
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Cyber Security Analysis of Power Networks
by Hypergraph Cut Algorithms

Yutaro YAMAGUCHI, Anna OGAWA,
Akiko TAKEDA and Satoru IWATA

METR 2014–12 May 2014

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Cyber Security Analysis of Power Networks
by Hypergraph Cut Algorithms⋆

Yutaro Yamaguchi1⋆⋆, Anna Ogawa2, Akiko Takeda1, and Satoru Iwata1

1 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan
{yutaro yamaguchi, takeda, iwata}@mist.i.u-tokyo.ac.jp

2 Department of Administration Engineering, Keio University, Yokohama, Japan
anna ogawa@opt.mist.i.u-tokyo.ac.jp

Abstract. This paper presents exact solution methods for analyzing vulnerability of electric power
networks to a certain kind of undetectable attacks known as false data injection attacks. We show
that the problems of finding the minimum number of measurement points to be attacked unde-
tectably reduce to minimum cut problems on hypergraphs, which admit efficient combinatorial
algorithms. Experimental results indicate that our exact solution methods run as fast as the pre-
vious methods, most of which provide only approximate solutions. We also present an algorithm
for enumerating all small cuts in a hypergraph, which can be used for finding vulnerable sets of
measurement points.

1 Introduction

Maintaining the security and reliability of electric power networks is becoming more crucial due
to their increasing scale and complexity. One needs to monitor the condition of a power network
based on measurement of meters placed at important area of the power network through e.g.,
Supervisory Control and Data Acquisition (SCADA) system. The system uses state estimation,
the process of estimating current states of the power system based on the meter measurement,
in order to control power network components such as the operation of power generators.

Recently, various researchers have studied the cyber-security of SCADA systems. Conven-
tional techniques for detecting malicious measurement values injected by attackers utilize the
squares of differences between the observed measurements and their corresponding estimates.
Those techniques are based on the assumption that the difference becomes significant when
bad measurements happen [4]. However, Liu et al. [5] pointed out that if attackers know the
configuration of the power system, they can introduce a new class of attacks, false data in-
jection attacks, to make malicious injection undetectable because the additive measurement
values do not affect the difference. This means that an attacker can inject malicious values that
will mislead the state estimation process without being detected by existing techniques for bad
measurement detection.

The attacker would be interested in finding sparse malicious values (i.e., sparse attacks)
because each attack on a measurement point involves risk to be detected. Sparse attacks reveal
vulnerable sets of meters to be attacked in the system. Liu et al. [5] showed a cardinality
minimization formulation to find a sparsest attack and solved it approximately by matching
pursuit method [6]. Sandberg et al. [11] also formulated a similar optimization problem for
finding a sparsest attack including a given measurement point and defined the optimal value
as the security index of the point. After Sandberg et al. [11] proposed a simple heuristics to
find a suboptimal solution for the problem, Sou et al. [12, 13] and Hendrickx et al. [1] provided
efficient solution methods as follows. It was shown in [12] that the problem reduces to a minimum
cost node-bipartitioning problem, which is approximately solved by finding a minimum s–t cut
in the given network. Under a certain strong assumption, it further reduces to a cardinality

⋆ This research is supported by JST CREST.
⋆⋆ Supported by JSPS Fellowship for Young Scientists.

1

minimization problem whose constraint matrix is totally unimodular [13]. While ℓ1 relaxation
can indeed solve the cardinality minimization problem, the assumption restricts the applicability
of the model. As an improved result of [12], [1] gave a reduction of the security index computation
to finding a minimum s–t cut in an auxiliary directed graph, which can be done in polynomial
time.

In this paper, we present a new approach to cyber security analysis using hypergraphs. A
hypergraph is a generalization of a graph consisting of a set of nodes and a set of hyperedges.
Each hyperedge connects an unrestricted number of nodes while each edge in a graph connects
just two nodes. Our main contributions are summarized below. The viewpoint of hypergraphs
makes it possible, in particular, to find sparse attacks directly as shown in 2) and 3).

1. We show that computing the security index for a given measurement point reduces to finding
a minimum s–t cut in a hypergraph, which can be done efficiently by finding a maximum
s–t flow through the hypergraph. This problem in fact can be reduced to finding a minimum
s–t cut in a directed graph, which is almost the same as that suggested in [1]. Our reduction
to hypergraphs, however, gives a simpler description with smaller number of nodes, which
leads to improved running time in practice.

2. We show that a sparsest attack can be directly obtained by finding a minimum cut in a
hypergraph. It should be noted that one can find a sparsest attack in polynomial time by
applying the security index computation suggested in [1] for all measurement points. Our
method is faster because it only requires one minimum cut computation.

3. We devise a new algorithm for enumerating all small cuts in a hypergraph whose capacities
are within a prespecified constant factor of the minimum cut capacity, building on the work
of Nagamochi et al. [8]. This algorithm can be used to analyze possible sparse attacks in
power network systems.

The rest of this paper is organized as follows. Section 2 is devoted to problem formulations
and fundamental properties of the sparsest attacks and security index. In Section 3, we show
that these problems can be reduced to hypergraph cut problems, which admit efficient combi-
natorial algorithms. The performance of our solution methods is analyzed through experiments
in Section 4. Finally, in Section 5, we present a new algorithm for enumerating small cuts in a
hypergraph.

2 Cyber Security Analysis Problems

2.1 Sparsest Attacks and Security Index

Let G = (V,A) be a directed graph, which represents a network system such as an electric power
network. The node set V is of cardinality n and the arc set A of cardinality m. We assume that
G is connected, and hence n = O(m). We denote by BG the incidence matrix of G. The row
and column sets of BG are indexed by V and A, respectively. For each arc a = uv ∈ A from u
to v, the (u, e)-entry is 1, (v, e)-entry is −1, and (w, e)-entries are 0 for all w ∈ V \ {u, v}.

Each node has a hidden state (e.g., voltage), and each node or arc has a measurement point.
The operator of the system gets a measurement value (e.g., current) in each measurement point,
which leads to some information of the states.

