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Abstract

Recently, coherent risk measure minimization was formulated as robust optimization and
the correspondence between coherent risk measures and uncertainty sets of robust optimiza-
tion was investigated. We study minimizing coherent risk measures under a norm equality
constraint with the use of robust optimization formulation. Not only existing coherent risk
measures but also a new coherent risk measure is investigated by setting a new uncertainty
set. The norm equality constraint itself has a practical meaning or plays a role to prevent
a meaningless solution, the zero vector, in the context of portfolio optimization or binary
classification in machine learning, respectively.

For such advantages, the convexity is sacrificed in the formulation. However, we show
a condition for an input of our problem which guarantees that the nonconvex constraint is
convexified without changing the optimality of the problem. If the input does not satisfy the
condition, we propose to solve a mixed integer optimization problem by using the ℓ1 or ℓ∞-
norm. The numerical experiments imply that our approach has the flexibility of modelling
that makes it possible to deal with various coherent risk measures as well as good performance
for portfolio optimization and binary classification.

1 Introduction

Uncertainty is an inevitable feature of many decision-making environments. Managers, profes-
sionals, and others need to make decisions to optimize a system with incomplete information
and considerable uncertainty. To formulate optimization problems that are defined by uncer-
tain inputs, it is important to define a risk that the concerned system has. One often regards
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uncertain inputs of the system as random variables and uses the expected value or the variance
of uncertain costs involved in a decision as a risk measure.

Artzner et al. [1] presented an axiomatic definition of risk measures satisfying four natural
properties and termed such risk measures coherent. The coherent risk measure has reasonable
properties such as “sub-additivity”, which implies that diversification leads to less risk. A
popular example of a coherent risk measure is conditional value-at-risk (CVaR). Rockafellar and
Uryasev [13, 14] proposed to minimize the CVaR for optimizing a portfolio so as to reduce the
risk of high losses. Ruszczynski and Shapiro [15] considered optimization problems involving
convex risk measures (which include coherent risk measures) and developed theoretical works
on the optimality and duality theorem for those problems.

Robust optimization (RO) is another approach for optimization under uncertainty. The
objective of robust optimization models and algorithms is to obtain solutions that are guaran-
teed to perform well (in terms of feasibility or near-optimality) for all possible realizations of
the uncertain input parameters. The range of possible realizations is given as a set U called
uncertainty set. Recently, Bertsimas and Brown [2] and Natarajan et al. [11] independently
formulated coherent risk measure minimization as robust optimization and showed the corre-
spondence between coherent risk measures and uncertainty sets U .

In this paper, we consider minimizing a coherent risk measure under a norm equality con-
straint with the use of robust optimization formulation. Not only well-known coherent risk
measures but also a new coherent risk measure is investigated by setting a new uncertainty set
U in numerical experiments. Concretely, a coherent risk measure is minimized with respect to
a decision variable v under a norm equality constraint (e.g., ‖v‖ = c for a positive value c).
The concerned uncertain optimization problems stem from classification in machine learning and
portfolio optimization in finance. The norm equality constraint itself has a practical meaning in
the context of portfolio optimization and it also plays a role to prevent the meaningless solution
v = 0 in the context of classification in machine learning. For such advantages, the convexity is
sacrificed in the formulation. However, we show a condition of c which guarantees that ‖v‖ = c
is convexified to ‖v‖ ≤ c without changing the optimality of the problem. If c satisfies the
condition, we can solve a convex problem with ‖v‖ ≤ c for the original problem.

When c does not satisfy the condition, a nonconvex optimization problem including ‖v‖ = c
has to be solved. We reformulate a coherent risk minimization problem including an ℓ1 or
ℓ∞-norm constraint as a mixed integer optimization (MIO) problem.

In portfolio optimization, the norm-constraint model has recently been studied by various
researchers. DeMiguel et al. [7] used variance as the risk measure in the norm-constrained
portfolio optimizations with various types of norms (note that variance is not coherent), while
Gotoh and Takeda [9] used CVaR risk measure. Brodie et al. [5] incorporated an ℓ1-norm penalty
on the portfolio decision vector into the traditional Markowitz portfolio optimization model
in order to encourage sparse portfolios. Our portfolio optimization model which minimizes a
coherent risk measure under an ℓp-norm constraint can be regarded as a general model, compared
with these existing portfolio models.

As a common source of nonconvexity in practical portfolio optimization problems, Stubbs and
Vandenbussche [18] have referred to leverage requirement in addition to threshold constraints
on the holdings or trades. Though they recommended that such constraints be left out of
analyses because there is no theory to support the required optimality conditions, we can obtain
a global optimal solution for nonconvex portfolio optimization including leverage requirement
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by reformulating it as an MIO formulation.
For classification in machine learning, loss functions (measures of misclassification) to be

minimized were recently related to financial risk measures. For example, Xu et al. [22] proposed
a comprehensive robust classification model that uses a discounted loss function depending on
realized data and investigated the relationship between comprehensive robustness and convex
risk measures. Takeda and Sugiyama [20] showed that binary classification models such as ν-
SVM [16] and its extended model, Eν-SVM [12], minimize the CVaR of margin distribution.
ν-SVM has the ℓ2-norm constraint ‖v‖2 ≤ c, whereas Eν-SVM has the nonconvex one ‖v‖2 = c.
Goto et al. [10] extended the CVaR-based classification methods to those based on coherent risk
measures such as the mean absolute semi-deviation (MASD). They used the ℓ2 norm for ‖v‖p
and proposed a local solution method for the resulting problem including ‖v‖2 = c. If we use the
ℓ1 or ℓ∞ norm for ‖v‖p, our MIO formulation gives a global optimal solution for the classification
model minimizing a coherent risk measure. The ℓ1-norm constraint also contributes to feature
selection that analyzes the impact of its features on the model.

We report computational results in the context of portfolio optimization and machine learn-
ing that demonstrate that

a) the approach leads to a new coherent risk minimization model by preparing a new set U
with the use of, e.g., a Bregman divergence;

b) it leads to improved out-of-sample performance in a machine learning context, and moreover,
in the convex case where ‖v‖1 ≤ c or ‖v‖∞ ≤ c, the computational time is smaller than
existing machine learning approach using the ℓ2-norm constraint;

c) it shows flexibility of the proposed approach to model side constraints as well as integrality
considerations and leads to improved out-of-sample performance in a portfolio optimization
context.

