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PACKING A-PATHS IN GROUP-LABELLED GRAPHS
VIA LINEAR MATROID PARITY∗

YUTARO YAMAGUCHI†

Abstract. Mader’s disjoint S-paths problem is a common generalization of matching and
Menger’s disjoint paths problems. Lovász (1980) suggested a polynomial-time algorithm for this
problem through a reduction to matroid matching. A more direct reduction to the linear matroid
parity problem was given later by Schrijver (2003), which leads to faster algorithms.

As a generalization of Mader’s problem, Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and
Seymour (2006) introduced a framework of packing non-zero A-paths in group-labelled graphs, and
proved a min-max theorem. Chudnovsky, Cunningham, and Geelen (2008) provided an efficient
combinatorial algorithm for this generalized problem. On the other hand, Pap (2007) introduced a
framework of packing non-returning A-paths as a further genaralization.

In this paper, we discuss possible extensions of Schrijver’s reduction technique and the algorithm
of Chudnovsky, Cunningham, and Geelen to another framework introduced by Pap (2006), under
the name of the subgroup model, which apparently generalizes but in fact is equivalent to packing
non-returning A-paths. We provide a necessary and sufficient condition for the groups in question to
admit a reduction to the linear matroid parity problem. As a consequence, we give faster algorithms
for important special cases of packing non-zero A-paths such as odd-length A-paths. In addition,
it turns out that packing non-returning A-paths admits a reduction to the linear matroid parity
problem, which leads to its efficient solvability, if and only if the size of the input label set is at most
four.

Key words. A-path, disjoint paths, group-labelled graph, linear matroid parity

AMS subject classifications. 05B35, 05C38, 05C50, 05C70, 05C85, 20C25

1. Introduction. Let Γ be a group. A Γ-labelled graph (G,ψ) is a pair of an
undirected graph G = (V,E) and a label function ψ on the edge set to Γ, which is

defined below. For a directed graph G⃗ = (V, E⃗) obtained from G by replacing each

edge with a pair of arcs of opposite directions, a function ψ : E⃗ → Γ is called a label
function if ψ(ē) = ψ(e)−1 holds for each e ∈ E⃗, where ē denotes the reverse arc of e.

In this paper, for e = uv = vu ∈ E replaced with e′ = uv ∈ E⃗ and ē′ = vu ∈ E⃗, we
will use the notation of ψ(e, v) := ψ(e′) = ψ(ē′)−1 =: ψ(e, u)−1. For each undirected
path P = (v0, e1, v1, . . . , ek, vk) in G, where ei = vi−1vi ∈ E for every 1 ≤ i ≤ k, we
define the label of P as ψ(P ) := ψ(ek, vk) · · ·ψ(e2, v2) · ψ(e1, v1).

For a prescribed terminal set A ⊆ V , an A-path is an undirected path between
distinct terminals in A which does not intersect with A in between. In this paper, we
consider the subgroup model of packing A-paths in group-labelled graphs introduced
by Pap [11]. In this model, for a given proper subgroup Γ′ of Γ, an A-path P is
called admissible if ψ(P ) ̸∈ Γ′, and is called non-admissible otherwise. Our objective
is to find a maximum family of (fully) vertex-disjoint admissible A-paths in a given
Γ-labelled graph with terminal set A. Note that it is not necessary that G is simple.

1.1. Main result. The subgroup model was introduced at the end of a sequence
of extensions of Mader’s disjoint S-paths problem, which is known to be solvable by
a reduction to matroid matching due to Lovász [6]. A more direct reduction to linear
matroid parity has been presented by Schrijver [14]. In this paper, we extract some
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2 Y. YAMAGUCHI

aspects of Schrijver’s reduction and introduce the concept of coherent representation.
For an instance of the subgroup model, we call a matrix a coherent representation if it
satisfies Properties 2.1 and 2.2 described in Section 2.1. The main result of this paper
is a characterization of the subgroup model that admits a coherent representation.

For a positive integer n ∈ N and a field F, GL(n,F) denotes the set of all the
nonsingular n × n matrices over F, and let PGL(n,F) := GL(n,F)/{kIn | k ∈ F},
where In is the n× n identity matrix. In this paper, each element of PGL is denoted
by its representative in GL. We are now ready to state the main theorem.

Theorem 1.1. Let Γ be a group, Γ′ be its proper subgroup, and F be a field. Then
the following two statements are equivalent.

(i) For any Γ-labelled graph (G = (V,E), ψ) with any terminal set A ⊆ V , the
subgroup model with respect to Γ′ can be reduced to the linear matroid parity
problem with a coherent representation over F.

(ii) There exist a homomorphism ρ : Γ → PGL(2,F) and a 1-dimensional linear
subspace Y of F2 such that Γ′ = {α ∈ Γ | ρ(α)Y = Y }.

1.2. Background.

1.2.1. Packing A-paths. Finding a maximum family of (fully) vertex-disjoint
A-paths is a path-packing problem which includes non-bipartite matching as a special
case with A = V . Mader [9] suggested a more generalized problem, called Mader’s
disjoint S-paths problem, and showed a min-max relation. Here S is a partition of
A and an S-path is an A-path between terminals in distinct subsets in S. Hence, for
any disjoint S, T ⊆ V , the concept of S-path includes that of S–T path as a special
case with S = {S, T}.

As a generalization of Mader’s problem, Chudnovsky et al. [3] introduced a frame-
work of packing A-paths in group-labelled graphs, called the non-zero model in this
paper, and proved a min-max theorem which generalizes Mader’s theorem. Later
Pap [12] introduced a slightly more generalized model, called the non-returning model
in this paper, and prove an extension of the min-max theorem by a substantially
simpler argument. Chudnovsky et al. [2] gave an efficient combinatorial algorithm for
the non-zero model, and Pap [13] suggested one for the non-returning model, whose
running time bound is not known.

Theorem 1.2 (Chudnovsky, Cunningham, and Geelen [2]). A maximum family
of vertex-disjoint non-zero A-paths can be found in O(|V |5) time.

These frameworks include interesting special cases besides Mader’s problem such
as packing odd-length A-paths, and packing A-paths on surfaces under various con-
straints according to the homotopy class of the curve associated with each A-path.
The non-returning model generalizes the non-zero model and is in fact equivalent to
the subgroup model (see [11, §3.6] for a detail argument), so we mainly discuss the
subgroup model in this paper.

1.2.2. Linear matroid parity. For an undirected graph G = (V,E) and a
matroid M = (V, I), the matroid matching problem is to find a maximum matching
F ⊆ E with V (F ) ∈ I. If G forms a perfect matching, then the problem is called the
matroid parity problem. In fact, these two problems are known to be equivalent (see
[8, Chapter 11]). If M is a linearly represented matroid, then this problem, called the
linear matroid parity problem, is known to be efficiently solvable. Let m and n be the
numbers of columns and rows, respectively, of the representation matrix of the input
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matroid, and let ω be the matrix multiplication exponent, which is at most 2.373.

Theorem 1.3 (Gabow and Stallmann [5], Orlin [10]). The linear matroid parity
problem can be solved in O(mn3) time. If fast matrix multiplication is used, then the
running time is improved to O(mnω).

Theorem 1.4 (Cheung, Lau, and Leung [1]). The linear matroid parity problem
can be solved with high probability in O(mn2) time. If fast matrix multiplication is
used, then the running time is improved to O(mnω−1).

A direct application of these theorems to Schrijver’s reduction of Mader’s problem
implies that a maximum family of vertex-disjoint S-paths in an undirected graph
G = (V,E) can be found in O(|E| · |V |ω) time, and moreover with high probability
in O(|E| · |V |ω−1) time. Cheung et al. [1] improved the latter running time bound
to O(|V |ω) under the assumption, without loss of generality, that the input graph is
simple.

1.3. Our contribution. Theorem 1.1 clarifies a necessary and sufficient condi-
tion for the groups in question to admit a reduction with a coherent representation,
which leads to fast algorithms. A recent work of Tanigawa and the author [15] showed
that Lovász’s reduction idea to matroid matching, which implies the polynomial-time
solvability by Lovász’s matroid matching algorithm [7], is always extendable even
when there is no coherent representation.

By our reduction, linear matroid parity algorithms can be used to solve a number
of special cases of the subgroup model. Naive applications of Theorems 1.3 and 1.4
lead to deterministic O(|E| · |V |ω) and randomized O(|E| · |V |ω−1) algorithms. One
can improve the latter bound to O(|E| + |V |ω) by the same argument as [1, §5.1.3].
Since |Γ′| + 1 edges are enough between each pair of vertices (if there are |Γ′| + 1
edges between u, v ∈ V with different labels, then any A-path using an edge uv can
be admissible), we may assume |E| = O

(
|Γ′| · |V |2

)
.

On the other hand, the algorithm of Chudnovsky et al. [2] for the non-zero
model can be extended to the subgroup model. The resulting algorithm runs in
O
(
(|E|+ |V |4) · |V |

)
time. Since the original paper [2] contains some errors and

omissions, we give a complete description of the extended algorithm. Compared to
this running time bound, a coherent representation, if exists, leads to a much faster
O(|E|+ |V |ω)-time algorithm, which makes it interesting to characterize when a given
subgroup model admits a coherent representation.