Definition 1 (Measurement matrix). Let D be an m ×m positive diagonal matrix (each
of whose diagonal entry represents the character of each arc, e.g., the inverse of its reactance).
The measurement matrix H is an (m+ n)× n matrix defined by

H :=

(
DB⊤

G

BGDB⊤
G

)
. (1)

Note that the row and column sets are A ∪ V and V , respectively.

2

For a vector θ ∈ RV that represents the states of all nodes, the measurement values at
all measurement points are represented as z = Hθ ∈ RA∪V . A nonzero vector ∆z ∈ RA∪V is
called undetectable if there exists ∆θ ∈ RV such that ∆z = H∆θ. It is shown in [5] that an
undetectable additive measurement value∆z does not affect the difference between the observed
measurement values and their corresponding estimates and no alarm is triggered in the end.
Nobody can detect only by the measurement values whether the system is attacked or not. Such
a new class of attacks is known as false data injection attacks [5].

The support supp(∆z) := {k | k ∈ A∪V, (∆z)k ̸= 0} of an undetectable attack ∆z is called
an attackable set. Let ∥x∥0 denote the size of the support of a vector x. The sparsest attack
problem is to find an undetectable attack with the minimum support size, i.e.,

min
∆θ∈RV

{∥H∆θ∥0 | H∆θ ̸= 0}. (2)

The attacker would be interested in finding a sparsest attack, which is obtained from an optimal
solution of the sparsest attack problem, because each attack on a measurement point involves
risk to be found. Therefore, a minimum attackable set indicates one of the most vulnerable sets
of measurement points to be attacked in the system.

Let k ∈ A∪V be a measurement point. Suppose that k is attacked in an undetectable attack
∆z, i.e., k ∈ supp(∆z). The minimum size of an attackable set that contains k is called the
security index [12] of k. The security index problem is to compute the security index of a given
measurement point k for a given measurement matrix H, i.e., to compute

min
∆θ∈RV

{∥H∆θ∥0 | Hk∆θ ̸= 0}, (3)

where Hk denotes the row vector of H indexed by k.

Let us denote by G′ = (V,E) the underlying graph of G, i.e., G′ is an undirected graph with
edge set E = {ea = {u, v} | a = uv ∈ A or a = vu ∈ A} being a multiset. For each node v ∈ V ,
we denote by ΓG(v) the set of nodes adjacent to v in G′ and by δG(v) the set of edges incident
to v in G′, i.e., ΓG(v) := {u | {u, v} ∈ E} and δG(v) := {e | v ∈ e ∈ E}.

For each arc a ∈ A, let Da denote the corresponding diagonal entry of D. Then each
entry of the measurement matrix H is given as follows. For each arc a = uv ∈ A, we have
Hau = Da, Hav = −Da, and Haw = 0 for every w ∈ V \ {u, v}. For each node v ∈ V ,
we have Hvv =

∑
a{Da | ea ∈ δG(v)}. For each pair of distinct nodes u, v ∈ V , we have

Hvu = −
∑

a{Da | ea = {u, v} ∈ E}.

Observation 1 For any vector ∆θ ∈ RV , X := supp(H∆θ) satisfies the following properties.

• For each arc a = uv ∈ A, we have a ∈ X if and only if (∆θ)u ̸= (∆θ)v.

• For each node v ∈ V , we have v ∈ X if and only if
∑

a{(∆θ)vDa | ea ∈ δG(v)} ̸=∑
u∈ΓG(v)

∑
a{(∆θ)uDa | u ∈ ea ∈ δG(v)}.

2.2 Elementary Attacks

Sou et al. [12] pointed out a nice property of the security index problem. The following lemma,
extracting the core of the property, leads to reduction of the above two problems to hyper-
graph cut problems, which will be shown later in Section 3.2. Let us denote by χU ∈ RV the
characteristic vector of a subset U ⊆ V , i.e., χU (u) = 1 (∀u ∈ U) and χU (v) = 0 (∀v ∈ V \ U).

Lemma 1. For any ∆θ ∈ RV with H∆θ ̸= 0 and any α ∈ R with minv∈V (∆θ)v < α <
maxv∈V (∆θ)v, U := {v ∈ V | (∆θ)v > α} satisfies ∥HχU∥0 ≤ ∥H∆θ∥0.

3

Proof. By Observation 1, if (∆θ)u = (∆θ)v for any u, v ∈ V , then we have H∆θ = 0. We then
assume that there exist u, v ∈ V such that (∆θ)u ̸= (∆θ)v, and hence we can always take α
satisfying the assumption.

Let HA := DB⊤
G and HV := BGDB⊤

G for submatrices in (1). To see ∥HχU∥0 ≤ ∥H∆θ∥0, we
prove two statements: (i) supp(HAχU) ⊆ supp(HA∆θ), and (ii) there exists an injective map ρ
on supp(HV χU) \ supp(HV ∆θ) to supp(HA∆θ) \ supp(HAχU).

(i) By Observation 1, a ̸∈ supp(HA∆θ) implies (∆θ)u = (∆θ)v for any a = uv ∈ A. Hence
we have U ∩{u, v} = ∅ or {u, v}, which leads to (χU)u = (χU)v. Thus we have a ̸∈ supp(HAχU).

(ii) Take a vertex v ∈ supp(HV χU) \ supp(HV ∆θ). Take u ∈ argmaxx∈ΓG(v)(∆θ)x and w ∈
argminx∈ΓG(v)(∆θ)x, and let α := (∆θ)u, β := (∆θ)v, and γ := (∆θ)w. Then, by Observation 1,
we have α > β > γ, and we must have (χU)u = 1 and (χU)w = 0 since v ∈ supp(HV χU).

Let a be an arc between v and u if (χU)v = 1, and between v and w otherwise. We then
have a ∈ supp(HA∆θ) \ supp(HAχU). Let us define ρ(v) := a. After this procedure for every
v ∈ supp(HV χU)\supp(HV ∆θ), we get a map ρ on supp(HV χU)\supp(HV ∆θ) to supp(HA∆θ)\
supp(HAχU). We finally prove that ρ is injective.