The paper is organized as follows. Section 2 presents robust optimization formulation for co-
herent risk minimization under a norm equality constraint. Section 3 provides MIO formulations
using the ℓ1 or ℓ∞ norm for the norm constraint, and Section 4 shows a condition for reducing
our problem to a convex problem without changing the optimality of the problem. Our model
is used for portfolio optimization or binary classification in Section 5 and the performance of
our model is compared against those of popular portfolio models and machine learning models
in Section 6. Section 7 concludes the paper.

2 Robust Optimization Formulation for Coherent Risk Mini-

mization

2.1 Coherent Risk Measure

Consider a random variable z̃ in IRn. z̃ could denote the returns of the assets in portfolio
optimization, and it also denotes the feature vector for classification in machine learning. We
restrict our attention to the space V defined as an affine combination of the random variables z̃
by following [2, 11]:

V := {ṽ : ∃v such that ṽ = z̃⊤v}.
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Definition 1. [1] A function µ : V → IR that satisfies the following four axioms for all random
variables ṽ, w̃ ∈ V is called a coherent risk measure.

• monotonicity: if ṽ ≥ w̃, then µ(ṽ) ≤ µ(w̃).

• translation invariance: if a ∈ IR, then µ(ṽ + a) = µ(ṽ)− a.

• subadditivity: µ(ṽ + w̃) ≤ µ(ṽ) + µ(w̃).

• positive homogeneity: If λ ≥ 0, then µ(λṽ) = λµ(ṽ).

2.2 Coherent Risk Measure Minimization

For a coherent risk measure µ and a random variable z̃ in IRn, we consider optimizing over
coherent risk measures:

min
‖vs‖p=c,v∈V

µ(z̃⊤v), (1)

where V is a convex set. Let S be a subset of the indices {1, . . . , n} of variables v ∈ IRn and
vs ∈ IRn′

(0 ≤ n′ ≤ n) denotes a subvector of v ∈ IRn corresponding to the indices of S. ‖ · ‖p
denotes the ℓp norm (p ≥ 1). Let a constant c > 0 to avoid the case of vs = 0 and, moreover,
we assume the following condition for c.

Assumption 1. c (> 0) of (1) satisfies

min
v∈V

‖vs‖p ≤ c ≤ max
v∈V

‖vs‖p

so that (1) is feasible.

It is well-known that any coherent risk measure can be equivalently described in terms of the
worst-case expectation over a family of distributionsQ, and therefore, coherent risk minimization
problem (1) can be written as follows (see, e.g., representation theorem for coherent risk measures
in [1]):

min
‖vs‖p=c,v∈V

max
q∈Q

IEq(−z̃⊤v), (2)

where IEq(ũ) denotes the expectation of the random variable ũ under q. (2) is furthermore
equivalent to the robust optimization problem with some convex set U corresponding to Q:

min
‖vs‖p=c,v∈V

max
z∈U

− z⊤v. (3)

in both cases of the finite probability space for z̃ (see [2]) and more general probability space
for z̃ (see [11]). For simplicity of the discussion, we assume U is bounded so that (3) has an
optimal solution under Assumption 1.

Here we assume finite probability space for z̃ by following [2]. Denote the support of z̃ by
Z = {z1, . . . ,zm} and define the matrix form Z = [z1, . . . ,zm]. We assume p̂i = P (z̃ = zi) as
a reference probability. Note that p̂ ∈ ∆m, where ∆m = {q ∈ IRm : e⊤q = 1, q ≥ 0} and e is
the all-one vector. Theorem 3.1 of [2] shows a relation between Q of (2) and U of (3) as

U = conv({Zq : q ∈ Q}), or (4)
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Q = {q ∈ ∆m : Zq ∈ U} if U ⊆ conv(Z),

where conv means the convex hull of a set. The main interest of this paper is in deriving
coherent risk optimization models (3) for finance or machine learning applications by setting
U appropriately. We will show later how to assume U and how to deal with the nonconvex
constraint ‖vs‖p = c in (3).

2.3 Uncertainty Sets U Corresponding to Coherent Risk Measures

Theorem 3.1 of [2] implies that if µ is coherent, the corresponding Q to µ leads to µ(z̃⊤v) =
maxz∈U −z⊤v with the use of U of (4). Theorem 4 of [11] similarly shows that for a coherent
risk measure, there exists U such that U ⊆ conv(Z). Moreover, the theorem mentions that the
inverse holds as well, i.e. the risk measure µ(z̃⊤v) defined by maxz∈U −z⊤v with a convex set
U ⊆ conv(Z) is coherent. In other words, the theorem provides a way of making a risk measure
corresponding to U coherent by replacing U by U ∩ conv(Z). We will show a new coherent risk
measure by preparing a set U satisfying U ⊆ conv(Z) with the use of a Bregman divergence in
Example 4 and investigate the performance of portfolio models based on minimizing the new
coherent risk measure in numerical results.

The following examples show examples of U derived from probability sets Q and confirm
theorems of [2, 11] for such U . Note that when Q ⊆ ∆m, U constructed by (4) satisfies the
condition of coherent risk measures, U ⊆ conv(Z).

Example 1 (Scenario-based Set). We consider the coherent risk measure generated by

Q = conv({q1, . . . , qk}),

where qi ∈ ∆m. Then the corresponding uncertainty set is U = conv({Zq1, . . . ,Zqk}).

Example 2 (Conditional Value-at-Risk (CVaR)). The coherent risk measure known as CVaR
has the generating family Q = {q : q ∈ ∆m, q ≤ p̂

ν } for the given p̂. Here let ν be a parameter
that takes the value in (0, 1]. Q can be regarded as the uncertainty distribution set for p̂ because
Q is the set of probabilities with center at p̂. From (4), we get

U = conv({Zq : q ∈ Q}) = {
∑

i

qizi : q ∈ ∆m, q ≤ p̂

ν
}. (5)

Note that the size of U is monotonically decreasing with respect to ν (see (a) in Figure 1). By
taking dual to the inner problem in (3), we have the following problem equivalent to (3):

min
v∈V,α,ξ

α+
1

ν

m∑

i=1

p̂iξi

s.t. ξi + z⊤
i v + α ≥ 0, i = 1, . . . ,m, ξ ≥ 0, ‖vs‖p = c,

(6)

which minimizes the CVaR defined in the discrete distribution {−z⊤
1 v, . . . ,−z⊤

mv}.
When ν = 1, we have Q = {p̂}. Then U = {∑m

i=1
p̂izi}, and µ(z̃⊤v) is equivalent to the

expectation of −z⊤
i v, that is,

∑m
i=1

p̂i(−z⊤
i v).