The rest of this paper is organized as follows. Section 2 provides a definition of
coherent representation and a proof of Theorem 1.1. Section 3 discusses under which
condition important special cases of the subgroup model have coherent representa-
tions. Finally, in Section 4, we present an extension of the algorithm of Chudnovsky
et al. [2].

2. Reduction to Linear Matroid Parity. This section is devoted to Theo-
rem 1.1. We introduce the concept of coherent representation in Section 2.1, and
then prove Theorem 1.1 in Sections 2.2 and 2.3. Section 2.2 shows that the condition
(ii) is sufficient for the reducibility (i) to the linear matroid parity problem with a
coherent representation, and Section 2.3 gives a proof of the converse direction, i.e.,
(ii) is necessary for any graph to have a coherent representation.

2.1. Coherent representation. We introduce two natural properties satisfied
by Schrijver’s reduction of Mader’s problem to the linear matroid parity problem. Let
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Γ be a group and F be a field. For a Γ-labelled graph (G = (V,E), ψ) with terminal
set A ⊆ V , we consider constructing a representation matrix Z ∈ F2n×2m which
defines an instance of the linear matroid parity problem, where |V | = n, |E| = m.
For the simplicity of description, we assume V = [n] := {1, 2, . . . , n} and E = [m].
The representation is desired to be based on the incidence matrix of G.

Property 2.1. For each e = uv ∈ E, there exists exactly one pair of two
corresponding columns z2e−1, z2e of Z, each of which has at most four nonzero entries
at 2u− 1, 2u, 2v − 1, 2v-th rows. In other words,

z2e−1, z2e ∈ {a2u−1e⃗2u−1+a2ue⃗2u+a2v−1e⃗2v−1+a2v e⃗2v | ai ∈ F (i = 2u−1, 2u, 2v−1, 2v)},

where e⃗i ∈ F2n denote i-th unit vectors for i ∈ [n].

For a vector z ∈ F2n and a vertex v ∈ V , let z(v) ∈ F2 denote the 2-dimensional
vector whose first and second entries are equal to (2v − 1)-th and 2v-th entries of
z, respectively. For each vertex v ∈ V and each edge e ∈ E, let us denote the
corresponding 2 × 2 submatrix of Z by Zv,e := (z2e−1(v), z2e(v)). Then Z can be
regarded as Z = (Zv,e)1≤v≤n,1≤e≤m, and its nonzero entries (2× 2 matrices) are only
at pairs v, e such that e is incident to v, by Property 2.1.

Let us call an edge set F ⊆ E feasible if the set {z2e−1, z2e | e ∈ F} of all
corresponging vectors is linearly independent. The following property guarantees
natural relation between the subgroup model and the linear matroid parity problem.

Property 2.2. For each A-path P in G, its edge set E(P ) is feasible if and only
if P is admissible.

2.2. Proof of sufficiency. In this section, we prove that the condition (ii) in
Theorem 1.1 is sufficient for (i). Fix a field F, a projective representation ρ : Γ →
PGL(2,F), and a 1-dimensional subspace Y of F2 which satisfy (ii). Furthermore, fix
an arbitrary Γ-labelled graph (G = (V,E), ψ) and an arbitrary terminal set A ⊆ V .
Let us show how to construct a representation matrix for the linear matroid parity
problem.

Associate each edge e = uw ∈ E to a 2-dimensional linear subspace

Le := {x ∈ (F2)V | ρ(ψ(e, w))x(u) + x(w) = 0, x(v) = 0 (v ∈ V \ {u,w})}

of (F2)V . For each terminal v ∈ A, let

Qv := {x ∈ (F2)V | x(v) ∈ Y, x(u) = 0 (u ∈ V \ {v})}.

Let QU :=
∑

v∈U Qv for each U ⊆ A, and let Q := QA.

Let E := {Le/Q | e ∈ E}. Note that dim(Le/Q) = 2 for every edge e ∈ E, since we
may assume that no edge labelled with an element in Γ′ connects two terminals. Let
us construct a representation matrix Z ∈ F2|V |×2|E| associated with E by enumerating
the bases of Le/Q for all e ∈ E. Then each edge set F ⊆ E is feasible if and only if
dim(LF /Q) = 2|F |, where LF :=

∑
e∈F Le.

Lemma 2.3. Let ν(E) denote the cardinality of a maximum feasible edge set, and
let µ(G,ψ,A) denote the maximum number of vertex-disjoint admissible A-paths in
G with respect to ψ : E → Γ. If G is connected and A ̸= ∅, then ν(E) = |V | − |A| +
µ(G,ψ,A).

We prepare two lemmas in order to prove Lemma 2.3.

Lemma 2.4. If an edge set F ⊆ E is feasible, then each subset F ′ ⊆ F forming a
connected component of the subgraph (V, F ) satisfies one of the following conditions:



PACKING A-PATHS IN GROUP-LABELLED GRAPHS 5

• |V (F ′) ∩A| = 0 and F ′ contains at most one cycle,

• |V (F ′) ∩A| = 1 and F ′ contains no cycle,

• |V (F ′)∩A| = 2, F ′ contains no cycle and the A-path between the two termi-
nals is admissible.

Proof. Let F1, F2 form different connected components in F . Then the corre-
sponding subspaces LF1

and LF2
have the trivial intersection {0}. Therefore, we may

assume that F is connected, and hence |F | ≥ |V (F )| − 1.

Let XF := LF +QA(F ), where A(F ) := V (F )∩A. Since every x ∈ XF has at most
2|V (F )| nonzero entries, dim(XF ) ≤ 2|V (F )| ≤ 2|F |+2. By LF /Q = LF /QA(F ) and
dim(QA(F )) = |V (F ) ∩A|, we have

dim(LF /Q) = dim(LF )− dim(LF ∩QA(F ))

= dim(XF )− dim(QA(F ))

≤ 2|F |+ 2− |V (F ) ∩A|.

Since dim(LF /Q) = 2|F |, this inequality implies |V (F ) ∩A| ≤ 2.

Case 1. Suppose that F contains a cycle. By |V (F )| ≤ |F |, we have dim(XF ) ≤
2|V (F )| ≤ 2|F |, which implies |V (F ) ∩ A| ≤ 0. Therefore, F contains exactly one
cycle C and |V (F ) ∩A| = 0.

Case 2. Suppose that F contains no cycle and |V (F ) ∩ A| = 2. Let P =
(v0, e1, v1, . . . , ek, vk) be the unique A-path contained in F . Since F is feasible, there
is no set of vectors xi ∈ Lei (1 ≤ i ≤ k) such that at least one of them is a nonzero
vector and

k∑
i=1

xi(vj) ∈
{

Y j = 0, k
{0} 1 ≤ j ≤ k − 1.

(2.1)

If ψ(P ) ∈ Γ′, then ρ(ψ(P ))Y = Y , and hence it is easily seen that x1(v0) := y ∈ Y \{0}
makes such a set of vectors, a contradiction, since xk(vk) = −ρ(ψ(P ))x1(v0) ∈ Y .

Lemma 2.5. An edge set F ⊆ E is feasible if

• F contains no cycle, and
• for each subset F ′ ⊆ F forming a connected component of the subgraph (V, F ),
either |V (F ′) ∩ A| ≤ 1, or |V (F ′) ∩ A| = 2 and the A-path between the two
terminals is admissible.

Proof. Similarly to the proof of Lemma 2.4, we may assume that F is connected.
Suppose that there exists an infeasible edge set F satisfying the two conditions. Let
us take such a minimal edge set F .

Suppose that F has a non-terminal leaf v ∈ V \ A. Let e = vw ∈ F be the
incident edge. Since Le has two degrees of freedom at v-th entry, dim(LF /Q) =
dim(LF−e/Q) + 2, contradicting the choice of F .

Thus every leaf is a terminal. Recall that |V (F ) ∩ A| ≤ 2. Since a tree has
at least two leaves, we have |V (F ) ∩ A| = 2, and hence F forms a admissible A-
path P = (v0, e1, v1, . . . , ek, vk). Since F is infeasible, there exists a set of vectors
xi ∈ Lei (1 ≤ i ≤ k) such that at least one of them is a nonzero vector and (2.1) holds.
By the second part of (2.1) and the definition of the subspaces Le, we have xi+1(vi) =
−xi(vi) = ρ(ψ(ei, vi))xi(vi−1) (1 ≤ i ≤ k − 1), and hence xk(vk) = −ρ(ψ(P ))x1(v0).
By the first part of (2.1), we have x1(v0), xk(vk) ∈ Y , but ρ(ψ(P ))Y ̸= Y by ψ(P ) ̸∈
Γ′, a contradiction.
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Proof of Lemma 2.3. Let us simply denote ν := ν(E) and µ := µ(G,ψ,A).
Let F be a maximum feasible edge set. We denote by ci the number of connected
components of (V, F ) containing exactly i terminals, where each isolated terminal
contributes c1. By Lemma 2.4 and the maximality of F , we may assume c2 ≤ µ and
that each connected component of (V, F ) contains one or two terminals. Note that, if
there exists an edge set F ′ forming a connected component of (V, F ) with no terminal,
and hence including a cycle C by the maximality of F , then F remains feasible after
replacing an edge e ∈ E(C) with a bridge connecting (V, F ′−e) and another connected
component of (V, F ). Therefore, ν = |F | = |V |−(c1+c2) = |V |−|A|+c2 ≤ |V |−|A|+µ.