Suppose to the contrary that ρ is not injective. Then there exists an arc a = uv ∈ A with
ρ(u) = ρ(v) = a. By the definition of ρ, we may assume (χU)u = (χU)v = 1 and (∆θ)u <
(∆θ)v without loss of generality. Then, in the above procedure with respect to v, there exists
u′ ∈ argmaxx∈ΓG(v)(∆θ)x with ρ(v) = u′v ∈ A or ρ(v) = vu′ ∈ A. On the other hand, since
(∆θ)u < (∆θ)v, we have u ̸∈ argmaxx∈ΓG(v)(∆θ)x, a contradiction. ⊓⊔

Lemma 1 suggests that each minimum attackable set has the corresponding bipartition of
the node set (though the corresponding attackable set itself does not coincide with the original
one in general). Hence the sparsest attack problem (2) and the security index problem (3) are
interpreted as node-bipartiton problems since these problems are interested only in the sparsest
attacks.

Let us call an undetectable attack ∆z an elementary attack if ∆z = HχU for some proper
nonempty subset U of V , and such U a false set (of ∆z). The following observation is easily
seen from Observation 1.

Observation 2 For a proper nonempty subset U of V , X := supp (HχU) satisfies the following
properties.

• For each arc a = uv ∈ A, we have a ∈ X if and only if |U ∩ {u, v}| = 1.

• For each node v ∈ V , we have v ∈ X if and only if |U ∩ {u, v}| = 1 for some neighbor
u ∈ ΓG(v).

0 10

U

Fig. 1. An example of elementary attacks. The number above each node is the entry of the characteristic vector
χU . The nodes and arcs in X (i.e., to be attacked) are colored red.

2.3 Enumerating All Sparse Elementary Attacks

In considering sparse undetectable attacks that are not necessarily the sparsest, sparse ele-
mentary attacks play an important role. Since Lemma 1 does not depends on the threshold
α, for any undetectable attack ∆z = H∆θ and any minv∈V (∆θ)v < α < maxv∈V (∆θ)v,
U := {v ∈ V | (∆θ)v > α} is a false set of a no denser elementary attack than ∆z, i.e.,
∥HχU∥0 ≤ ∥∆z∥0. By changing α in the possible range, we get a nested family of false sets of

4

no denser elementary attacks, i.e., ∅ ̸= U1 ⊂ U2 ⊂ · · · ⊂ Ur ⊂ V such that
∥∥HχUj

∥∥
0
≤ ∥∆z∥0

for each Uj with 1 ≤ j ≤ r. In other words, only undetectable attacks that can be written as a
nonnegative combination of sparse elementary attacks with nested false sets can be sparse.

Based on this fact, what is important for finding sparse undetectable attacks is to find all
sparse elementary attacks. The problem of enumerating all sparse elementary attacks is to find
all elementary attacks ∆z with ∥∆z∥0 ≤ β for a given measurement matrix and a positive
integer β. As seen in the next section, this problem can be interpreted as to enumerate all small
cuts in a given hypergraph, for which a combinatorial algorithm will be given in Section 5.

3 Reduction to Minimum Cuts in Hypergraphs

3.1 Preliminaries for Hypergraphs

A pair H = (V, E) of a finite set V and a family E ⊆ 2V of subsets of V is called a hypergraph.
Each element v ∈ V is called a node, and each element e ∈ E is called a hyperedge. Note that
if every hyperedge is of size 2, then the hypergraph is just an undirected graph which contains
no self-loop. To measure the size of H, we use ∥E∥ :=

∑
e∈E |e| as well as |V |.

Let H = (V, E) be a hypergraph, and c : E → R≥0 a nonnegative function on the hyperedges.
We call the pair N = (H, c) a hypernetwork. A proper nonempty subset U of V is called a cut
in H (or in N), and define δH(U) := {e ∈ E | e∩X ̸= ∅, e \X ̸= ∅}. The capacity of a cut U is
defined by

κN (U) :=
∑

e∈δH(U)

c(e).

For each node v ∈ V , we simply denote κN ({v}) by κN (v). The hypergraph minimum cut
problem is to find a cut in a given hypernetwork N with the minimum capacity. Let λ(N)
denote the minimum capacity.

Based on the concept of MA-ordering, introduced by Nagamochi and Ibaraki [7] for graphs,
Klimmek and Wagner [3] presented a simple algorithm for finding a minimum cut in hypernet-
work N in O(|V | · ∥E∥+ |V |2 log |V |) time.

For two distinct nodes s, t ∈ V , a cut U is called an s–t cut if s ∈ U and t ̸∈ U . The
hypergraph minimum s–t cut problem is to find an s–t cut in a given hypernetwork N with the
minimum capacity for given distinct nodes s, t ∈ V .

The hypergraph minimum s–t cut problem can be reduced, in general, to the minimum s–t
cut problem on directed graphs [14], which is a fundamental graph optimization problem solved
by maximum flow algorithms. In particular, if the capacity of every hyperedge is equal to one,
we can apply a simple algorithm due to Pistorius and Minoux [10]. Its running time is bounded
by O(C · ∥E∥), where C is the maximum flow value, which is equal to the minimum s–t cut
capacity.

3.2 Reduction from Cyber Security Analysis Problems

Recall that G′ = (V,E) denotes the underlying graph of the input graph G. By Sections 2.2
and 2.3, we should consider

f(U) := ∥HχU∥0 = |supp (HχU)|

over all proper nonempty subset U of V , i.e., over all cuts U in G′. Moreover, by Observation 2,
it can be rewritten as

f(U) = κG(U) + |V (δG(U))|,

where κG denotes κN ′ for N ′ = (G′,1) and 1 denotes the all one vector. Define E := E ∪
{ΓG(v)∪{v} | v ∈ V }, and N := ((V, E),1). Then, for each cut U in N , we have f(U) = κN (U)

5

0 10

U

Fig. 2. An example of computing the size of X := supp(HχU) as the capacity κN (U) in the auxiliary hypernet-
work N . The number above each node is the entry of the characteristic vector χU . The nodes and arcs in X (i.e.,
to be attacked), and the hyperedges cut by U are colored red.

since, for each ev = ΓG(v) ∪ {v}, we have ∅ ̸= ev ∩ U ̸= ev if and only if |U ∩ e| = 1 for some
e ∈ δG(v).