When ν is sufficiently close to 0, we have Q = {q ∈ ∆m} = conv({e1, . . . ,em}), where ei is
the ith unit coordinate vector. Then U = conv(Z) and µ(z̃⊤v) is equivalent to the worst-case
scenario of −z⊤

i v, that is, maxi=1,...,m(−z⊤
i v).
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(a) conditional value−at−risk (CVaR)
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(b) one−sided moments (MASD): r=1
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(c) one−sided moments: r=2
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(d) Bregman Divergence (squared Mahalanobis distance)
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Figure 1: Uncertainty sets U for several risk measures. The plots • and + indicate data points
with the label “+1” and “-1”, respectively, for binary classification (see Section 5.2).

Example 3 (One-sided Moments). Consider the coherent risk measure:

µ(z̃⊤v) = −IEp̂(z̃
⊤v) + λ[IEp̂([−z̃⊤v + IEp̂(z̃

⊤v)]+)r]1/r, where [a]+ = max{a, 0},

represented by the families of measures

Q = {q : qi = p̂i(1 + λ(ui − u⊤p̂)), 0 ≤ u, ‖u‖r̃ ≤ 1} (7)

for r ≥ 1, 0 ≤ λ ≤ 1 and r̃ = r/(r− 1). When r = 1 (i.e., r̃ = ∞), the risk measure is known as
mean absolute semi-deviation (MASD). Q coincides with p̂ when λ = 0 and it is monotonically
increasing with respect to λ (see (b) and (c) in Figure 1). It is known that when λ ∈ [0, 1], the
risk measure is coherent (see [8]). The corresponding uncertainty set U is described as

U = {z : z = z̄ + λ(ZPu− (u⊤p̂)z̄), 0 ≤ u, ‖u‖r̃ ≤ 1},

where z̄ is the mean for Z and P is the diagonal matrix with diagonal entries p̂. λ such as λ > 1
may leads to an unacceptable set of probabilities Q, since some of q ∈ Q include negative valued
components. Therefore, to make U larger by increasing λ to more than 1, it may be reasonable
to add q ≥ 0 to Q of (7), though the modified Q changes the type of concerned risk measures.
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Example 4 (Bregman Divergence). Here we show a new coherent risk measure by preparing
a set U satisfying U ⊆ conv(Z) with the use of a Bregman divergence. Let F : Ω → IR be a
continuously-differentiable real-valued and strictly convex function defined on a closed convex set
Ω. The Bregman distance associated with F for points, p̂ and q ∈ Ω, is the difference between
the value of F at point q and the value of the first-order Taylor expansion of F around point p̂
evaluated at point q:

Dp
F (q, p̂) = F (q) − F (p̂)−∇F (p̂)⊤(q − p̂).

As special cases of F , we can use

Squared Euclidean: Dp
F (q, p̂) = ‖q − p̂‖2 generated by F (x) = ‖x‖2

Squared Mahalanobis: Dp
F (q, p̂) =

1

2
(q − p̂)⊤M(q − p̂) generated by F (x) = 1

2
x⊤Mx

Kullback-Leibler: Dp
F (q, p̂) =

∑m
i=1

qi

(
ln qi

p̂i

)
generated by F (x) =

∑
xi lnxi.

Here, let z̄ and Σz be the mean and the covariance matrix, respectively, for Z. We assume that
Σz is invertible and define M of the squared Mahalanobis distance by M = Z⊤Σ−1

z Z. Here we
define

Q = {q ∈ ∆m : Dp
F (q, p̂) ≤ C} = {q ∈ ∆m :

1

2
(Zq − z̄)⊤Σ−1

z (Zq − z̄) ≤ C}

with using some C > 0. Then the corresponding U is described as follows:

U = {Zq : q ∈ ∆m,
1

2
(Zq − z̄)⊤Σ−1

z (Zq − z̄) ≤ C}

= conv(Z) ∩ {z :
1

2
(z − z̄)⊤Σ−1

z (z − z̄) ≤ C}. (8)

U is the intersection of the convex hull of Z and the ellipsoid with center z̄ and shape described
by Σ−1

z (see (d) in Figure 1).
Note that the uncertainty set which consists of a quadratic constraint in (8):

Û = {z :
1

2
(z − z̄)⊤Σ−1

z (z − z̄) ≤ C}. (9)

The robust optimization (3) with the uncertainty set Û reduces to

min
‖vs‖p=c,v∈V

−z̄⊤v + α
√

v⊤Σzv,

where α =
√
2C. It is known as a classical mean-standard deviation portfolio allocation problem

because −z̄⊤v and
√

v⊤Σzv are the expected value and the standard deviation of the random
portfolio return −z̃⊤v. The mean-standard deviation risk measure is not a coherent risk measure,
but U = conv(Z) ∩ Û of (8) leads to a coherent risk measure because U ⊆ conv(Z) (see [11]).

3 Integer Programming Formulation for ℓ1/ℓ∞-Norm Problem

We showed several examples of Q for coherent risk minimization problem (2) in the previous
section. Most of them can be described in a linear representation or conic representation:

Qp = {q ∈ ∆m : Aq ≤ b} or Qc = {q ∈ ∆m : ‖Bq‖p′ ≤ 1} (10)
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except for Kullback-Leibler distance in Example 4. We focus on Qp and Qc and deal with the
resulting coherent risk minimization problems (2). When U is defined for Q = Qp as

U = {Zq : q ∈ ∆m,Aq ≤ b},

(3) reduces to
min

v∈V,α,ξ
α+ b⊤ξ

s.t. Z⊤v + αe+A⊤ξ ≥ 0, ξ ≥ 0, ‖vs‖p = c.
(11)

When U is defined for Q = Qc as

U = {Zq : q ∈ ∆m, ‖Bq‖p′ ≤ 1},

(3) reduces to
min

v∈V,α,ξ
α+ ‖ξ‖q′

s.t. Z⊤v + αe−B⊤ξ ≥ 0, ‖vs‖p = c.
(12)

‖ · ‖q′ indicates the dual norm of the ℓp′ norm ( 1

p′ +
1

q′ = 1).
(11) and (12) are difficult to solve due to a nonconvex constraint: ‖vs‖p = c. Here we will

use the ℓ1 or ℓ∞ norm for ‖vs‖p = c and formulate (11) and (12) as solvable problems, mixed
integer optimization (MIO) problems. For that purpose, we introduce new binary variables u

and new nonnegative variables v+,v− which replace v. On condition that at least either of v+i
and v−i must be zero for every element i ∈ S, we identify v and v+ − v− and describe ‖vs‖1 by∑

i∈S(v
+

i + v−i ). Then we reformulate (11) with the ℓ1 norm as follows:

min
v+,v−,α,ξ,u

α+ b⊤ξ

s.t. Z⊤(v+ − v−) + αe+A⊤ξ ≥ 0, ξ ≥ 0, (v+ − v−) ∈ V,∑
i∈S(v

+

i + v−i ) = c, 0 ≤ v+i ≤ cui, 0 ≤ v−i ≤ c(1− ui),
ui ∈ {0, 1}, i ∈ S.