The converse direction can be easily seen. Let F be the edge set of a maximum
family of vertex-disjoint admissible A-paths. By Lemma 2.5, F is feasible and can be
extended to feasible F ′ such that each connected component of (V, F ′) contains one
or two terminals, and hence |V | − |A|+ µ ≤ |F ′| ≤ ν.

This proof implies that one can construct a maximum family of vertex-disjoint
admissible A-paths from a maximum feasible edge set by the depth first search from
each terminal, in linear time. Thus we conclude the proof of the sufficiency.

2.3. Proof of necessity. Let Γ/Γ′ denote the left cosets {αΓ′ | α ∈ Γ}. For
each i ∈ {1, 2, 3}, let Gi = (Vi, Ei) be a star with 2|Γ/Γ′| leaves, and let vi ∈ Vi be
its center vertex. Let G = (V,E) be a graph obtained by connecting each two of the
center vertices by parallel |Γ| edges. Let A ⊆ V be the set of all leaves in the three
stars. Let ψ assign each representative of Γ/Γ′ to two edges in each star (directed
from leaves to the center vertex) and each element of Γ to each one of each parallel
edges. Suppose that, for the Γ-labelled graph (G,ψ) with terminal set A, there exists
Z ∈ F2n×2m satisfying Properties 2.1 and 2.2.

For each edge e ∈ E, let be and ce denote the corresponding column vectors z2e−1

and z2e of Z, respectively.

Claim 2.6. Let i ∈ {1, 2, 3}. For each e = uvi ∈ Ei, we may assume that
be(u) = 0 ̸= ce(u). Moreover, for two edges e1, e2 ∈ Ei, {be1(vi), be2(vi)} is linearly
dependent if and only if ψ(e1, vi) = ψ(e2, vi).

Proof. Without loss of generality, choose e1, e2, e3 ∈ E1 with α := ψ(e1, v1) =
ψ(e2, v1) ̸= ψ(e3, v1) =: β and let ei = uiv1 (i = 1, 2, 3). Then two A-paths
(ui, ei, v1, e3, u3) (i = 1, 2) are admissible and an A-path (u1, e1, v1, e2, u2) is non-
admissible, so two edge sets {ei, e3} (i = 1, 2) are feasible and an edge set {e1, e2} is
infeasible by Property 2.2.

The latter implies that Zi := Zui,ei (i ∈ {1, 2}) is singular. Since there exists
an edge e4 ∈ E1 such that e4 ̸= e3 and ψ(e4, v1) = β, this holds also for i = 3, i.e.,
Z3 := Zu3,e3 is also singular. The former implies that Zi (i ∈ {1, 2}) is not the zero
matrix, since otherwise the set {bej , cej | j = i, 3} of corresponding vectors is linearly
dependent, a contradiction. Thus we have rank(Zi) = 1 (i = 1, 2, 3), and hence we
may assume bei(ui) = 0 ̸= cei(ui).

By this assumption and Property 2.1, the infeasibility of each two-edge set {e, e′}
in the same star Gi is equivalent to the linear dependence of {be(vi), be′(vi)}. By
Property 2.2, {e, e′} is infeasible if and only if the two-edge A-path is non-admissible.

Claim 2.7. For each parallel edge e = vivj ∈ E, both Zvi,e and Zvj ,e are nonsin-
gular.

Proof. Without loss of generality, choose ei1, ei2 ∈ Ei (i = 1, 2) and e = v1v2 ∈ E
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with ψ(e, v2) = β such that α1 := ψ(e11, v1) ̸= ψ(e12, v1) =: α2, and ψ(e21, v2) ∼
βα1 ≁ βα2 ∼ ψ(e22, v2), where ∼ denotes the left equivalence with respect to Γ′.
There exist four A-paths consisting of some of the above edges and traversing e. Two
of these are admissible, and the other two are non-admissible.

By Claim 2.6, {bei1(vi), bei2(vi)} is linearly independent for each i ∈ {1, 2}. The
infeasibility of {e1j , e, e2j} and the feasibility of {e1j , e} and {e, e2j} for j = 1, 2 require
bei1(vi), bei2(vi) ∈ ⟨be(vi), ce(vi)⟩ for i = 1, 2, where ⟨·⟩ denotes the spanning subspace.
Therefore {be(vi), ce(vi)} is linearly independent, and hence Zvi,e is nonsingular.

α α

β β

α1 α2

βα1 βα2

Fig. 2.1. Observed parts in Claims 2.6 and 2.7 (dotted: non-admissible A-paths)

By Claim 2.7, for every triplet of parallel edges e1 = v1v2, e2 = v1v3 and e3 =
v3v2, we may assume that Zv1,e1 = Zv1,e2 = Zv3,e3 = I2, and moreover that Zv2,e1 ∼
Zv3,e2 ∼ Zv2,e3 if ψ(e1, v2) = ψ(e2, v3) = ψ(e3, v2). Here, for Z1, Z2 ∈ F2×2, Z1 ∼
Z2 ⇔ Z1 = kZ2 for some k ∈ F. This can be seen as follows.

Choose e1 = v1v2 ∈ E with ψ(e1) = 1Γ, and let B := Zv2,e1 . Redefine be(v2) :=
B−1be(v2) for each e ∈ E2 and Zv2,e := B−1Zv2,e for each e = viv2 ∈ E (i ∈
{1, 3}), then we have Zv2,e1 = I2. This redefinition leads the linear dependence of
{bf1(v1), bf2(v2)} for each pair of edges f1 ∈ E1 and f2 ∈ E2 with ψ(f1, v1) = ψ(f2, v2).
Then, by the similar redefinition around v3, each two-vector subset of {bfi(vi) | i =
1, 2, 3} is linearly dependent for fi ∈ Ei (i = 1, 2, 3) with ψ(f1, v1) = ψ(f2, v2) =
ψ(f3, v3).

The following claim concludes the proof of the necessity.

Claim 2.8. For each parallel edge e = v1v2 ∈ E, let ρ(ψ(e, v2)) := Zv2,e. Then
ρ : Γ → PGL(2,F) is homomorphic. Moreover, for f = uv1 ∈ E1 with ψ(f) = 1Γ,
Y := ⟨bf (v1)⟩ satisfies Γ′ = {α ∈ Γ | ρ(α)Y = Y }.

Proof. Choose ei1, ei2 ∈ Ei (i = 1, 2), e1 = v1v2, e2 = v1v3, and e3 = v3v2 such
that β1 = β3β2, α1 := ψ(e11, v1) ̸= ψ(e12, v2) =: α2, and ψ(e21, v2) ∼ β1α1 ≁ β1α2 ∼
ψ(e22, v2), where βi := ψ(ei) (i = 1, 2, 3).

For each j ∈ {1, 2}, since A-paths formed by {e1j , e1, e2j} and {e1j , e2, e3, e2j} are
non-admissible, we have be2j (v2) ∈ ⟨ρ(β1)be1j (v1)⟩ and be2j (v2) ∈ ⟨ρ(β3)ρ(β2)be1j (v1)⟩.
Since ⟨bei1(vi)⟩ ̸= ⟨bei2(vi)⟩ (i = 1, 2) by Claim 2.6, ρ(β1) ∼ ρ(β3)ρ(β2) holds.

Suppose α1 = 1Γ and let Y := ⟨be11(v1)⟩. Then β1 ∈ Γ′ ⇔ β1α1 ∈ Γ′ ⇔
ψ(e21, v2) ∼ 1Γ ⇔ be21(v2) ∈ Y by Claim 2.6. The infeasibility of {e11, e1, e21}
implies be21(v2) ∈ ρ(β1)Y . Since Y and ρ(β1)Y are 1-dimensional subspaces and
be21(v2) ̸= 0, be21(v2) ∈ Y ⇔ Y = ρ(β1)Y .
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β1

α1 α2

β1α1 β1α2

β2

β3

Fig. 2.2. Each observed part in Claim 2.8 (dashed: roundabout non-admissible A-paths)

3. Applications. In this section, we present a number of important special
cases of the subgroup model. Almost all following cases satisfies |Γ′| = O(1), and
hence the running time of the linear matroid parity algorithm of Cheung et al. [1] is
bounded by O(|V |ω), which is much better than O(|V |5) derived from the algorithm
of Chudnovsky et al. [2]. Without loss of generality, Y is fixed to ⟨e⃗1⟩ where e⃗1 ∈ F2

denotes the first unit vector over each field F.

3.1. Mader’s S-paths. Let S = {A1, . . . , Ak} be a partition of the terminal set
A. Then Mader’s problem is a special case of the subgroup model: Γ = (Z,+), Γ′ =

{0} and ψ(e) = i− j for each e = uv ∈ E⃗ with u ∈ Ai and v ∈ Aj , where A0 := V \A.
In this case, ρ defined as follows leads to the same coherent representation over Q as
Schrijver’s one with appropriate base transformations:

ρ(i) :=

(
1 0
i 1

)
(i ∈ Z).

3.2. Odd-length A-paths. To find a maximum family of vertex-disjoint odd-
lengthA-paths is a special case of the subgroup model: Γ = ({1,−1},×) ≃ Z/2Z, Γ′ =

{1}, and ψ(e) = −1 for each e ∈ E⃗. In this case, ρ defined as follows leads to a co-
herent representation over an arbitrary field:

ρ(1) :=

(
1 0
0 1

)
, ρ(−1) :=

(
0 1
1 0

)
.