Recall Lemma 1 and Observation 2. Then the sparsest attack problem immediately reduces
to the hypergraph minimum cut problem. Moreover, the security index problem reduces to the
hypergraph minimum s–t cut problem as follows. For an arc uv ∈ A, then let s := u and t := v.
For a node v ∈ V , then solve the security index problem of arcs uv ∈ A or vu ∈ A for all
neighbors u ∈ ΓG(v), and take the minimum among the obtained security indices.

By the definition of E in this reduction, ∥E∥ = 2|A| +
∑

v∈V (|δG(v)|+ 1) = 4|A| + |V | =
O(m). Using the algorithm of Klimmek and Wagner [3] for finding a minimum cut in a hyper-
graph, we obtain the following result.

Theorem 1. Given a measurement matrix H, one can find a sparsest attack ∆z ∈ RA∪V in
O(nm+ n2 log n) time.

We have |V | = n and ∥E∥ = O(m). Moreover, the maximum value of an s–t flow for any
distinct s, t ∈ V is O(n) since the underlying graph is practically almost simple (hence the
maximum value of an s–t flow in G′ is O(n)) and the number of added hyperedges is n. Thus
the running time can be bounded as follows.

Theorem 2. Given a measurement matrix H and a measurement point k ∈ A ∪ V , one can
compute the security index of k in O(nm) time if k is an arc, and in O(nm|ΓG(v)|) if k is a
node v ∈ V .

Remark. Our reduction works well in a slightly more general setting. Suppose that some arcs and
some nodes do not have their measurement points. Even in such a situation, if each arc incident
to any node with a measurement point has a measurement point, then the same statement as
Lemma 1 holds, and hence our reduction works well.

In addition, as shown in [1], one can introduce a cost function c : A∪V → R+ that represents
the cost to attack each measurement point. The attack on k ∈ A ∪ V takes the cost c(k), and
the goal is to find a sparsest attack or to compute the security index of a given measurement
point in terms of the total cost, i.e., the objective function to be minimized over ∆θ ∈ RV is
replaced by

∑
k∈supp(H∆θ) c(k). If c(a) ≤ c(v) holds for every pair of v ∈ V and ea ∈ δG(v),

our reduction is extendable to this setting by regarding c as the capacity function (for each
a ∈ A, c(a) is the capacity of the corresponding edge ea ∈ E ⊂ E , and for each v ∈ V , c(v)
the corresponding additional hyperedge ΓG′(v) ∪ {v} ∈ E). In this situation, Theorem 1 holds
as it does. Theorem 2 also carries over this setting with the aid of an advanced maximum flow
algorithm [9].

4 Experiments

We compare our new methods (hyp.global min.cut for the sparsest attack problem (2) and
hyp.min.s-t cut for the security index problem (3)) with several existing methods.

6

Table 1. Accuracy of the two relaxation methods. The first row “error” represents the ratio of failure in obtaining
the exact security index. The second row “approx.” shows the geometric mean of the ratios between upper bounds
obtained by each relaxation method and exact security indices.

case 1 2 3 4 5 6 7 8 9

number of nodes 9 14 30 118 300 2383 2746 3012 3375
number of arcs 9 20 41 186 411 2896 3514 3572 4161

min.s-t cut relax
error 0.00 0.150 0.220 0.210 0.122 0.124 0.154 0.117 0.112

approx. 1.000 1.025 1.040 1.032 1.019 1.022 1.027 1.021 1.020

L1-relax (LP)
error 0.667 0.600 0.683 0.726 0.599 0.644 0.738 0.676 0.655

approx. 1.368 1.488 1.476 1.813 1.625 1.442 1.364 1.340 1.345

1
 n = 9
 m = 9

2
 n = 14
 m = 20

3
 n = 30
 m = 41

4
 n = 118
 m = 186

5
 n = 300
 m = 411

6
 n = 2383
 m = 2896

7
 n = 2746
 m = 3514

8
 n = 3012
 m = 3572

9
 n = 3375
 m = 4161

case number

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

so
lv

e
 t
im

e
 (
se

c)

hyp. global min. cut
hyp. min. s-t cut
min. s-t cut exact
min. s-t cut relax
L1-relax (LP)
L0-exact (MIP)

Fig. 3. Running time of the six methods applied to nine benchmarks. The segment on each bar corresponds to
the number of arcs, so that its top represents the computationed time required to find a sparsest attack.

• min.s-t cut exact [1]: Find a minimum s–t cut in an auxiliary directed graph, which leads
to the security index.

• min.s-t cut relax [12]: Find a minimum s–t cut in the original graph to give an upper
bound on the security index.

• L1-relax (LP) [13]: Solve an LP with the ℓ1-norm objective instead of the ℓ0-norm in (3).

• L0-exact (MIP): Solve (3) as a mixed integer programming problem.

We applied these methods to nine power network benchmarks obtained from [15]. We exe-
cuted hyp.min.s-t cut, min.s-t cut exact, min.s-t cut relax and L1-relax for all arcs.
We also applied L0-exact to all arcs for cases 1–5, and to randomly chosen 30 arcs for cases
6–9. All computations were done using Python (and internally C++) on a Mac desktop with
3.1GHz Intel CPU Core i7 and 16GB of memory. CPLEX was used for L1-relax (LP) and
L0-relax (MIP).

Figure 3 illustrates the mean running time of each method. For the security index problem,
hyp.min.s-t cut as well as min.s-t cut exact and min.s-t cut relax runs substantially
faster than L1-relax (LP) and L0-exact (MIP). Furthermore, our hyp.min.s-t cut is faster
than min.s-t cut exact [1] for all instances. Recall that the sparsest attack problem can be
solved by computing the security indices for all measurement points and adopting the minimum
among them. The required time for this approach using these five methods for the security index
problem can be estimated by multiplying the number of arcs. A single execution of hyp.global
min.cut is faster than these estimates.

7

Table 1 shows the accuracy of the two relaxation methods. As shown in Figure 3, min.s-t
cut relax is the fastest among the five methods for the security index computation. In Table 1,
this method appears to perform better than L1-relax (LP), but yet it sometimes fails in
obtaining an optimal solution.