(13)

When U of (3) is conic representable, the robust optimization problem (12) with the ℓ1 norm
results in a conic integer programming problem:

min
v+,v−,α,ξ,u

α+ ‖ξ‖q′

s.t. Z⊤(v+ − v−) + αe−B⊤ξ ≥ 0, (v+ − v−) ∈ V,∑
i∈S(v

+

i + v−i ) = c, 0 ≤ v+i ≤ cui, 0 ≤ v−i ≤ c(1 − ui),
ui ∈ {0, 1}, i ∈ S.

We can also transform (11) and (12) into MIO problems in the case of the ℓ∞-norm constraint
‖vs‖∞ = c. As well as the ℓ1-norm case, we identify v and v+ − v− on condition that at least
either of v+i and v−i must be zero for every element i ∈ S. The constraint ‖vs‖∞ = maxi∈S |vi| =
c requires that v+i + v−i = c holds at least one of i ∈ S. Therefore, it can be described by
v+i + v−i ≥ cri with the use of additional binary variables ri ∈ {0, 1} for i ∈ S and

∑
i∈S ri ≥ 1.

As a result, (11) with the ℓ∞ norm can be reformulated as

min
v+,v−,α,ξ,u,r

α+ b⊤ξ

s.t. Z⊤(v+ − v−) + αe +A⊤ξ ≥ 0, ξ ≥ 0, (v+ − v−) ∈ V,
v+i + v−i ≥ cri, ri ∈ {0, 1}, i ∈ S, ∑

i∈S ri ≥ 1,
0 ≤ v+i ≤ cui, 0 ≤ v−i ≤ c(1− ui), ui ∈ {0, 1}, i ∈ S.

(14)
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The ℓ∞-norm version of (12) is similarly formulated as an MIO problem.
For the ℓ2 norm, we can not reformulate (3) into a solvable problem. However, Theorem 1 in

the next section shows a condition for reducing the nonconvex problem (3) to a convex problem
for any ℓp norm. It implies that if c is smaller than some threshold (that is defined by solving
a convex optimization problem), we can obtain an optimal solution of (3) by solving a convex
relaxation problem of (3) whose norm constraint is ‖vs‖p ≤ c. Before solving (3), it might be
good to check whether (3) satisfies the condition. If c of (3) is larger than the threshold, we
need to apply nonconvex optimization techniques to solve (3). Indeed, if (11) with the ℓ1 norm
satisfies the condition, (11) equivalently reduces to the convex relaxation problem of (13) where
the constraints involving the integer variables ui ∈ {0, 1} are all removed from (13) and the
constraint ‖vs‖1 = c is simply replaced by

∑

i∈S

(v+i + v−i ) ≤ c.

4 Condition for Convexifying a Norm Constraint

(3) is a nonconvex programming problem due to the norm constraint ‖vs‖p = c. However, we
can replace the nonconvex constraint by a convex one ‖vs‖p ≤ c without changing the optimality
if (3) satisfies a condition. We investigate the condition in this section.

4.1 Arbitrary Convex Set for V

Here we assume an arbitrary convex set for V in (3). Note that U constructed by (4) is a closed
convex set. If the condition of the following theorem is satisfied, it is sufficient to solve a convex
problem for achieving an optimal solution of nonconvex (3).

Let v̂ and f̂ be, respectively, an optimal solution and the optimal value of the convex problem
if they exist:

inf
v∈V

max
z∈U

−z⊤v (15)

and define the norm-threshold for reducing (3) to a convex problem by

τ ≡ ‖v̂s‖p. (16)

If (15) is unbounded, let f̂ = −∞ and τ = ∞.

Theorem 1. Suppose that the parameter c of (3) satisfies c ≤ τ . If the optimal value of the
convex problem

min
‖vs‖p≤c,v∈V

max
z∈U

−z⊤v (17)

is larger than f̂ of (15) (this case happens in most cases), the optimal solution of (17) is also
optimal to (3).

Proof. Let v∗ be an optimal solution of (17) and remind that v̂ and f̂ are respectively an optimal
solution and the optimal value of (15) when (15) is bounded (we will consider the unbounded
case later). By the assumption of this theorem, the optimal value of (17) is larger than f̂ , that
is,

max
z∈U

(−z⊤v̂) < max
z∈U

(−z⊤v∗). (18)
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(17) is constructed by adding the constraint ‖vs‖p ≤ c to (15), and therefore, the optimal value of

(17) is larger than or equal to f̂ . The assumption deletes the possibility where two optimization
problems have the same optimal value. When (15) is unbounded, let v̂ be a feasible solution of
(15) satisfying (18).

To prove this theorem, it is sufficient to show ‖v∗
s‖p = c. Here we assume ‖v∗

s‖p < c on
contrary. Then we obtain

v(λ̃) ≡ λ̃v̂ + (1− λ̃)v∗

satisfying ‖v(λ̃)s‖p = c with some λ̃ ∈ (0, 1]. Note that v(λ̃) is a feasible solution of (3) and
(17). Moreover, we have

max
z∈U

−z⊤v(λ̃) ≤ λ̃max
z∈U

(−z⊤v̂) + (1− λ̃)max
z∈U

(−z⊤v∗) < max
z∈U

(−z⊤v∗),

where the strict inequality comes from (18). v(λ̃) is a better solution than v∗ to (17), which
contradicts the optimality of v∗.

For (3) with c > τ , the convex relaxation problem (17) will give v̂ as its optimal solution
because of τ = ‖v̂s‖p < c. Therefore, (17) can not give an optimal solution of (3).

4.2 Convex Cone K for V

For V of (3), we assume a special set, convex cone K, which includes K = IRn of binary
classification methods (see Section 5.2) and K = IRn

+ of long-only portfolio optimization (see
Section 5.1.2). In the case of V = K, as shown later in Remark 1, the threshold τ has only
two possible values (0 or ∞) when the optimal value (3) is nonzero. We can furthermore relate
the transferability test of (3), c ≤ τ , to a geometric condition for U . As a result, instead of
computing τ by (16), we can use another criterion such as the relative position of 0 to U in
order to check the transferability of (3) to the convex relaxation problem (17).