3.3. Non-zero model. The non-zero model dealt with in [3, 2] is a simple
special case of the subgroup model with Γ′ trivial. The previous two examples are
included in this model. Here we describe a more general claim than in the previous
section.

For any d ∈ N, let Γ be the cyclic group Cd ≃ Z/dZ of order d generated by α.
In this case, ρ defined as follows leads to a coherent representation over R:

(3.1)

ρ(αk) :=

 cos
kπ

d
− sin

kπ

d

sin
kπ

d
cos

kπ

d

 (0 ≤ k ≤ d− 1) .

Note that this ρ is not a general linear representation but a projective representation.
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If Γ′ is normal, then the subgroup model can be reduced the non-zero model by
considering the quotient group Γ/Γ′. In the following two sections, let us see examples
with Γ′ not normal.

3.4. Dihedral groups. Let Γ be the dihedral group Dd of degree d ≥ 2 gen-
erated by the minimum rotation r and the reflection R, and let Γ′ be its proper
subgroup. If rkR ̸∈ Γ′ for any 0 ≤ k ≤ d− 1, then Γ′ is generated only by rq for some
divisor q of d (possibly q = d). In this case, Γ′ is normal and Γ/Γ′ is isomorphic to the
dihedral group Dq of degree q. Hence we may assume that Γ′ is trivial (i.e., q = d),
and this setting admits a coherent representation over R by ρ defined as follows: ρ(rk)
are the same as (3.1) with α = r, and

ρ(R) :=

 cos
π

d+ 1
sin

π

d+ 1

sin
π

d+ 1
− cos

π

d+ 1

 .

Otherwise, suppose R ∈ Γ′ without loss of generality, and then Γ′ is generated by
R and rq for some divisor q of d (possibly q = d). Let us take q minimum. Note that
Γ′ is not normal unless q = 2. In this case, ρ defined as follows leads to a coherent
representation over R:

ρ(rkRl) :=

 cos
kπ

q
− sin

kπ

q

sin
kπ

q
cos

kπ

q

(
1 0
0 −1

)l (
0 ≤ k ≤ d− 1
l ∈ {0, 1}

)
.

Note that, in the latter case, the size of Γ′ is not necessary to be constant and
hence the running time bound of the algorithm of Cheung et al. depends on |Γ′| =
2d/q.

3.5. Non-returning model. First we describe the definition of the non-returning
model dealt with in [12, 13]. Let Π be a finite set, ω : A→ Π be a map on the termi-

nal set, and π : E⃗ → S(Π) be a map on the edge set to the permutations on Π with
reference orientation. In this model, an A-path (v0, e1, v1, . . . , ek, vk) is admissible if
and only if ω(vk) ̸= π(ek, vk) ◦ · · · ◦ π(e1, v1)(ω(v0)) holds. Let d := |Ω| ≥ 2.

This model is equivalent to the subgroup model, and in particular it reduces to
the following setting. Let Γ be the symmetric group Sd of degree d, and Γ′ := {σ ∈
Γ | σ(d) = d} = Sd−1. If d ≥ 3, Γ′ is not a normal subgroup of Γ. If d = 2, 3, this
problem reduces to privious examples by S2 ≃ Z/2Z and S3 ≃ D3. We shall clarify
the case of d ≥ 4.

Theorem 3.1. The subgroup model reduced from the non-returning model with
the label set Ω admits a coherent representation if and only if |Ω| ≤ 4.

Proof. Suppose d = |Ω| ≥ 4 and that there exist desired ρ and Y . Then ρ is
faithful.

To see this, suppose to the contrary that the kernel of ρ is not trivial, i.e., Γ′′ :=
{σ ∈ Γ | ρ(σ) = I2} contains a non-identity permutation. By the basic fact of group
theory, the kernel Γ′′ is a normal subgroup of Γ. On the other hand, Sd−1 is not a
normal subgroup of Sd if d ≥ 3, since Sd−1 has a fixed point d and (k d)Sd−1(k d)
does not fix d for any k ∈ [d− 1].
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Since we assume Y = ⟨e⃗1⟩ without loss of generality, for every σ ∈ Γ′, ρ has the
following form:

ρ(σ) =

(
1 aσ
0 bσ

)
,

where aσ, bσ ∈ F. Then it is seen as follows that the characteristic of F is 3.

Let p := a(1 2), q := b(1 2), r := a(1 2 3), s := b(1 2 3). Because of (1 2)(1 2 3) =
(2 3), (1 2 3)(1 2) = (1 3), (1 2 3)2 = (1 3 2) and (1 2)2 = (2 3)2 = (1 3)2 = (1 2 3)3 =
(1 3 2)3 = id, we have

p(q + 1) = (r + ps)(1 + qs) = (p+ qr)(1 + qs) = r(s2 + s+ 1) = 0,

q2 = q2s2 = s3 = 1.(3.2)

Hence we have s = 1, and r(1 + 1 + 1) = 0. If r = 0, then ρ
(
(1 2 3)

)
= I2,

contradicting the faithfulness of ρ. Thus we have 1 + 1 + 1 = 0.

By (3.2), we have q = ±1. Suppose q = 1. Then 2p = 0, which implies p = 0 and
ρ
(
(1 2)

)
= I2, contradicting the faithfulness of ρ. Thus we have q = −1 = 2.

Now we have the following representation:

ρ
(
(1 2)

)
=

(
1 p
0 −1

)
, ρ(id) =

(
1 0
0 1

)
,

ρ
(
(1 3)

)
=

(
1 p− r
0 −1

)
, ρ

(
(1 2 3)

)
=

(
1 r
0 1

)
,

ρ
(
(2 3)

)
=

(
1 p+ r
0 −1

)
, ρ

(
(1 3 2)

)
=

(
1 −r
0 1

)
,

ρ
(
(1 4)

)
:=

(
w1 x1
y1 z1

)
, ρ

(
(2 4)

)
:=

(
w2 x2
y2 z2

)
.

Since ρ is faithful, we have p ̸= p − r ̸= p + r ̸= p, and hence at least two of
p1 := p+r, p2 := p−r, p3 := p are nonzero. By symmetry, without loss of generality,
we may assume p1 ̸= 0 ̸= p2.

For each i ∈ {1, 2}, since (j k)(i 4) = (i 4)(j k) ({j, k} = {1, 2, 3} − i) and
(i 4)2 = id, (

wi + piyi xi + pizi
−yi −zi

)
= li1

(
wi piwi − xi
yi piyi − zi

)
,(

w2
i + xiyi xi(wi + zi)

yi(wi + zi) xiyi + z2i

)
= li2

(
1 0
0 1

)
,

where li1, li2 ∈ F. If d ≥ 5, then we have yi = 0 ̸= wi by (i 4) ∈ Γ′, and hence li1 = 1.
If xi = 0, then wi = zi by pi ̸= 0, i.e., ρ

(
(i 4)

)
= wiI2 ∼ ρ(id), a contradiction.

Otherwise, by xi(wi + zi) = 0, we have zi = −wi, and hence xi − piwi = piwi − xi.
This implies xi−piwi = 0, i.e., ρ

(
(j k)(i 4)

)
= wiI2 ∼ ρ(id), a contradiction. Thus we

have proved that the non-returning model does not admit a coherent representation
if d ≥ 5.

If d = 4, then we have yi ̸= 0 by (i 4) ̸∈ Γ′, and hence li1 = −1 and zi = −wi.
Therefore, we have the following equations:

wi + piyi = −wi, xi − piwi = −piwi + xi, wi = −piyi − wi.
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The first and third equations imply wi = piyi, and the second holds obviously.

By patient but straightforward calculation, we get a desired projective represen-
tation ρ over F := F3 = Z/3Z, which is an isomorphism to PGL(2,F3), as follows:

ρ(id) =

(
1 0
0 1

)
, ρ

(
(1 2 3)

)
=

(
1 1
0 1

)
, ρ

(
(1 3 2)

)
=

(
1 2
0 1

)
,

ρ
(
(1 2)

)
=

(
1 0
0 2

)
, ρ

(
(2 3)

)
=

(
1 1
0 2

)
, ρ

(
(1 3)

)
=

(
1 2
0 2

)
,

ρ
(
(1 4)

)
=

(
1 0
1 2

)
, ρ

(
(2 4)

)
=

(
2 0
1 1

)
, ρ

(
(3 4)

)
=

(
0 1
1 0

)
,

ρ
(
(1 2)(3 4)

)
=

(
0 2
1 0

)
, ρ

(
(1 3)(2 4)

)
=

(
2 1
1 1

)
, ρ

(
(1 4)(2 3)

)
=

(
1 1
1 2

)
,

ρ
(
(1 2 4)

)
=

(
1 0
1 1

)
, ρ

(
(1 4 2)

)
=

(
2 0
1 2

)
, ρ

(
(1 3 4)

)
=

(
1 2
1 0

)
,

ρ
(
(1 4 3)

)
=

(
0 2
1 2

)
, ρ

(
(2 3 4)

)
=

(
2 2
1 0

)
, ρ

(
(2 4 3)

)
=

(
0 2
1 1

)
,

ρ
(
(1 3 2 4)

)
=

(
1 2
1 1

)
, ρ

(
(1 4 2 3)

)
=

(
2 2
1 2

)
, ρ

(
(1 2 3 4)

)
=

(
1 1
1 0

)
,

ρ
(
(1 4 3 2)

)
=

(
0 1
1 2

)
, ρ

(
(1 3 4 2)

)
=

(
2 1
1 0

)
, ρ

(
(1 2 4 3)

)
=

(
0 1
1 1

)
.