5 Enumerating Small Cuts in Hypergraphs

5.1 Overview

Our goal is to find all cuts U in a given hypernetwork N with κN (U) ≤ kλ(N), called k-small
cuts, for a given real k ≥ 1 (recall that λ(N) denotes the minimum capacity of a cut in N).
Based on the idea of the algorithm of Nagamochi et al. [8] for enumerating all small cuts in an
undirected graph, we devise a new algorithm for enumerating all small cuts in an undirected
hypergraph.

Let β := kλ(N). The overview of the algorithm is as follows. Construct a sequenceNn,Nn−1,
. . . ,N1 of hypernetworks from input N to only one node by isolating and removing a node in
each step such that, for each i = 2, . . . , n, κNi(U) ≥ κNi−1(U) for every cut U in Ni−1 and
λ(Ni) ≤ λ(Ni−1). After the construction, repeat checking the capacity κNi(U) of each cut U in
Ni−1 with κNi−1(U) ≤ β and the capacity κNi({vi}) where vi is isolated in the i-th step, i.e.,
{vi} = V (Ni) \ V (Ni−1), and maintain the set of all cuts U with κNi(U) ≤ β.

The key idea is to separate the operation called edge-splitting, which is used to isolate a
node, into two types of operations, which we call 1-hyperedge-splitting and 2-hyperedge-splitting.
The detail is shown later.

Let hk(N) denotes the maximum number of cuts of capacity at most β = kλ(N) in Ni,
which is constructed through the algorithm, taken over i = 1, . . . , n. One can see that the
number of k-small cuts in a hypernetwork N is O(nkM), where M denotes the maximum size
of a hyperedge in N , as a straightforward extension of Karger’s bound [2] for an undirected
graph. Our hyperedge-splitting, however, may increase M in constructing Nn−1, . . . ,N1, which
makes it difficult to get a simple bound on hk(N).

Theorem 3. Given a hypernetwork N = (H = (V, E), c) and a real k ≥ 1, one can enumerate
all cuts U in H with κN (U) ≤ kλ(N) in O(|V | · ∥E∥2 + (hk(N) + |V |2) · ∥E∥ log |V |) time.

The proof of this theorem is given at the end of this section.

5.2 Computing r-Connectivity

For a hypernetwork N = (H = (V, E), c), choose a node r ∈ V as a designated node. A cut U is
called r-proper if U is a cut in H− {r}. The r-connectivity λr(N) is the minimum capacity of
an r-proper cut in N . Hence λ(N) = min{λr(N), κN ({r})}. An r-proper cut U is called r-tight
if κN (U) = λr(N).

Lemma 2. For any hypernetwork N = (H = (V, E), c) with a designated node r ∈ V , the
r-connectivity λr(N) and an r-tight cut T can be computed in O(|V | · ∥E∥+ |V |2 log |V |) time.

Proof. We use an algorithm of Klimmek and Wagner [3] for finding a minimum cut in a hy-
pergraph shown as Algorithm 3 in Appendix. After the line 12 of Algorithm 3, the cut {t} is
guaranteed to be a minimum s–t cut [3, Lemma]. If we always take the designated node r as w
in Algorithm 3, then r remains in N ′ until the final iteration. We claim that, if we replace the
line 2 of Algorithm 3 by “while |V | > 2 do” and the line 3 by “W ← {r}”, then the algorithm
returns an r-tight cut in N .

To see this, it suffices to check that each r-proper cut U in N has the same capacity as an
s–t cut for some pair (s, t) after the line 12. Since N ′ has exactly two nodes including r when

8

the algorithm halts, for any r-proper cut U in N , in some iteration step we have |U ∩{s, t}| = 1,
i.e., U is an s–t cut. Note that each cut U in N ′ remains with the same capacity after merging
s and t if |U ∩ {s, t}| ̸= 1, which completes the proof. ⊓⊔

5.3 Weighted Hyperedge-Splitting

LetN = (H = (V, E), c) be a hypernetwork and r ∈ V a designated node. Here we assume thatH
is a complete hypergraph, whose hyperedge set E is {e ⊆ V | |e| ≥ 2}. In order to deal with each
hyperedge e with c(e) = 0 as if it did not exist, let us define δN (U) := {e ∈ δH(U) | c(e) > 0}
for each U ⊆ V and ΓN (v) := {u ∈ V − v | u ∈ e ∈ δN (v)} for each v ∈ V . We define two types
of procedures called hyperedge-splitting.

One is that, given a hyperedge e1 ∈ δN (r) and a nonnegative real α ≤ αmax := c(e1)/2, we
construct the following hypernetwork N ′ = (H, c′):

c′(e1) := c(e1)− 2α, c′(e′) := c(e′) + 2α

c′(e) := c(e) (∀e ∈ E \ {e1, e′}),

where e′ = e1 − r, and if |e′| = 1 then there is no update for e′. We say that N ′ is obtained
from N by 1-hyperedge-splitting e1 of weight α, and denote the resulting hypernetwork N ′ by
N/(e1, α).

The other is that, given two hyperedges e1, e2 ∈ E with e1∩ e2 = {r} and a nonnegative real
α ≤ αmax := min{c(e1), c(e2)}, we construct the following hypernetwork N ′ = (H, c′):

c′(e1) := c(e1)− α, c′(e2) := c(e2)− α, c′(e′) := c(e′) + α,

c′(e) := c(e) (∀e ∈ E \ {e1, e2, e′}),

where e′ = e1∆e2 := (e1 \ e2) ∪ (e2 \ e1) = e1 ∪ e2 − r. We say that N ′ is obtained from N
by 2-hyperedge-splitting e1 and e2 of weight α, and denote the resulting hypernetwork N ′ by
N/(e1, e2, α).

Observation 3 After hyperedge-splitting (e1, e2, α) (in the case of 1-hyperedge-splitting, regard
e2 as ∅), for any cut U with r ̸∈ U in H, we have

κN ′(U) =


κN (U)− 2α (e′ ⊆ U)

κN (U)− α (e1 ∩ U ̸= ∅, e2 ∩ U ̸= ∅, and e′ \ U ̸= ∅)
κN (U) (otherwise).