We deal with the following problem

min
‖vs‖p=c,v∈K

max
z∈U

−z⊤v (or min
‖vs‖p=c,v∈K

µ(z̃⊤v)). (19)

Lemma 1. Any optimal solution v∗ of the convex problem:

min
‖vs‖p≤c,v∈K

max
z∈U

−z⊤v (20)

satisfies ‖v∗
s‖p = c, i.e., (20) gives an optimal solution of (19), if and only if the optimal value of

(19) is negative. Moreover, any optimal v∗ of (20) satisfies ‖v∗
s‖p < c if and only if the optimal

value of (19) is positive.

Proof. We will focus on the first statement because we can prove the second one similarly. We
start with proving “if” part. If v∗ of (20) satisfies ‖v∗

s‖p < c on contrary, we will get

max
z∈U

−z⊤

(
cv∗

‖v∗
s‖p

)
< max

z∈U
−z⊤v∗

= min
‖vs‖p≤c,v∈K

max
z∈U

−z⊤v

≤ min
‖vs‖p=c,v∈K

max
z∈U

−z⊤v < 0,

(21)
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which contradicts the optimality of v∗.
Now we show that the inverse also holds true. If the optimal value of (19) is not negative,

then we have
min

‖vs‖p≤c,v∈K
max
z∈U

−z⊤v = min
‖vs‖p=c,v∈K

max
z∈U

−z⊤v ≥ 0,

which mean that v∗ = 0 is an optimal solution of the convex problem (20) but it violates
‖v∗

s‖p = c for c > 0. The optimal value of (20) is certainly negative.

Remark 1. We apply Theorem 1 to the case V = K. Then there are only two possible values (0
or ∞) for the threshold τ if the optimal value (19) is not zero. If (19) has the negative optimal
value, the optimal value of (15) goes −∞ and τ = ∞. In this case, c < τ always holds and
solving the convex problem (20) is sufficient for (19). On the other hand, when (19) has the
positive optimal value, an optimal solution of (15) is 0 and, therefore, τ = 0. In this case, c < τ
never holds and we have to deal with the nonconvex problem (19). We see that the claims of
Lemma 1 are consistent with Theorem 1.

In the following subsections, we relate the positivity (or negativity) of the optimal value of
(19) to a geometric condition to U .

4.2.1 K = IRn

We assume a special cone for K as K = IRn and relate the statements of Lemma 1 to a geometric
condition for U .

Theorem 2. These two statements hold:

i) 0 6∈ U if and only if any optimal solution of the convex problem (20) is optimal to (19).

ii) 0 is in the interior of U , i.e., 0 ∈ int(U) if and only if any optimal solution of the convex
problem (20) is not optimal to (19).

Proof. By Lemma 1, it is sufficient to show that the optimal value of (19) with K = IRn is
negative iff 0 6∈ U and that it is positive iff 0 ∈ int(U) for proving this theorem. We can prove
them by following the proof of Lemma 1 in [19], but to make our paper self-contained, we roughly
sketch the proof.

Suppose that 0 6∈ U . The simplest separation theorem shows that there is a hyperplane (e.g.,
{z : −z⊤v̂ = c̄}) that separates convex U and {0} strictly, i.e.,

∃v̂ 6= 0 s.t. − z⊤v̂ < c̄ < −0⊤v̂ = 0 for ∀z ∈ U ,

which implies maxz∈U −z⊤v̂ < 0. This proves the negativeness of the optimal value of (19)
with K = IRn. When 0 ∈ int(U), any v (6= 0) obviously achieves maxz∈U −z⊤v > 0, which
implies the positiveness of (19). Finally, we think of the case that 0 exists in the boundary
of U , i.e., 0 ∈ bd(U). Then there exists a supporting hyperplane to U at 0, that leads to
minv 6=0 maxz∈U −z⊤v = 0. This implies the zero optimal value for (19) with K = IRn.

In the above, we have proved that the position of 0 relative to U determines the sign of the
optimal value of (19). By taking the contrapositive of the above statements, we can ensure that
the inverse statements also hold true, i.e., the position of 0 relative to U is determined from the
optimal value of (19).

11



Theorem 2 shows that if 0 6∈ U , it is enough to solve the convex optimization problem (20).
When we find that 0 ∈ int(U), we need to deal with (19) as a nonconvex problem. How can
we check the condition 0 6∈ U? The following example shows how to check 0 6∈ U when U is
described by (5) of Example 2.

Example 5. The uncertainty set (5) includes a parameter ν ∈ (0, 1], which controls the size
of the set. As ν becomes larger, U becomes smaller. When ν is sufficiently larger, U does not
include 0 and shrinks to {p̂} (see Figure 1 (a)). Therefore, when conv(Z) includes 0, we can
find a threshold ν̂ where U includes 0 in its boundary by solving the following linear programming
(LP) problem:

minφ,q φ
s.t.

∑
i qizi = 0, e⊤q = 1, 0 ≤ q ≤ φp̂.

(22)

We can compute ν̂ by ν̂ = 1

φ∗ from the optimal solution φ∗ of the above problem. If conv(Z) do
not include 0, set ν̂ to a sufficiently small positive value.

The minimized CVaR (19), equivalently (6), is decreasing with respect to ν. The minimized
CVaR is positive as far as ν < ν̂, and it is negative as far as ν > ν̂. When (19) with K = IRn

has U of (5) defined by ν > ν̂, it is sufficient to solve the convex relaxation problem (20) instead
of (19).

In machine learning methods, we need to solve (19) many times by changing the size (e.g., ν
in the above example) of U to achieve good prediction performance. Once we get the threshold
ν̂, it is enough to solve the convex problem (20) as far as ν is larger than ν̂. In that sense, ν̂
of (22) is more useful than τ of (16) as a criterion of the transferability of (19) to the convex
relaxation problem.

4.2.2 Convex Cone K

We assume a convex cone K for V . In this case, Theorem 2 is weaken as follows:

Theorem 3. If 0 ∈ int(U) holds, (20) does not give an optimal solution of (19). Moreover, if
(20) gives an optimal solution of (19), 0 6∈ U .

Proof. The first statement corresponds to “only if” in ii) and the second statement corresponds
to “if” in i) in Theorem 2 (in the case of general convex cones, the inverse does not necessarily
hold). For the inequality:

min
‖vs‖p=c

max
z∈U

−z⊤v ≤ min
‖vs‖p=c,v∈K

max
z∈U

−z⊤v, (23)

the condition 0 ∈ int(U) ensures the positivity of the left hand side problem, i.e., (19) with
K = IRn (see Lemma 1 and Theorem 2). Therefore, the optimal value of the right hand side
problem, (19), is also positive, for which Lemma 1 proves that (20) does not give an optimal
solution of (19).

