proof.

Suppose u /∈ A. If the addition of u to A does not increase the value of µ, then we can
use induction since |V (G) \ A| decreases. Otherwise, there are µ+ 1 vertex-disjoint non-
zero (A+ u)-paths P0, . . . , Pµ such that u is an end of P0. Let a ∈ A be the other end of
P0. If G contains no A-path traversing the edge e, then we can delete e and use induction
to complete the proof. Hence we assume that there exists an A-path Q traversing e in G.

Let AP := A∪ (
∪µ
i=1 V (Pi)). We take the subpath Q′ of Q such that Q′ is an AP -path

traversing the edge e. We walk along P0 from a until we hit Q′ first and then continue
walking along Q′ so that we traverse e until the end of Q′. The resulting path, denoted
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by P ′
0, is an AP -path which starts at a and traverses e. Then an edge set (E(P ′

0) − e) ∪
(
∪µ
i=1E(Pi)) is feasible and can be extended to a maximum feasible set F with e /∈ F .

Furthermore e connects distinct connected components in C(F ), at least one of which does
not contain a non-zero A-path. This again contradicts (10), and we complete the proof.

Case 4. Suppose (iv) of Theorem 1.1 holds. Then there exists a nontrivial ν-double-
flower D ⊆ E(G). By Lemma 3.5, D contains a double circuit of one of the five types.
If D contains D1, D2, D3, or D4, then, by Theorem 3.3, Lemma 3.6 and the induction
hypothesis, we have

µ(G,ψ,A) = ν(E(G), fψA)− |V (G)|+ |A|

≥ ν(E(G), fψ
′

A+v) + 1− |V (G)|+ |A+ v| − 1

= µ(G,ψ′, A+ v)

= t(G,ψ′′, A′;X), (11)

for some X ⊆ V (G), (V (G) \ X) ∩ (A + v) ⊆ A′ ⊆ V (G) \ X, a label function ψ′ A-
equivalent to ψ, and a label function ψ′′ (A + v)-equivalent to ψ′. Notice that, for the
same X, A′ and ψ′′, we have X ⊆ V (G), (V (G) \X) ∩ A ⊆ A′ ⊆ V (G) \X, and that ψ′′

is A-equivalent to ψ. Thus we complete the proof by (11).
If D contains D5, then, by Theorem 3.3 and Lemma 3.7, we have

µ(G,ψ,A) = ν(E(G), fψA)− |V (G)|+ |A|
≥ ν(E(G− a1), f

ψ
A−a1) + 1− |V (G)− a1|+ |A− a1|

= µ(G− a1, ψ,A− a1) + 1

= t(G− a1, ψ
′, A′;X) + 1,

for some X ⊆ V (G) − a1, (V (G) \ X) ∩ (A − a1) ⊆ A′ ⊆ (V (G) − a1) \ X, and a label
function ψ′ A-equivalent to ψ. Let X ′ := X + a1. Then we have t(G− a1, ψ

′, A′;X)+ 1 =
t(G,ψ′, A′;X ′), where X ′ ⊆ V (G), (V (G) \ X ′) ∩ A ⊆ A′ ⊆ V (G) \ X ′, and ψ′ is A-
equivalent to ψ. This completes the proof.
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A Proof of Theorem 2.6

Proof. For each X ⊆ E and e = ij ∈ E \X, let ∆(X, e) = gρ(X + e)− gρ(X). We denote
by Xi the connected component of X for which i ∈ V (Xi). If such a component does not
exist, let Xi = ∅. Similarly, we denote by Xj the component of X for which j ∈ V (Xj).

By a simple calculation, we have the following relation:

∆(X, e) =

{
ρ⟨Xi + e⟩ − ρ⟨Xi⟩ if e is a loop or Xi = Xj ̸= ∅
ρ⟨Xi ∪Xj + e⟩+ 1− ρ⟨Xi⟩ − ρ⟨Xj⟩ otherwise.

(12)

Let us check the monotonicity. Suppose that e is a loop or Xi = Xj ̸= ∅. Due
to the monotonicity of ρ over Γ, ρ⟨Xi + e⟩ − ρ⟨Xi⟩ ≥ 0. On the other hand, suppose
not. Since Xi and Xi ∪ Xj + e are connected, we have ρ⟨Xi⟩ ≤ ρ⟨Xi ∪ Xj + e⟩ by the
monotonicity of ρ over Γ. Also, by the upper bound of ρ, ρ⟨Xj⟩ ≤ 1. We thus have
∆(X, e) = ρ⟨Xi ∪ Xj + e⟩ + 1 − (ρ⟨Xi⟩ + ρ⟨Xj⟩) ≥ 0. This completes the proof of the
monotonicity.