The correctness can be easily confirmed by checking A2 = B2 = C2 = I2, AC = CA,
ABA = BAB, BCB = CBC where A := ρ

(
(1 2)

)
, B := ρ

(
(2 3)

)
, and C := ρ

(
(3 4)

)
.

4. Extension of Combinatorial Algorithm. In this section, we present an
extension of the algorithm of Chudnovsky et al. [2] for the non-zero model to the
subgroup model. We first introduce necessary definitions and notations in Section 4.1,
and describe min-max and structure theorems in Section 4.2, which are automatically
proved by the correctness of our extended algorithm. Section 4.3 presents the overview
of our algorithm, whose main procedures are guaranteed by the lemmas shown in
Section 4.4. Finally, we analyze its running time bound in Section 4.5.

4.1. Preliminaries. LetG = (V,E) be an undirected graph. As basic notations,
for U ⊆ V , let δG(U) := {e = uv ∈ E | |U ∩ {u, v}| = 1} and NG(U) := {v ∈ V \ U |
∃e = uv ∈ δG(U) s.t. u ∈ U}, and omit the braces {} for a singleton U = {v}. For
U ⊆ V and F ⊆ E, let G − U denote a graph obtained from G by removing the
vertices in U and the edges that have at least one end in U , and G − F denote one
obtained by removing the edges in F .

Fix a group Γ and its proper subgroup Γ′ in Section 4. A path starting in
A ⊆ V is called a half A-path. We call a family of vertex-disjoint admissible A-paths
an A-packing, and a family of vertex-disjoint admissible A-paths and half A-paths
covering A an A-collection. We use letters P,Q for paths, P,Q for A-packings and
A-collections, and Π for a family of A-collections. For a path P , let P [u : v] denote
its subpath from u ∈ V (P ) to v ∈ V (P ), and moreover the omission of u (or v) means
u (or v) is the start (end) of P .

For an A-collection P, we define its value and reachability as follows:

val(P, ψ,A) := |{P ∈ P | P : admissible A-path}|,
R(P, ψ,A) := {(v, α) | ∃P ∈ P : half A-path ending at v with ψ(P ) = α}.
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Each element of R(P, ψ,A) is called a reachable pair. Two elements α, β ∈ Γ are said
to be left equivalent if β−1α ∈ Γ′. Similarly to this, we say that a reachable pair (u, α)
is equivalent to (v, β) if u = v and α is left equivalent to β. We use the symbol ∼ to
represent these two equivalences.

We provide several notations for the rest of Section 4. Let Π(G,ψ,A) denote
the set of all A-collection in G, and fix an arbitrary Π ∈ Π(G,ψ,A). Recall that
µ(G,ψ,A) denotes the maximum size of an A-packing. Similarly, let µ(Π, ψ,A) denote
the maximum value of an A-collection in Π. The set of all reachable pair w.r.t. Π is
denoted by R(Π, ψ,A), and that w.r.t. all A-collections with the maximum value by
R(G,ψ,A). Let ⋆ be Π or G below. For a vertex v ∈ V , the set of reachable left
cosets of v is defined by Γ(⋆, ψ,A; v) := {αΓ′ | (v, β) ∈ R(⋆, ψ,A), β ∈ αΓ′}. Let
D1(⋆, ψ,A) denote the set of uniquely reachable vertices, i.e., D1(⋆, ψ,A) = {v ∈ V |
|Γ(⋆, ψ,A; v)| = 1}, and D2 that of multiply reachable vertices, i.e., D2(⋆, ψ,A) =
{v ∈ V | |Γ(⋆, ψ,A; v)| > 1}. Define D(⋆, ψ,A) := D1(⋆, ψ,A) ∪ D2(⋆, ψ,A) and
φ(Π, ψ,A) := |D1(Π, ψ,A)|+ 2|D2(Π, ψ,A)|.

4.2. Min-max relation and Edmonds-Gallai type structure. It is known
that the following min-max relation holds for the subgroup model for any group Γ
and any proper subgroup Γ′ of Γ.

Theorem 4.1 (Pap [11, 12]). For any Γ-labelled graph (G = (V,E), ψ) with
terminal set A ⊆ V , µ(G,ψ,A) is equal to the minimum value of the maximum
number of vertex disjoint AF -paths in G− F taken over all edge subsets F ⊆ E that
contain no admissible A-path, where AF := A ∪ V (F ).

By Gallai’s min-max theorem [4] (see [14, §73]) for vertex-disjoint A-paths, the
latter value is equal to the minimum value of

t(G,A;X,F ) := |X|+
k∑

i=1

⌊
1

2
|Xi ∩AF |

⌋
(4.1)

taken over all vertex subsets X ⊆ V and all edge subsets F ⊆ E that contain no
admissible A-path, where X1, . . . , Xk are the vertex sets of the connected components
of G−X − F . For each equality, the inequality of max ≤ min is obvious.

Note that, in this problem, it is important only which A-paths are admissible.
For two Γ-labelled graph (G,ψ) and (G,ψ′) with the same terminal set A, we say
that they (or their label functions) are A-equivalent if, for every A-path P in G, we
have ψ(P ) ̸∈ Γ′ ⇔ ψ′(P ) ̸∈ Γ′. We say that a label function ψ′ is obtained from a
label function ψ by shifting at v ∈ V with α ∈ Γ if ψ′(e, v) = α · ψ(e, v) (∀e ∈ δG(v))
and ψ′(e) = ψ(e) (∀e ∈ E \ δG(v)) hold. Note that shifting at a non-terminal always
results in an A-equivalent label function.

Lemma 4.2. Let (G = (V,E), ψ) be a Γ-labelled graph with terminal set A ⊆ V .
Then there exists a Γ-labelled graph (G,ψ′) A-equivalent to (G,ψ) such that:

• for each v ∈ D1(G,ψ,A), we have Γ(G,ψ′, A; v) = {Γ′}, and
• for each u ∈ NG(D(G,ψ,A))\A, there exists e = uv ∈ E such that ψ′(e, v)Γ′ ∈
Γ(G,ψ′, A; v).

Proof. Take v ∈ D1(G,ψ,A) with Γ(G,ψ,A; v) = {αΓ′}. If v ∈ A, then α = 1Γ.
On the other hand, if v ̸∈ A and α ̸= 1Γ, then by shifting ψ at v with α−1, we obtain
A-equivalent ψ′ such that Γ(G,ψ′, A; v) = {Γ′}.

Take e = uv ∈ E with u ̸∈ A ∪ D(G,ψ,A) and v ∈ D(G,ψ,A). For αΓ′ ∈
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Γ(G,ψ,A; v), by shifting ψ at u with α−1 · ψ(e, v), we get A-equivalent ψ′ such that
ψ′(e, v) = α. Moreover, these two types of shifting do not interfere with each other.

Chudnovsky et al. [2] showed a structure theorem for the non-zero model, and we
show its generalized form and prove it by our extended combinatorial algorithm. Here
we define an odd (even) component of a graph G with a terminal set as a connected
component of G that contains odd (even) number of terminals.

Theorem 4.3. Suppose that a Γ-labelled graph (G,ψ) satisfies the two conditions
in Lemma 4.2. Let A′ := A ∪ D1(G,ψ,A) ∪ NG(D(G,ψ,A)), F := {e = uv ∈ E |
u, v ∈ A′, ψ(e) ∈ Γ′}, and X := NG−F (D(G,ψ,A)). Then X ⊆ V and F ⊆ E attain
the minimum of (4.1), D(G,ψ,A) is the union of the odd components of G−X − F ,
and V \ (D(G,ψ,A) ∪X) is the union of the even components of G−X − F .

4.3. Algorithm description. The main routine of the extended algorithm is
Algorithm 1. For simple description, important procedures are separated to Sec-
tion 4.3.1 as subroutines, which are based on key lemmas in Section 4.4. In each
iteration step of the main routine, we check whether the optimality condition holds
(lines 3–8), and if it does not hold then we construct a new A-collection with greater
value or a new effective reachable pair contributing φ (lines 10–33).

4.3.1. Subroutines.

Sub. 1. Take v ∈ A′ \ Ã, and let Ã ← Ã + v, G̃ ← G̃ − {e = uv ∈ E | u, v ∈
Ã, ψ̃(e) ∈ Γ′}. For each old admissible Ã-path in old G̃, there exists at least
one new admissible Ã-path in new G̃ as its subpath. Moreover, each old half
Ã-path includes either a new admissible Ã-path or a new half Ã-path that
has an equivalent label to the old one as its subpath. Construct new Π̃ by
replaceing each path in each old Ã-collection P ∈ Π̃ intersecting v by one
of such paths and adding the trivial path from the terminal in new Ã that
is not used. Note that µ(Π̃, ψ̃, Ã) does not decrease and that, if it does not
increase, then Di(Π̃, ψ̃, Ã) does not reduce for each i ∈ {1, 2}.