Similarly, if (20) gives an optimal solution of (19), the optimal value of the right hand side
problem in (23) must be negative. Then the optimal value of (19) with K = IRn is also negative,
and therefore, we obtain the condition 0 6∈ U from Theorem 2.
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5 Applications of Norm-constrained Coherent Risk Minimiza-

tion

5.1 Portfolio Optimization

Portfolio optimization is a problem of determining a normalized weight vector v to make the
portfolio better than any other according to some criterion. As such a criterion, we can use a
coherent risk measure. We assume that z̃ is a random portfolio return vector and find the best
allocation v by minimizing a risk measure.

5.1.1 Portfolio Optimization of Hedge Funds

We consider the following portfolio selection problem:

min
‖v‖1=c,v∈V

µ(z̃⊤v), (24)

where V = {v : e⊤v = 1} and c is a positive value larger than 1. The use of borrowed capital
to increase the potential return of an investment is called leverage in finance. Leverage can be
regarded as the financial risk relative to the invested capital. The constraint ‖v‖1 = c together
with v ∈ V controls the leverage ratio, described by

∑
i∈I |vi|∑
i∈I vi

=
∑

i∈I+

vi −
∑

j∈I−

vj = ‖v‖1,

where I indicates the index set of all assets, I+ indicates the index set of assets in long positions,
i.e., vi ≥ 0 for i ∈ I+, and I− indicates the index set of assets in short positions, i.e., vj < 0 for
j ∈ I−. The first equality in the above equations is due to the constraint e⊤v = 1. Therefore,
the constraint ‖v‖1 = c of (24) requires that the leverage ratio equals to c. The constraint
‖v‖1 = c together with e⊤v = 1 can be rewritten as

∑

i∈I+

vi =
c+ 1

2
and

∑

i∈I−

|vi| =
c− 1

2
.

The above equations limit the total long holdings and total short holdings. Therefore, the
nonconvex leverage constraint has a role of controlling total long and short holdings.

As a common source of nonconvexity in practical portfolio optimization problems, [18] have
referred to leverage requirement in addition to threshold constraints on the holdings or trades.
However, at the same time, it recommended that such constraints be left out of analyses because
there is no theory to support the required optimality conditions. If we formulate the nonconvex
problem as an MIO formulation (e.g., (13)) and the resulting MIO has the proper problem
size for a highly optimized state-of-the-art MIO solver such as CPLEX, we can obtain a global
optimal solution for the nonconvex portfolio allocation problem including leverage requirement.
Especially when the nonconvex problem (3) satisfies a criterion of the transferability to the
convex relaxation problem, it is sufficient to solve the convex problem (17).

The convex relaxation problem (17) equals to the norm-constraint portfolio optimization
model:

min
v∈V

µ(z̃⊤v) s.t. ‖v‖p ≤ c. (25)
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The model (25) has recently been studied by various researchers. DeMiguel et al. [7] used
variance as the risk measure in the norm-constrained portfolio optimizations with various types
of norms (note that variance is not coherent), while Gotoh and Takeda [9] used CVaR risk
measure. Brodie et al. [5] incorporated an ℓ1-norm penalty on the portfolio decision vector into
the traditional Markowitz portfolio optimization model in order to encourage sparse portfolios.

The constraint ‖v‖p ≤ c is meaningful when the inequality constraint becomes active at
the optimality. In that sense, we can say that the proposed model (1) embraces existing norm-
constraint portfolio optimization models minimizing coherent risk measures.

To make the portfolio optimization model (24) more realistic, we will add constraints that
set bounds on the holdings within each market sector to V . There are major sectors of the stock
market. For example, the constituents of TOPIX (Tokyo Stock Price Index) are divided into the
17 categories1 according to Securities Identification Code Committee (SICC). Since each sector
contains several related industries, it is reasonable to limit the holdings or trades on each sector
G1, . . . , GK . For that purpose, we add the following constraints to V :

−γ ≤
∑

i∈Gk

vi ≤ γ, ∀k = 1, . . . ,K,

for a positive parameter γ > 0.

5.1.2 Long-only Portfolio Optimization

We can describe a long-only portfolio optimization model which minimizes a coherent risk mea-
sure as (24), where V = IRn

+ := {v ∈ IRn : v ≥ 0} and c = 1. This problem is essentially a
convex problem because ‖v‖1 = 1 can be replaced by e⊤v = 1 under the condition that v ≥ 0

in V . However, to make the long-only portfolio optimization model fit to the formulation (3),
we have described the model by (24).

5.2 Binary Classification Method in Machine Learning

This section shows binary classification models formulated by minimizing coherent risk measures
and introduces some results of [19], which formulated a popular soft-margin classification model
known as ν-SVM [16] and its extended model [12] by (3) with using U of (5).

We will introduce additional notations before getting to the main point. Let X ⊂ IRn−1 be
the input domain and {+1,−1} be the set of the binary labels. Suppose that we have samples,

(x1, y1), . . . , (xm, ym) ∈ X × {+1,−1}.

Let M+ be the index set of xi, i = 1, . . . ,m, with the label +1 and M− be the index set of xi,
i = 1, . . . ,m, with the label −1. We compute (w, b) for a decision function h(x) = w⊤x + b
using these samples and use h(x) to predict the label for a new input point x̂ ∈ X . If h(x̂) is
positive (resp. negative), the label of x̂ is predicted to be +1 (resp. −1). Here we focus on linear
learning models using linear functions h(x), but the discussions in this section can be directly

1Those indices are “Foods”, “Energy Resources”, “Construction & Materials”, “Raw Materials & Chemicals”,
“Pharmaceutical,” “Automobiles & Transportation Equipment”, “Steel & Nonferrous Metals”, “Machinery”,
“Electric Appliances & Precision Instruments”, “IT & Services, Others”, “Electric Power & Gas”, “Transportation
& Logistics”, “Commercial & Wholesale Trade”, “Retail Trade”, “Banks”, “Financials (Ex Banks)” and “Real
Estate”.
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applicable to non-linear kernel models [17] using nonlinear maps φ(x) from original space to
high dimensional space.