(4)

Hence λr(N ′) ≤ λr(N) holds for any α ≤ αmax. Let αr(e1;N) and αr(e1, e2;N) denote the
maximum α such that α ≤ αmax and λr(N ′) = λr(N), i.e., any r-tight cut in N remains r-tight
in N/(e1, α) and N/(e1, e2, α) for 0 ≤ α ≤ αr(e1;N) and 0 ≤ α ≤ αr(e1, e2;N), respectively.

Lemma 3. Let N = (H = (V, E), c) be a hypernetwork with a designated node r ∈ V . Then,
for any hyperedge e1 ∈ δN (r) (or any two hyperedges e1 and e2 with e1 ∩ e2 = {r}),
(i) αr(e1;N) (or αr(e1, e2;N)) can be computed in O(|V | · ∥E∥+ |V |2 log |V |) time, and

(ii) if c′(e1) > 0 (or c′(e1) > 0 and c′(e2) > 0), where c′ is the capacity function of N ′ :=
N/(e1, αr(e1;N)) (or N ′ := N/(e1, e2, αr(e1, e2;N))), then N ′ has an r-tight cut T such
that e′ ⊆ T (or e1 ∩T ̸= ∅ and e2 ∩T ̸= ∅), which can be found in O(|V | · ∥E∥+ |V |2 log |V |)
time.

Proof. Apply Lemma 2 to N and Ñ := N/(e1, αmax) (or Ñ := N/(e1, e2, αmax)). If λr(N) =
λr(Ñ), then the desired value of (i) is obviously αmax and we have c′(e1) = 0 (or c′(e1) = 0 or
c′(e2) = 0) in N ′ = Ñ . Otherwise, we get an r-tight cut T̃ in Ñ that may not be r-tight in N .

9

Because of Observation 3, the decrease of the capacity of each cut by hyperedge-splitting
is almost uniform. In the case of 1-hyperedge-splitting, since the difference is always 2α if
decreases, it is easily seen that

α(e1;N) = αmax −
λr(N)− λr(Ñ)

2

holds and T̃ is also r-tight in N ′. This T̃ must include e′ = e1 − r by (4).

In the case of 2-hyperedge-splitting, though there are two possible differences α and 2α, the
same idea works well. Let

α̃ :=

αmax −
λr(N)− λr(Ñ)

2
(e1∆e2 ⊆ T̃)

αmax −
(
λr(N)− λr(Ñ)

)
(otherwise),

(5)

and apply Lemma 2 to N̂ := N/(e1, e2, α̃). If λr(N) = λr(N̂), then the desired value of (i) is
α̃ and T̃ is also r-tight in N ′ = N̂ . This T̃ must either include e′ = e1∆e2 or satisfy e1 ∩ T̃ ̸= ∅
and e2 ∩ T̃ ̸= ∅ by (4).

Otherwise, we get an r-tight cut T̂ in N̂ that is not r-tight in N . Note κN (T̃) − κN̂ (T̃) ̸=
κN (T̂) − κN̂ (T̂) =: α′ and that we have κN (T ′) − κN̂ (T ′) = α′ for any r-proper cut T ′ with

κN̂ (T ′) < λr(N). Therefore, α(e1, e2;N) is equal to the right-hand side of (5) with N̂ and T̂

instead of Ñ and T̃ respectively, and T̂ is also r-tight in N ′ = N̂ with e′ = e1∆e2 ⊆ T̂ or
e1 ∩ T̂ ̸= ∅ and e2 ∩ T̂ ̸= ∅. ⊓⊔

The following lemma will be used later in the algorithm to isolate a node r ∈ V .

Lemma 4. For any hypernetwork N = (H = (V, E), c) with a designated node r ∈ V and any
r-tight cuts T and T ′ in N , we have the following.

(i) ΓN (r) \ T ̸= ∅ holds.
(ii) If there exists a hyperedge e ∈ δN (r) such that e∩T ′ ̸= ∅, e \T ′ ̸= {r}, and e ⊆ T + r, then

T ′ ⊂ T holds.

(iii) If there exist two hyperedges e1, e2 ∈ δN (r) such that e1∩e2 = {r}, e1 ⊆ T ′+r, e2∩T ′ = ∅,
e1 ∩ T ̸= ∅ and e2 ∩ T ̸= ∅, then T ′ ⊂ T holds.

Proof. (i) Suppose to the contrary that some r-tight cut T ⊂ V − r contains all neighbours of
r. Then, for the r-proper cut R := V \ (T + r), we have κN (T) = κN (R) + κN ({r}) > λr(N) =
κN (T), a contradiction.
(ii) Suppose to the contrary that some hyperedge e ∈ δN (r) and two r-tight cuts T and T ′ with
e ∩ T ′ ̸= ∅, e \ T ′ ̸= {r} and e ⊆ T + r violate the property. Then T and T ′ are crossing (all of
T ∩ T ′, T \ T ′, T ′ \ T and V \ (T ∪ T ′) are nonempty), and hence we have

κN (T) + κN (T ′) ≥ κN (T \ T ′) + κN (T ′ \ T) + c(e) > 2λr(N) = κN (T) + κN (T ′),

where the first inequality is easily checked by enumerating hyperedges that contribute to the
capacities, a contradiction.

(iii) Suppose to the contrary that some hyperedges e1, e2 ∈ δN (r) and two r-tight cuts T and
T ′ with e1 ∩ e2 = {r}, e1 ⊆ T ′ + r, e2 ∩ T ′ = ∅, e1 ∩ T ̸= ∅ and e2 ∩ T ̸= ∅ violate the property.
Then T and T ′ are crossing, and hence by the similar observation as the proof of (ii), we have