Sub. 2. Take v ∈ X \ X̃. Let X̃ ← X̃ + v, Ã← Ã− v, and G̃← G̃− {v}. For each
old Ã-collection in Π̃, removing v affects at most one path that intersects
v. Construct new Π̃ by removing such paths that appear in old Π̃. Note
that µ(Π̃, ψ̃, Ã) decreases at most one and that, if it decreases by one, then
Di(Π̃, ψ̃, Ã) does not change for each i ∈ {1, 2}.

Sub. 3. Because of Lemma 4.9 and the optimality condition (not holding in line 6),
there exists a connected component K of G̃ = G−X −F with |V (K)∩ Ã| −
2µ(Π̃K , ψ̃, Ã) > 1, V (K)∩Ã = D1(Π̃K , ψ̃, Ã), and V (K)\Ã = D2(Π̃K , ψ̃, Ã),
where Π̃K denotes the restriction of Π̃ to K. According to Lemma 4.8, find
P̃K ∈ Π(K, ψ̃, Ã) with val(P̃K , ψ̃, Ã) = µ(Π̃K , ψ̃, Ã) + 1. Take P̃ ′ ∈ Π̃ and
replace it with P̃ := P̃K ∪ (P̃ ′ \ K). Note that new Π̃ with P̃ satisfies
val(P̃, ψ̃, Ã) ≥ val(P̃ ′, ψ̃, Ã) + 1 ≥ µ(Π, ψ,A)− |X|+ 1.

Sub. 4. Take v ∈ X̃ that was latest added to X̃ by Sub. 2. Suppose that adding v to
X̃ makes G̃′ → G̃, Ã′ → Ã, and Π̃′ → Π̃. Then µ(Π̃′, ψ̃, Ã′) ≤ µ(Π̃, ψ̃, Ã)+1 ≤
val(P̃, ψ̃, Ã)+1 and Di(Π̃

′, ψ̃, Ã′) = Di(Π, ψ,A) (i = 1, 2). Note that we have
val(P̃, ψ̃, Ã) ≥ µ(Π̃′, ψ̃, Ã′) or (u, γ) ∈ R(P̃, ψ̃, Ã) with u ∈ Di(Π̃∪{P}, ψ̃, Ã)\
Di(Π, ψ,A) for some i. According to Lemma 4.6, find Q̃ ∈ Π(G̃′, ψ̃, Ã′) with
val(Q̃, ψ̃, Ã′) ≥ µ(Π̃′, ψ̃, Ã′) and Di(Π̃

′ ∪ {Q̃}, ψ̃, Ã′) \ Di(Π̃
′, ψ̃, Ã′) ̸= ∅ for

some i. Let X̃ ← X̃ − v, G̃← G̃′, Ã← Ã′ = Ã+ v, and P̃ ← Q̃.
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Algorithm 1 Finding a maximum A-packing

Input: A Γ-labelled graph (G = (V,E), ψ) with terminal set A ⊆ V
and a proper subgroup Γ′ of Γ.

Output: An A-packing of size µ(G,ψ,A).
1: Set Π← {P0}, where P0 := {(a) | a ∈ A} is a trivial A-collection.
2: while true do
3: Compute D1(Π, ψ,A) and D2(Π, ψ,A).
4: By shifting according to Lemma 4.2, get ψ̃ A-equivalent to ψ.
5: Set A′ ← A ∪ D1(Π, ψ,A) ∪ NG(D(Π, ψ,A)), F ← {e = uv ∈ E | u, v ∈

A′, ψ̃(e) ∈ Γ′}, and X ← NG−F (D(Π, ψ,A)).
6: if µ(Π, ψ,A) = t(G,A;X,F ) then
7: return the maximum A-packing included in some P ∈ Π.
8: end if
9: Set G̃← G, Ã← A, X̃ ← ∅, and Π̃← Π.

10: while µ(Π̃, ψ̃, Ã) = µ(Π, ψ,A)− |X̃|, Di(Π̃, ψ̃, Ã) = Di(Π, ψ,A) (i = 1, 2), and
[Ã ̸= A′ or X̃ ̸= X] do

11: if Ã ̸= A′ then
12: Update G̃, Ã, and Π̃ by Sub. 1.
13: else
14: Update G̃, Ã, X̃, and Π̃ by Sub. 2.
15: end if
16: end while
17: if µ(Π̃, ψ̃, Ã) = µ(Π, ψ,A)−|X̃| and Di(Π̃, ψ̃, Ã) = Di(Π, ψ,A) (i = 1, 2) then
18: Find P̃ ∈ Π(G̃, ψ̃, Ã) with val(P̃, ψ̃, Ã) > µ(Π̃, ψ̃, Ã) by Sub. 3 and add to Π̃.
19: else
20: Choose P̃ ∈ Π̃ that violates at least one of the conditions.
21: end if
22: while X̃ ̸= ∅ do
23: Update G̃, Ã, X̃, and P̃ by Sub. 4.
24: end while
25: while Ã ̸= A do
26: Update G̃, Ã, and P̃ by Sub. 5.
27: end while
28: if val(P̃ , ψ,A) ≥ µ(Π, ψ,A) + 1 then
29: Let Π← {P̃}.
30: else
31: Let Π← Π ∪ {P̃}.
32: end if
33: end while

Sub. 5. Take v ∈ Ã \ A that was latest added to Ã by Sub. 1. Suppose that
adding v to Ã makes G̃′ → G̃, Ã′ → Ã, and Π̃′ → Π̃. Then µ(Π̃′, ψ̃, Ã′) ≤
µ(Π̃, ψ̃, Ã) ≤ val(P̃, ψ̃, Ã) and Di(Π̃

′, ψ̃, Ã′) = Di(Π, ψ,A) (i = 1, 2). Note
that we have val(P̃, ψ̃, Ã) ≥ µ(Π̃′, ψ̃, Ã′) + 1 or (u, γ) ∈ R(P̃, ψ̃, Ã) with u ∈
Di(Π̃∪{P}, ψ̃, Ã)\Di(Π, ψ,A) for some i. According to Lemma 4.7, find Q̃ ∈
Π(G̃′, ψ̃, Ã′) with either val(Q̃, ψ̃, Ã′) ≥ µ(Π̃′, ψ̃, Ã′) + 1, or val(Q̃, ψ̃, Ã′) ≥
µ(Π̃′, ψ̃, Ã′) and Di(Π̃

′ ∪ {Q̃}, ψ̃, Ã′) \ Di(Π̃
′, ψ̃, Ã′) ̸= ∅ for some i. Let

G̃← G̃′, Ã← Ã′ = Ã− v, and P̃ ← Q̃.
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Remark. Since the original paper [2] has deliberate omissions and careless mistakes
mainly in Section 5, we have completed them in our algorithm description. For
example, we describe concrete procedures Subs. 1 and 2 corresponding to an omitted
proof of [2, Lemma 5.1]. These subroutines add and remove a terminal, respectively,
and construct a family of new A-collections in the resulting graph from a family of
old ones in the original graph without drastic changes.

More significant problems appear in [2, Lemmas 5.2 and 5.3]. The left-hand sides
νA′′(P ′) and νA′−X′(P ′) of inequalities and equations should be replaced by valA′′(Π′)
and valA′−X′(Π′), respectively, in the notation of [2]. Moreover, the assumption of
[2, Lemma 5.3] is too strong. Correctly, the right-hand sides of the inequality in (i)
and the equation in (ii) need an additional term −|X ′|. Similar modifications are
necessary in the subsequent paragraph and in an omitted proof of [2, Lemma 5.3].

Finally, it should be noted that the procedures Subs 3, 4 and 5 correspond to [2,
Lemma 4.5 and 5.4], [2, Lemma 5.3] and [2, Lemma 5.2], respectively.

4.4. Key Lemmas. This section shows important lemmas for our algorithm.
Let (G = (V,E), ψ) be a Γ-labelled graph with terminal set A ⊆ V .

Lemma 4.4. Let P1,P2 ∈ Π(G,ψ,A) satisfy val(P1, ψ,A) = val(P2, ψ,A) − 1
and fix e = uv ∈ E. If there exist p, (u, α) ∈ R(P1, ψ,A) and (v, β) ∈ R(P2, ψ,A)
with β ̸∼ ψ(e, v) · α, then one can find, in O(|V |2) time, P3 ∈ Π(G,ψ,A) such that
val(P3, ψ,A) = val(P2, ψ,A) and at least one of p′ and (u, α′) is in R(P3, ψ,A) for
some p′ ∼ p and α′ ∼ α.

Proof. The proof is done by reverse induction on |E(P1)∪E(P2)| < 2|V |. In each
induction step, we just trace a constant number of paths in G, which takes O(|V |)
time. Thus the running time is O(|V |2). Let P1, P2 ∈ P1, Q1 ∈ P2 be the half A-paths
which make p, (u, α) ∈ R(P1, ψ,A), (v, β) ∈ R(P2, ψ,A), respectively.