Let the support Z of z̃ consist of zi =

(
yixi

yi

)
, i = 1, . . . ,m, and let the variable vector v

consist of two elements w and b as v =

(
w

b

)
. Now we consider machine learning models which

minimize several kinds of coherent risk measures by assuming Q of Example 1 or Example 2.
Suppose that V = IRn and ‖vs‖2 = ‖w‖2 = 1 by setting vs = w, p = 2 and c = 1 for (3). Then
we obtain

min
‖w‖2=1

maxq −(
∑

i∈M+

qixi −
∑

j∈M−

qjxj)
⊤w

s.t. q ∈ Q,
∑

i∈M+

qi =
∑

j∈M−

qj (26)

from (3) with U of (4) by using the optimality condition for b. Section 4.1.4 in [3] discusses
Fisher’s linear discriminant (FLD) that maximizes −(x+−x−)

⊤w in terms of w ∈ {w : ‖w‖2 =
1} for sample means x+, x− of each class so that two classes are well separated. (26) can be
regarded as a robust variant of the FLD under distribution uncertainty; uncertain sample means
x+, x− are described as

∑
i∈M+

qixi and
∑

j∈M−
qjxj, respectively. In (3), U means the area

where uncertain x+ − x− can move.
Figure 1 shows the set U of (4) as

U = {
∑

i∈M+

qixi −
∑

j∈M−

qjxj : q ∈ Q,
∑

i∈M+

qi =
∑

j∈M−

qj}

by changing the size parameter of Q in addition to plotting xi, i ∈ M+, by “•” and xj , j ∈ M−,
by “+”. The uncertain sample means,

∑
i∈M+

qixi and
∑

j∈M−
qjxj , can coincide with some

q ∈ Q when 0 ∈ U . Remind that (3) is essentially nonconvex when 0 ∈ int(U), while (3) reduces
to the convex problem (17) when 0 6∈ U .

Scenario-based Set: As in Example 1, we consider the coherent risk measure generated by

Q = conv({e1, . . . ,em}) = ∆m.

Then from (3), we get
min

‖w‖2=1,b
max
z∈U

− z⊤v, (27)

where U = conv(Z). The problem is rewritten as

max
w,b

min
i=1,...,m

yi(x
⊤
i w + b)

‖w‖2
,

which is a formulation of hard margin SVM [6].
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Conditional Value-at-Risk: We consider the CVaR, which is generated by Q = {q : q ∈
∆m, q ≤ 1

νme} with parameter ν ∈ (0, 1] as in Example 2 (p̂ is set to 1

me and the ℓ2 norm is
adopted). The problem (6) can be written as

minw,b,ξ,α να+ 1

m

∑m
i=1

ξi
s.t. yi(x

⊤
i w + b) ≥ −α− ξi, i = 1, . . . ,m,

ξ ≥ 0, ‖w‖2 = 1,
(28)

that is a formulation of Eν-SVM [12] (see [19]). The convex relaxation problem of (28), which
has ‖w‖2 ≤ 1 instead of ‖w‖2 = 1, is corresponding to one of popular soft-margin classification
models, ν-SVM, proposed by [16].

6 Numerical Results

All the numerical experiments in this paper were performed on an Intel Core i7 2.3 GHz personal
computer with 8GB of physical memory using Matlab (R2011b) with IBM ILOG CPLEX 12.

6.1 Portfolio Optimization of Hedge Funds

We consider the hedge funds portfolio optimization problem discussed in Section 5.1.1:

minv µ(z̃⊤v),
s.t. ‖v‖1 = c, e⊤v = 1, − γ ≤

∑
i∈Gk

vi ≤ γ, k = 1, . . . ,K,
(29)

for c > 0, γ > 0. Let Gk be the set of indices for each sector, k = 1, . . . ,K. Note that the
parameter γ ≥ 1/K since the constraints of (29) lead to

1 =
K∑

k=1

∑

i∈Gk

vi ≤
K∑

k=1

γ = Kγ.

We evaluate the effect of constraints ‖v‖1 = c and −γ ≤
∑

i∈Gk
vi ≤ γ, ∀k, in this section.

We randomly selected n stocks from the stocks listed in the Nikkei 225 index and used
historical asset return data for z̃ from monthly and weekly return data of those stocks. The
monthly data set consists of returns of n companies during the 270 consecutive months between
May 1987 and October 2009, whereas the weekly data set consists of returns of the n companies
during the 1178 consecutive weeks from April 12, 1987 to November 1, 2009. Each company has
an industry code (from 1 to 17) determined by SICC. If n stocks are chosen from all industries,
K equals to 17.

We designed a portfolio by a global solution to ℓ1-norm portfolio model (29) using historical
data (time window of m length) for z̃. Here we set Z = {ẑt, . . . , ẑt+m−1} and define the matrix
form Z = [ẑt, . . . , ẑt+m−1] for m = 120 (10 years) consecutive periods from the monthly data
set or for m = 150 (almost 3 years) consecutive periods from the weekly data set by shifting the
starting time t of the window. The dimension of ẑt is (%/month) or (%/week) for all t. Let v̂t
be a decision vector learned from the training (in-sample) dataset, ẑt, . . . , ẑt+m−1, of length m.
We evaluated the test (out-of-sample) expected return ẑ⊤

t+mv̂t for the next-step sample ẑt+m.
This procedure was repeated for t = 1, . . . , T (T = 150 for the monthly data set and T = 1028
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for the weekly data set). The mean of the training expected returns (training.ER) over T of
time was computed as

1

T

T∑

t=1

{
1

m

m−1∑

s=0

ẑ⊤
t+sv̂t

}
.

The mean of the test expected returns (test.ER):

1

T

T∑

t=1

ẑ⊤
t+mv̂t

was employed as performance measures. We also calculated the measure of risk-adjusted per-
formance known as Sharpe ratio:

SR = (test.ER)/σ

using the mean of test expected returns and their standard deviation σ. The turnover of the
portfolio:

turnover =
1

T − 1

T∑

t=2

n∑

j=1

∣∣∣∣∣v̂t,j −
1 + ẑt+m,j

1 + ẑ⊤
t+mv̂t−1

v̂t−1,j

∣∣∣∣∣

is another performance measure.
1+ẑt+m,j

1+ẑ⊤

t+mv̂t−1
v̂t−1,j indicates the portfolio weight before rebal-

ancing but at time t, whereas v̂t,j is the desired portfolio weight at t (after rebalancing). The
portfolio turnover measures how frequently assets in a portfolio are bought and sold. The
turnover is preferably small, while large test.ER and large SR are preferred.