For the submodularity, we check

∆(X, e) ≥ ∆(Y, e) (13)

for any X ⊆ Y ⊆ E and e ∈ E \ Y . We split the proof into two cases.
Case 1. Suppose that e is a loop or Xi = Xj ̸= ∅. We then have Xi ⊆ Yi = Yj . We

take a tree T ⊆ Yi spanning V (Yi) such that T ∩Xi forms a tree spanning V (Xi). By using
switching operations, we may assume by Proposition 2.3 that ψ(f) = id for every f ∈ T .
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Observe then that ⟨Yi + e⟩ψ,i = ⟨⟨Yi⟩ψ,i ∪ {ψ(e)}⟩ and ⟨Xi + e⟩ψ,i = ⟨⟨Xi⟩ψ,i ∪ {ψ(e)}⟩ by
Proposition 2.4. We thus have

∆(X, e) = ρ⟨Xi + e⟩ − ρ⟨Xi⟩
= ρ(⟨⟨Xi⟩ψ,i ∪ {ψ(e)}⟩)− ρ(⟨Xi⟩ψ,i)
= ρ(⟨Xi⟩ψ,i ∪ {ψ(e)})− ρ(⟨Xi⟩ψ,i)
≥ ρ(⟨Yi⟩ψ,i ∪ {ψ(e)})− ρ(⟨Yi⟩ψ,i)
= ρ(⟨⟨Yi⟩ψ,i ∪ {ψ(e)}⟩)− ρ(⟨Yi⟩ψ,i)
= ρ⟨Yi + e⟩ − ρ⟨Yi⟩ = ∆(Y, e),

where we used (12), the submodularity, and the invariance of ρ under closures.

Case 2. Suppose that e is a non-loop edge and at least one of Xi ̸= Xj or Xi = Xj = ∅
holds. We further split the proof into subcases.

(2-i) If Yi = Yj ̸= ∅, then, by (12), we have ∆(X, e)−∆(Y, e) = ρ⟨Xi ∪Xj + e⟩+ 1 +
ρ⟨Yi⟩ − ρ⟨Xi⟩ − ρ⟨Xj⟩ − ρ⟨Yi + e⟩. Since all these sets are connected or empty, ρ⟨Xi ∪
Xj + e⟩ ≥ ρ⟨Xj⟩, ρ⟨Yi⟩ ≥ ρ⟨Xi⟩, and 1 ≥ ρ⟨Yi + e⟩. Thus, ρ⟨Xi ∪Xj + e⟩ + ρ⟨Yi⟩ + 1 ≥
ρ⟨Xi⟩+ ρ⟨Xj⟩+ ρ⟨Yi + e⟩, implying (13).

(2-ii) If Yi ̸= Yj or Yi = Yj = ∅ holds, then e is a bridge connecting Xi and Xj in
Xi∪Xj+e and is also a bridge connecting Yi and Yj in Yi∪Yj+e. By a switch operation, we
may assume that ψ(e) is identity. Then, ⟨Xi∪Xj+e⟩ψ,i = ⟨⟨Xi⟩ψ,i∪⟨Xj⟩ψ,j⟩. This implies
ρ⟨Xi ∪Xj + e⟩ = ρ(⟨Xi⟩ψ,i ∪ ⟨Xj⟩ψ,j) by the invariance under closure. Symmetrically, we
have ρ⟨Yi∪Yj+e⟩ = ρ(⟨Yi⟩ψ,i∪⟨Yj⟩ψ,j). By using the submodularity and the monotonicity
of ρ over Γ, along with Xk ⊆ Yk for k = 1, 2, we have

ρ⟨Xi ∪Xj + e⟩+ ρ⟨Yi⟩+ ρ⟨Yj⟩
= ρ(⟨Xi⟩ψ,i ∪ ⟨Xj⟩ψ,j) + ρ(⟨Yi⟩ψ,i) + ρ(⟨Yj⟩ψ,j)
≥ ρ(⟨Xi⟩ψ,i ∪ ⟨Xj⟩ψ,j ∪ ⟨Yi⟩ψ,i) + ρ((⟨Xi⟩ψ,i ∪ ⟨Xj⟩ψ,j) ∩ ⟨Yi⟩ψ,i) + ρ(⟨Yj⟩ψ,j)
≥ ρ(⟨Yi⟩ψ,i ∪ ⟨Xj⟩ψ,j) + ρ(⟨Xi⟩ψ,i) + ρ(⟨Yj⟩ψ,j)
≥ ρ(⟨Yi⟩ψ,i ∪ ⟨Xj⟩ψ,j ∪ ⟨Yj⟩ψ,j) + ρ((⟨Yi⟩ψ,i ∪ ⟨Xj⟩ψ,j) ∩ ⟨Yj⟩ψ,j) + ρ(⟨Xi⟩ψ,i)
≥ ρ(⟨Yi⟩ψ,i ∪ ⟨Yj⟩ψ,j) + ρ(⟨Xj⟩ψ,j) + ρ(⟨Xi⟩ψ,i)
= ρ⟨Yi ∪ Yj + e⟩+ ρ⟨Xj⟩+ ρ⟨Xi⟩.

This implies (13) by (12).
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