Because of 2val(P1, ψ,A) + 2 = 2val(P2, ψ,A), there exists a teminal a ∈ A at
which Q1 or an admissible A-path (or its reversed path) in P2 starts, say Q ∈ P2, such
that P1, P2 and all admissible A-paths in P1 are disjoint from a. We may assume that
the half A-path in P1 starting at a is the trivial one (a) ∈ P1, since it does not affect
the assumption of the lemma. If Q is disjoint from P1 \{(a)}, then Q = Q1 and hence
we get desired P3 := P1∆{(a), P2, P

′} where P ′ := (P2, e,Q1) is admissible A-path
since β ̸∼ ψ(e, v) · α implies ψ(P ′) = β−1 · ψ(e, v) · α ̸∈ Γ′. Otherwise Q intersects
some paths in P1 \ {(a)}, let P ∈ P \ {(a)} be the first one in walking along Q, and
let w be the shared vertex.

Case 1. Suppose that P is a half A-path. Let P ′ be the A-path obtained by
connecting P [ : w] and Q̄[w : ], and then P ′ is disjoint from each path in P1\{P, (a)}.
If ψ(P ′) ̸∈ Γ′, then we get desired P3 := P1∆{P, (a), P ′}.

Otherwise, let P ′′ be the half A-path obtained by connecting Q[ : w] and P [w : ],
and let P1 := P1∆{P, P ′′}. We then have p′, (u, α′) ∈ R(P1, ψ,A) with respect to new
P1 for some p′ ∼ p and α′ ∼ α, since ψ(P ′) ∈ Γ′ implies ψ(P ′′) ∼ ψ(P ). Note that
the value of |E(P1) ∪ E(P2)| decreases since each new edge which appears in E(P1)
is in E(P2) and at least one edge in the subpath P [ : w] is removed from E(P1) and
does not belong to E(P2).

Case 2. Suppose that P is an admissible A-path. At least one P ′ of the two
A-paths which are obtained by connecting Q[ : w] and P [w : ], and Q[ : w] and
P̄ [w : ] is an admissible A-path disjoint from each path in P1 \ {P}. Hence, let
P1 := P1∆{P, P ′}, and then the value of val(P1, ψ,A) does not change, p, (u, α) ∈
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R(P1, ψ,A) remains, and the value of |E(P1) ∪ E(P2)| decreases.
Lemma 4.5. Let P1,P2 ∈ Π(G,ψ,A) satisfy val(P1, ψ,A) = val(P2, ψ,A), and

fix p1 ∈ R(P1, ψ,A), p2, p3 ∈ R(P2, ψ,A) with p1 ̸∼ p2 ̸∼ p3 ̸∼ p1. Then one can find,
in O(|V |2) time, P3 ∈ Π(G,ψ,A) such that either

• val(P3, ψ,A) = val(P1, ψ,A) and p
′
1, p

′
2 ∈ R(P3, ψ,A) or p

′
1, p

′
3 ∈ R(P3, ψ,A)

for some p′i ∼ pi for i = 1, 2, 3, or

• val(P3, ψ,A) = val(P1, ψ,A) + 1.

Proof. The proof is similar to the proof of Lemma 4.4. Let P1 ∈ P1, Q1, Q2 ∈ P2

be the half A-paths which make p1 ∈ R(P1, ψ,A), p2, p3 ∈ R(P2, ψ,A), respectively.

Since 2val(P1, ψ,A) = 2val(P2, ψ,A), there exists a teminal a ∈ A at which
Q1, Q2 or an admissible A-path (or its reversed path) in P2 starts, say Q ∈ P2, such
that P1 and all admissible A-paths in P1 are disjoint from a. We may assume that
the half A-path in P1 starting at a is the trivial one (a) ∈ P1, since it does not affect
the assumption of the lemma. If Q is disjoint from each path in P1 \{(a)}, then Q is a
half A-path (Q ∈ {Q1, Q2}) and hence we get desired P3 := P1∆{(a), Q}. Otherwise
Q intersects some paths in P1 \ {(a)}, let P ∈ P1 \ {(a)} be the first one in walking
along Q, and let w be the shared vertex.

The rest is almost the same as the proof of Lemma 4.4, so we omit it.

In Lemmas 4.6–4.8, fix any family Π ⊆ Π(G,ψ,A) of A-collections with |Π| =
O(|V |), suppose that ψ has been shifted as Lemma 4.2 with respect to Π, and let
F := {e = uv ∈ E | u, v ∈ A, ψ(e) ∈ Γ′}.

Lemma 4.6. Fix v ∈ A ∩ NG−F (D(Π, ψ,A)) and P ∈ Π(G − {v}, ψ,A − v)
with either val(P, ψ,A − v) ≥ µ(Π, ψ,A), or val(P, ψ,A − v) ≥ µ(Π, ψ,A) − 1 and
p ∈ R(P, ψ,A− v) \R(Π, ψ,A). Then one can find, in O(|V |2) time, Q ∈ Π(G,ψ,A)
such that val(Q, ψ,A) ≥ µ(Π, ψ,A) and at least one of p′ and (v, α) is in R(Q, ψ,A)
for some p′ ∼ p and α ∈ Γ′.

Proof. If val(P, ψ,A− v) ≥ µ(Π, ψ,A), then we have (v, 1Γ) ∈ R(P ∪{(v)}, ψ,A).
This means that P ∪ {(v)} ∈ Π(G,ψ,A) is a desired A-collection.

Otherwise, we have val(P, ψ,A − v) = µ(Π, ψ,A) − 1 and p ∈ R(P, ψ,A − v) \
R(Π, ψ,A), and then p, (v, 1Γ) ∈ R(P ∪ {(v)}, ψ,A). Since v ∈ NG−F (D(Π, ψ,A)),
there exist u ∈ NG(v) and e = uv ∈ E with (u, β) ∈ R(Π, ψ,A) and ψ(e, u) ̸∼ β. Take
Q′ ∈ Π with val(Q′, ψ,A) = µ(Π, ψ,A) and (u, β) ∈ R(Q′, ψ,A), and, by applying
Lemma 4.4 to P ∪ {(v)} and Q′, we get desired Q with α ∼ 1Γ, i.e., α ∈ Γ′.

Lemma 4.7. Fix v ∈ (D1(Π, ψ,A)∪NG(D(Π, ψ,A)))\A and P ∈ Π(G,ψ,A+ v)
with either val(P, ψ,A + v) ≥ µ(Π, ψ,A) + 1, or val(P, ψ,A + v) ≥ µ(Π, ψ,A) and
p ∈ R(P, ψ,A+ v) \ R(Π, ψ,A), then one can find, in O(|V |2) time, Q ∈ Π(G,ψ,A)
such that either val(Q, ψ,A) ≥ µ(Π, ψ,A) + 1, or val(Q, ψ,A) ≥ µ(Π, ψ,A) and at
least one of p′ and (v, α) is in R(Q, ψ,A) for some p′ ∼ p and α ̸∈ Γ′.

Proof. By the choice of v, there exists Q′
0 ∈ Π such that val(Q′

0, ψ,A) =
µ(Π, ψ,A) and either (v, γ) ∈ R(Q′

0, ψ,A) with γ ∈ Γ′ (if v ∈ D1(Π, ψ,A)) or
(u, β) ∈ R(Q′

0, ψ,A) with e = uv ∈ E and ψ(e, v) · β ∈ Γ′ (if v ∈ NG(Π, ψ,A))
because of the two conditions in Lemma 4.2. By removing the unique edge e =
uv ∈ E(Q′

0) in the former case, we have an A-collection Q0 ∈ Π(G,ψ,A) such that
val(Q0, ψ,A) = µ(Π, ψ,A) and (u, β) ∈ R(Q0, ψ,A) for some β ∈ Γ with β ∼ ψ(e, u),
in the both cases.

Case 1. Suppose val(P, ψ,A+v) ≥ µ(Π, ψ,A)+1. Let P ∈ P be the path starting
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at v. If P is a half A-path, then val(Q, ψ,A) ≥ µ(Π, ψ,A) + 1 for Q := P \ {P} ∈
Π(G,ψ,A). Otherwise, since P is an admissible A-path, we have val(Q, ψ,A) ≥
µ(Π, ψ,A) and (v, α) ∈ R(Q, ψ,A) with α = ψ(P̄ ) ̸∈ Γ′ for Q := P ∈ Π(G,ψ,A). In
the both cases, Q is a desired A-collection.

Case 2. Suppose val(P, ψ,A+v) = µ(Π, ψ,A) and p ∈ R(P, ψ,A+v)\R(Π, ψ,A).
Let P1 ∈ P be the half A-path which makes p ∈ R(P, ψ,A+ v), and let P ∈ P be the
path starting at v. If P is a half (A+v)-path with P ̸= P1, then P \{P} ∈ Π(G,ψ,A)
is a desired A-collection. The rest cases are as follows.

Case 2.1. Suppose that P is an admissible (A + v)-path. Let Q1 := P ∈
Π(G,ψ,A), and then val(Q1, ψ,A) = val(P, ψ,A)−1 = µ(Π, ψ,A)−1 and p, (v, α′) ∈
R(Q1, ψ,A) with α′ = ψ(P̄ ) ̸∈ Γ′. Recall that there exists e = uv ∈ E with
ψ(e, u) ∼ β and Q0 ∈ Π(G,ψ,A). Since ψ(e, v) · β ∈ Γ′ implies α′ ̸∼ ψ(e, v) · β,
by applying Lemma 4.4 to Q1 and Q0, we get desired Q ∈ Π(G,ψ,A).