κN (T) + κN (T ′) ≥ κN (T \ T ′) + κN (T ′ \ T) + c(e1) > 2λr(N) = κN (T) + κN (T ′),

a contradiction. ⊓⊔

10

Algorithm 1 Node isolation technique

Input: A hypernetwork N = (H = (V, E), c) and r ∈ V .
Output: A hypernetwork Nr = ((V − r, E ′), c′) with (i) and (ii) in Lemma 5 and a set Qr of

the information of all hyperedge-splittings.
1: N ∗ ← N , T ∗ ← ∅, Qr ← ∅.
2: while |δN (r)| > 1 do
3: if T ∗ ∩ ΓN (r) = ∅ then
4: T ∗ ← {u} for u ∈ ΓN (r).
5: end if
6: if ∃e ∈ δN (r) s.t. e ∩ T ∗ ̸= ∅ and e \ T ∗ ̸= {r} then
7: Take such e, and compute α := αr(e;N ∗).
8: αmax ← c(e)/2.
9: N ∗ ← N ∗/(e, α) (1-hyperedge-splitting), and Qr ← Qr ∪ {(e, α)}.
10: else
11: Take e1, e2 ∈ δN (r) s.t. e1 ⊆ T ∗ + r and e2 ∩ T ∗ = ∅, and compute α := αr(e1, e2;N ∗).
12: αmax ← min{c(e1), c(e2)}.
13: N ∗ ← N ∗/(e1, e2, α) (2-hyperedge-splitting), and Qr ← Qr ∪ {(e1, e2, α)}.
14: end if
15: if α < αmax then
16: For the r-tight cut T in N ∗ found by hyperedge-splitting, let T ∗ ← T .
17: end if
18: end while
19: N ∗ ← N ∗/(e, c(e)/2) (1-hyperedge-splitting), and Qr ← Qr ∪ {(e, c(e)/2)} for unique e ∈

δN (r) if exists.
20: Return Nr := N ∗ − r and Qr.

5.4 Algorithm to Isolate a Node

Our algorithm to isolate a designated node r ∈ V is shown as Algorithm 1. The idea is simple,
to repeat hyperedge-splitting until there is no hyperedge in the temporary hypernetwork N ∗

that contains r. Note that the variable T ∗ usually indicates an r-tight cut in N ∗.

Lemma 5. Algorithm 1 correctly isolates r ∈ V in a hypernetwork N = (H = (V, E), c), i.e.,
it outputs a hypernetwork Nr = ((V −r, E ′), c′) with the following condition (i) and (ii), after re-
peating hyperedge-splitting at most 3|δN (r)| times, and runs in O

(
|δN (r)| · (|V | · ∥E∥+ |V |2 log |V |)

)
time.

(i) κNr(U) ≤ κN (U) for every cut U in Nr, and

(ii) λ(Nr) = λr(N) ≥ λ(N).

Proof. First of all, we show that the outputNr satisfies the two conditions if the algorithm halts.
Since the algorithm just performs hyperedge-splitting without destroying any r-tight cut in the
while loop, it suffices to check the line 19. Suppose that 1-hyperedge-splitting e of weight c(e)/2
destroys some r-tight cut T . Then we must have e ⊆ T +r by Observation 3, and the hyperedge
e ∈ δH(r) remains in N ′ := N ∗/(e, αr(e;N ∗)) since αr(e;N ∗) < c(e)/2, contradicting (i) of
Lemma 4.

During the algorithm, each hyperedge e ∈ δH(r) is in one of the four possible states, (S1)
e ∈ δN (r) and e ∩ T ∗ = ∅, (S2) e ∈ δN (r), e ∩ T ∗ ̸= ∅ and e \ T ∗ ̸= {r}, (S3) e ∈ δN (r) and
e ⊆ T ∗+ r, and (S4) e ̸∈ δN (r), i.e., the capacity of e is 0. These states are irreversible, i.e., the
state index is monotone nondecreasing for each hyperedge throughout the algorithm. Moreover,
after each hyperedge-splitting in the line 9 or 13, for at least one hyperedge, the state index

11

Algorithm 2 Hypergraph small cut enumeration

Input: A hypernetwork N = (H = (V, E), c) and k ≥ 1.
Output: The set Ck(N) of all k-small cuts in N .
1: Compute λ(N), and set Nn ← N and β ← kλ(N).
2: for i = n, n− 1, . . . , 2 do
3: Take vi ∈ argminv∈Vi |δNi(v)|, where Vi is the node set of Ni.
4: Isolate vi in Ni by applying Algorithm 1, and let Ni−1 ← Nvi .
5: end for
6: r ← v1 (reference node), and C≤β

r (N1)← ∅.
7: for j = 2, 3, . . . , n do
8: κNj (vj)← 2

∑
{α | (e, α) ∈ Qvj or (e1, e2, α) ∈ Qvj}.

9: for each U ∈ C≤β
r (Nj−1) do

10: κNj (U) ← κNj−1(U) + fj(U) and κNj (U + vj) ← κNj−1(U) + gj(U), where fj and gj
are defined naturally from (4).

11: end for
12: C+vj [C

≤β
r (Nj−1)]← C≤β

r (Nj−1) ∪ {U + vj | U ∈ C≤β
r (Nj−1)} ∪ {{vj}}.

13: C≤β
r (Nj)← {U ∈ C+vj [C

≤β
r (Nj−1)] | κNj (U) ≤ β}.

14: end for
15: Return Ck(N) := C≤β

r (Nn).

increases. Note that, since the capacity of every edge e ∈ δH(r) monotonically decreases during
the algorithm, we need not to consider any transition from the state (S4).

To see the irreversibility, we first show that T ∗ monotonically increases unless the line 4 is
executed. This follows from (ii) and (iii) of Lemma 4. If |T ∗| > 1, then T ∗ was updated in
the line 16 in the previous iteration, and hence T ∗ is r-tight. Then, by applying Lemma 4 to
T and T ∗ in the line 16 of the current iteration, we confirm T ∗ ⊂ T . Moreover, by Lemma 4,
each extension of T ∗ involves increasing the state index of one of the selected hyperedges for
hyperedge-splitting.

Finally, we consider update of T ∗ by the line 4. If the condition of the line 3 is true, i.e.,
T ∗ ∩ δN ∗(r) = ∅, then every e ∈ δH(r) is in state (S1) or (S4), which completes the proof. ⊓⊔

5.5 Enumerating All Small Cuts

Our algorithm to find all small cuts in a hypernetwork is shown as Algorithm 2. The basic idea
is the same as the algorithm of Nagamochi et al. [8], and it is briefly described in Section 5.1.
Here we conclude this section with the proof of Theorem 3.