Case 2.2. Suppose P = P1.

Case 2.2.1. Suppose that each path in Q0 is disjoint from v. Let P0 := Q0∪{(v)}.
We then have val(P0, ψ,A + v) = val(Q0, ψ,A) = µ(Π, ψ,A) and (u, β), (v, 1Γ) ∈
R(P0, ψ,A+v). By applying Lemma 4.5 to P and P0, we get P1 ∈ Π(G,ψ,A+v) such
that either val(P1, ψ,A+v) = val(P, ψ,A)+1 = µ(Π, ψ,A)+1, or val(P1, ψ,A+v) =
µ(Π, ψ,A) and some p′ ∼ p and one of (u, β′), (v, 1Γ) are in R(P1, ψ,A+ v) for some
β′ ∼ β. The former case reduces to Case 1, and we have done in the latter case by
Q := P1∪{(v)} orQ := P1∆{P2, P3, Q} where P2 ∈ P1 makes (u, β) ∈ R(P1, ψ,A+v),
P3 ∈ P1 starts at v, and Q := (P2, e, P3) (note ψ(Q) = ψ(P3) since ψ(e, u) ∼ β).

Case 2.2.2. Suppose that Q ∈ Q0 intersects v. Let w be the vertex preceding v on
Q, and let Q1 ∈ Q0 be the path which makes (u, β) ∈ R(Q0, ψ,A). If Q = Q1, then
either it reduces to Case 2.2.1 by replacingQ1 with the subpathQ1[ : w] and regarding
w as new u, or Q1[ : v] makes (v, α) with α ̸∈ Γ′ and hence Q∆{Q1, Q1[ : v]} is
a desired A-collection. Moreover, if Q is another half A-path, then it also reduces
to Case 2.2.1 by replacing Q with the trivial half A-path. Suppose that Q is an
admissible A-path.

Let Q′ := Q[ : w] and Q′′ := Q̄[ : v]. By reversing Q in advance if necessary, we
may assume that Q′′ is an admissible (A+ v)-path. Let P0 := Q0∆{Q,Q′, Q′′}, and
then val(P0, ψ,A+v) = val(Q0, ψ,A) = µ(Π, ψ,A) and (u, β), (w, δ) ∈ R(P0, ψ,A+v)
for some δ ∈ Γ. By applying Lemma 4.5 to P and P0, we get P1 ∈ Π(G,ψ,A+v) such
that either val(P1, ψ,A+ v) = val(P, ψ,A+ v)+ 1 = µ(Π, ψ,A)+ 1, or val(P1, ψ,A+
v) = µ(Π, ψ,A) and p′ and at least one of (u, β′) and (w, δ′) is in R(P1, ψ,A+ v) for
some p′ ∼ p, β′ ∼ β and δ′ ∼ δ.

The former case reduces to Case 1 and the latter case remains Case 2. Suppose
that it remains Case 2.2, i.e., the path in P1 starting at v makes p′ ∈ R(P1, ψ,A+ v).
If (u, β′) ∈ R(P1, ψ,A + v), then by e = uv ∈ E with ψ(e, u) ∼ β we get desired
Q with p′ ∼ p′′ ∈ R(Q, ψ,A) from P1. Otherwise, take an edge e′ = wv ∈ E. If
δ ∼ ψ(e′, w), then e′ can play the same role as the above e, and if δ ̸∼ ψ(e′, w), then
by e′ we get desired Q with (v, α) ∈ R(Q, ψ,A) for α = ψ(e′, v) · δ′ ̸∈ Γ′ from P1.

Lemma 4.8. Suppose that G−F is connected. If |A| − 2µ(Π, ψ,A) > 1, V ∩A =
D1(Π, ψ,A) and V \ A = D2(Π, ψ,A), then one can find, in O(|V |2 log |V |) time,
P ∈ Π(G,ψ,A) with val(P, ψ,A) = µ(Π, ψ,A) + 1.

Proof. Fix P1 ∈ Π with val(P1, ψ,A) = µ(Π, ψ,A), and choose distinct vertices
u, v ∈ V such that (u, α), (v, β) ∈ R(P1, ψ,A) are made by half A-paths P1, P2 ∈ P1,
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respectively.

Case 1. Suppose that there exists an edge e = uv ∈ E \ F . If β ̸∼ ψ(e, v) · α,
then P := (P1, e, P̄2) is an admissible A-path disjoint from each path in P1 \{P1, P2},
and hence P := P1∆{P1, P2, P} is a desired A-collection. Otherwise, at least one of
u, v is not a terminal. Suppose that u is a non-terminal and (u, γ) ∈ R(Π, ψ,A) with
γ ̸∼ α. By Lemma 4.5, we can find P2 ∈ Π(G,ψ,A) such that either val(P2, ψ,A) =
val(P1, ψ,A) + 1, or val(P2, ψ,A) = val(P1, ψ,A) and (u, γ′), (v, β′) ∈ R(P2, ψ,A) for
some γ′ ∼ γ and β′ ∼ β. Thus we have done (by the first argument in this case).

Case 2. Otherwise, choose one of the shortest paths in G − F from u to v,
and let w be an internal vertex. Because of V = D(Π, ψ,A), there exists P2 ∈ Π
with val(P2, ψ,A) = µ(Π, ψ,A) and (w, δ) ∈ R(P2, ψ,A) for some δ ∈ Γ. Hence by
Lemma 4.5, we can find P3 ∈ Π(G,ψ,A) such that either val(P3, ψ,A) = val(P1, ψ,A)+
1, or val(P3, ψ,A) = val(P1, ψ,A) and (w, δ′) and one of (u, α′), (v, β′) are inR(P3, ψ,A)
for some α′ ∼ α, β′ ∼ β, and δ′ ∼ δ. In the latter case, a shortest path from u or v to
w is shorter than one from u to v. If we always choose w as the (nearly) middle point,
then the number of this procedures is at most log2 |V |. Note that finding a shortest
path can be done in O(|V |2) time by the breadth first search.

Lemma 4.9. If the condition of line 17 in Algorithm 1 holds, i.e., we have
µ(Π̃, ψ̃, Ã) = µ(Π, ψ,A) − |X| and Di(Π̃, ψ̃, Ã) = Di(Π, ψ,A) (i = 1, 2), then each
connected component K of G−X − F satisfies either

• 2µ(Π̃K , Ã) = |V (K) ∩ Ã|, or
• V (K) ∩ Ã = D1(Π̃K , Ã) and V (K) \ Ã = D2(Π̃K , Ã).

Proof. For each edge e = uv ∈ E with u ̸∈ D(Π, ψ,A) and v ∈ D(Π, ψ,A), we have
either u ∈ X or e ∈ F . Since there is no such edge in G−X − F , for each connected
componentK ofG−X−F , we have either V (K)∩D(Π̃, ψ̃, Ã) = V (K)∩D(Π, ψ,A) = ∅
or V (K) ⊆ D(Π, ψ,A) = D(Π̃, ψ̃, Ã).

In the former case, obviously all terminals in K are covered by Π̃K , and hence
2µ(Π̃K , ψ̃, Ã) = |V (K)∩Ã|. In the latter case, by the definition of A′ = Ã, v ∈ Ã if and
only if v ∈ D1(Π, ψ,A) = D1(Π̃, ψ̃, Ã). Therefore, we have V (K)∩ Ã = D1(Π̃K , ψ̃, Ã)
and V (K) \ Ã = D2(Π̃K , ψ̃, Ã).

4.5. Running time analysis. The maximum size µ(G,ψ,A) of an A-packing
is at most |A|/2 = O(|V |), and the maximum value of φ(Π, ψ,A) = |D1(Π, ψ,A)| +
2|D2(Π, ψ,A)| = O(|V |). In the main iteration (lines 2–33) of Algorithm 1, the value
of µ(Π, ψ,A) does not decrease and that of φ(Π, ψ,A) increases unless µ(Π, ψ,A)
increases. Hence the number of executions of the main iteration is O(|V |2).

In each iteration step, Sub. 1, 2, 4 and 5 are called at most |A′ \A|+ |X| = O(|V |)
times, and Sub. 3 is called exactly once. Moreover, in Sub. 1, 2, 4 and 5, Lemmas 4.4,
4.5, 4.6 and 4.7, respectively, are called once, and in Sub. 3, Lemma 4.8 is called once.
Therefore, the total complexity of one iteration step is O(|V |3), which implies that
the running time of the main part of this algorithm is O(|V |5).

Moreover, the algorithm has to compute the reachability w.r.t. Π, to do shifting,
and to maintain A′, F , and X. Computing the reachability can be done in O(|V |2)
time since |Π| = O(|V |) and each A-collection uses at most |V | − 1 edges. Unless
µ(Π, ψ,A) increases, for each v ∈ V \ A, shifting at v is done at most twice and v
is added to A′ at most once, since v’s state changes monotonically in the following
order: in V \ A′, in NG(D(Π, ψ,A)), in D1(Π, ψ,A), and in D2(Π, ψ,A). Therefore,
maintaining A′, F , and X takes totally O(|E|) time (since the state of each edge
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e = uv ∈ E changes constant times) unless µ(Π, ψ,A) increases, and hence the run-
ning time of this maintenance part is O(|E| · |V |). Thus the total running time is
O
(
(|E|+ |V |4) · |V |

)
.
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