Proof of Theorem 3. The proof is almost the same as [8, Section 6]. One of the main differences
appears in the line 10 of Algorithm 2, in which we compute the capacities κNj (U) and κNj (U+vj)
for a small cut U in Nj−1 with κNj−1(U) ≤ β. It is easily seen from the equation (4) that fj
and gj defined as follows work well:

fj(U) := 2
∑
{α | (e, α) ∈ Qvj with e ⊆ U + vj}+ 2

∑
{α | (e1, e2, α) ∈ Qvj with e1∆e2 ⊆ U}

+
∑{

α
∣∣∣ (e1, e2, α) ∈ Qvj with (e1∆e2) \ U ̸= ∅
and e1 ∩ U ̸= ∅ ̸= e2 ∩ U

}
,

gj(U) := 2
∑
{α | (e, α) ∈ Qvj with e ∩ U = ∅}+ 2

∑
{α | (e1, e2, α) ∈ Qvj with (e1∆e2) ∩ U = ∅}

+
∑{

α
∣∣∣ (e1, e2, α) ∈ Qvj with (e1∆e2) ∩ U ̸= ∅
and e1 \ U ̸= {vj} ̸= e2 \ U

}
.

12

Another main difference appears in the part of bounding the running time of the lines 2–5.
Note that we choose vi as a minimizer of δNi(v) and hence |δNi(vi)| ≤ ∥E∥/i. This fact implies
that the running time of the lines 2–5 is bounded as

O

(
n∑

i=1

∥E∥
i

i(∥E∥+ |V | log |V |)

)
= O (∥E∥ · |V | · (∥E∥+ |V | log |V |)) .

Moreover, our update of the temporary family C≤β
r (Ni) of k-small cuts in Ni can be done

O(|C≤β
r (Ni)| · |Qvi |). Recall that hk(N) = maxi |C≤β

r (Ni)|. We have |Qvi | = O(|δNi(vi)|) by
Lemma 5, and hence the total computation is bounded by

n∑
i=1

O(|C≤β
r (Ni)| · |Qvi |) =

n∑
i=1

O

(
hk(N)

∥E∥
i

)
= O(hk(N) · ∥E∥ log |V |),

which leads to the total running time shown in Theorem 3. ⊓⊔

References

1. J. M. Hendrickx, K. M. Johansson, R. M. Jungers, H. Sandberg and K. C. Sou: Efficient computations of a
security index for false data attacks in power networks, arXiv:1204.6174, 2012.

2. D. R. Karger: Random sampling in cut, flow, and network design problems. Mathematics of Operations
Research, 24 (1999), 583–614.

3. R. Klimmek and F. Wagner: A simple hypergraph min cut algorithm. Internal Report B 96-02, Bericht FU
Berlin Fachbereich Mathematik und Informatik, 1995.

4. J.-M. Lin and H.-Y. Pan: A static state estimation approach including bad data detection and identification
in power systems. Proceedings of the IEEE Power Engineering Society General Meeting, 1–7, 2007.

5. Y. Liu, P. Ning and M. K. Reiter: False data injection attacks against state estimation in electric power
grids. Proceedings of the 16th ACM Conference on Computer and Communications Security, 21–32, 2009.

6. S. G. Mallat and Z. Zhang: Matching pursuits with time-frequency dictionaries. IEEE Transactions on
Signal Processing, 3397–3415, 1993.

7. H. Nagamochi and T. Ibaraki: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM
J. Discrete Mathematics, 5 (1992), 54–66.

8. H. Nagamochi, K. Nishimura and T. Ibaraki: Computing all small cuts in an undirected network. SIAM J.
Discrete Mathematics, 10 (1997), 469–481.

9. J. B. Orlin: Max flows in O(nm) time, or better. Proceedings of the 45th Annual ACM Symposium on
Theory of Computing (STOC 2013), 765–774, 2013.

10. J. Pistorius and M. Minoux: An improved direct labeling method for the max-flow min-cut computation in
large hypergraphs and applications. International Transactions in Operational Research, 10 (2003), 1–11.

11. H. Sandberg, A. Teixeira and K. H. Johansson: On security indices for state estimators in power networks.
First Workshop on Secure Control Systems, (CPSWeek 2010), 2010.

12. K. C. Sou, H. Sandberg and K. H. Johansson: Electric power network security analysis via minimum cut
relaxation. Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference,
4054–4059, 2011.

13. K. C. Sou, H. Sandberg and K. H. Johansson: On the exact solution to a smart grid cyber-security analysis
problem. IEEE Transactions on Smart Grid, 4 (2013), 856–865.

14. H. H. Yang and D. F. Wong: Efficient network flow based min-cut balanced partitioning. IEEE Transactions
on Computer-Aided Design of Integrated Circuit and Systems, 15 (1996), 1533–1540.

15. R. D. Zimmerman, C. E. Murillo-Sánchez and R. J Thomas: MATPOWER: steady-state operations, plan-
ning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems,
26 (2011), 12–19.

13

Appendix

A Hypergraph Minimum Cut Algorithm

Here we describe an algorithm of Klimmek and Wagner [3] for finding a minimum cut in a
hypergraph in order to use for proofs in Section 5. Here let δN (U,W) := {e ∈ E | e ∩ U ̸=
∅, e ∩W ̸= ∅, c(e) > 0} for a hypernetwork N = ((V, E), c).

Algorithm 3 Hypergraph minimum cut algorithm

Input: A hypernetwork N = (H = (V, E), c).
Output: A cut U with κN (U) minimum.
1: K ← +∞, U ← ∅, N ′ ← N .
2: while |V | ≥ 2 do
3: W ← ∅.
4: while W ̸= V do
5: Take a node v ∈ argmaxu∈V \W

∑
{c′(e) | e ∈ δN ′({u},W)} and W ←W + v.

6: if |V \W | = 1 then
7: s← v.
8: end if
9: if W = V then
10: t← v.
11: end if
12: end while
13: if K > κN ′({t}) then
14: Update K ← κN ′({t}), U ← {v ∈ V | v was merged into t}.
15: end if
16: Renew N ′ by merging s and t into a new node.
17: end while

14