6.1.1 Minimizing CVaR

Table 1 compares proposed model (29) to “NormConst” and “NoNormConst” using the CVaR
risk measure µ for monthly historical dataset consisting of n = 10, 20 and 30 assets. “Norm-
Const” means the portfolio model where industry constraints −γ ≤ ∑

i∈Gk
vi ≤ γ, ∀k, are

ignored from (29), and “NoNormConst” means the model where the norm constraint ‖v‖1 = c
is ignored from (29) as well as the above industry constraints. The types K of industries of
n = 10, 20 and 30 assets were 8, 11 and 14, respectively. We set ν in U of (5) for the CVaR risk
measure to ν = 0.2, γ of (29) to its almost lower bound as γ = 1/K+ǫ (ǫ is a small value so that
1/K was rounded to the second decimal place) and select c of “NormConst” and (29) during
running the algorithm in the following way. Given training (in-sample) dataset (time window of
m length), we obtained solutions of each model with different c (c = 1.1, 1.2 and 1.3) using first
5/6 of samples and found the suitable parameter value c by the one which attained the maxi-
mum expected returns for the remaining 1/6 of samples. The portfolios of “NormConst” and
(29) were obtained with such parameter values c. nonconv.ratio shows the ratio of nonconvex
problems that were solved among T = 150. In the case of n = 10, the nonconvex cases of the
ℓ1-norm constraint ‖v‖1 = c occurred for “NormConst” and (29), whereas in n = 20 and 30
datasets, the nonconvex cases did not occur. Indeed, the convexity thresholds τ , computed from
(16), were sufficiently large for n = 20 and 30 datasets, and therefore, the nonconvex constraint
was equivalently transformed to ‖v‖1 ≤ c. When nonconv.ratio equals to 0, “NormConst” is
exactly the same as the norm-constraint portfolio optimization model (25).
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Table 1: CVaR risk measure minimization for Nikkei monthly dataset

n = 10

nonconv.ratio training.ER test.ER var. SR turnover

NoNormConst - 0.3403 -0.0034 30.3403 -0.0006 0.1903
NormConst 0.2133 0.3242 0.1622 26.6234 0.0314 0.1326

Proposed (29) 0.8067 0.4282 0.4937 44.9360 0.0737 0.0969

n = 20

nonconv.ratio training.ER test.ER var. SR turnover

NoNormConst - 0.5675 0.1176 39.4722 0.0187 0.3564
NormConst 0 0.4187 0.1195 21.4081 0.0258 0.1537

Proposed (29) 0 0.4378 0.4607 31.7215 0.0818 0.1188

n = 30

nonconv.ratio training.ER test.ER var. SR turnover

NoNormConst - 0.8645 -0.3459 59.6936 -0.0448 0.7309
NormConst 0 0.5093 0.1525 22.7495 0.0320 0.1844

Proposed (29) 0 0.4646 0.3356 25.7000 0.0662 0.1273

Table 2: CVaR risk measure minimization for Nikkei weekly dataset

n = 10

nonconv.ratio training.ER test.ER var. SR turnover

NoNormConst - 0.0786 -0.0594 7.0436 -0.0224 0.0894
NormConst 0.1936 0.0684 -0.0522 6.8235 -0.0200 0.0770

Proposed (29) 0.2607 0.0792 0.0160 9.5446 0.0052 0.0478

n = 15

nonconv.ratio training.ER test.ER var. SR turnover

NoNormConst - 0.1029 -0.0703 7.4985 -0.0257 0.1626
NormConst 0.0010 0.0736 -0.0743 6.6197 -0.0289 0.0960

Proposed (29) 0.0068 0.0881 0.0365 8.8006 0.0123 0.0557

n = 20

nonconv.ratio training.ER test.ER var. SR turnover

NoNormConst - 0.1394 -0.0788 7.5242 -0.0287 0.2228
NormConst 0 0.0917 -0.0659 6.4888 -0.0259 0.1051

Proposed (29) 0 0.0886 0.0229 8.4467 0.0079 0.0690
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As the asset size n increases, training.ER becomes larger in all models. This is a reasonable
observation because more assets make it possible to attain the best portfolio fit to the given
datasets. However, such optimal portfolios with large n assets tend to be overfitting to the given
datasets and could not achieve good performance for new return in terms of test.ER. We can
also see the similar tendency for three models with n = 30. Indeed, our model had the best
performance in terms of test.ER, SR and turnover, though other two models achieved larger
training.ER especially for n = 30.

Table 2 compares proposed model (29) to “NormConst” and “NoNormConst” using the
CVaR risk measure µ for weekly historical dataset consisting of n = 10, 15 and 20 assets
with K = 8, 10 and 11 industries, respectively. The parameter settings are exactly the same
to those of numerical experiments with monthly datasets except for candidate values of c for
“NormConst” and (29): the best c was found among c = 1.05, 1.1 and 1.15. As well as numerical
experiments for monthly dataset, our model (29) achieved the best performance among three
models in terms of test.ER, SR and turnover.

6.1.2 Coherent and Non-coherent Risk Measure Minimization

We did similar numerical experiments for our model (29) using a new coherent measures µ
based on the Bregman divergence with squared Mahalanobis distance, shown in Example 4.
The corresponding uncertainty set U is given by (8), which is the intersection of the convex
hull of data points zi, i = 1, . . . ,m, and the ellipsoid with center z̄ =

∑
i zi/m and shape

described by the inverse of the covariance matrix Σz (see (d) in Figure 1). If we remove the
restriction of being the convex hull of data points from U of (8) and use the resulting set Û of
(9) as an uncertainty set U , the risk minimization problem (3) coincides with a classical mean-
standard deviation portfolio allocation problem. The mean-standard deviation risk measure is
not a coherent risk measure.

The parameter value C in (8) and (9) is fixed to n/20 because C is influenced by the
dimension n, different from ν of CVaR. We used the same parameter setting for γ and c of (29)
as used in the CVaR minimized portfolio model.

Tables 3 and 4 show the performance of portfolio allocation models based on the Bregman
divergence (coh.) and minimizing the mean-standard deviation (msd) for Nikkei monthly dataset
and Nikkei weekly dataset, respectively. Similarly to the CVaR minimized portfolio model, the
model (29) using the Bregman divergence achieved the best performance among three models in
terms of test.ER, SR and turnover. Moreover, we confirm from these tables that the coherent risk
measure based on the Bregman divergence is appropriate measure compared to non-coherent risk
measure based on the mean-standard deviation for portfolio optimization. Indeed, the coherent
risk measure minimization achieved better performance than the non-coherent one except for
the turnover in the case of n = 30 for Nikkei monthly dataset.

6.2 Binary Classification Model

In the classification problem setting, the problem (1) minimizing the CVaR risk measure is
equivalent to Eν-SVM (28). Eν-SVM (28) is difficult to solve exactly because of the nonconvex
constraint ‖w‖2 = 1. To find a local optimal solution for Eν-SVM, [20] proposed an iterative
local search algorithm (modified algorithm of [12]) that solves linearized problems where the
quadratic equality constraint w⊤w = 1 is replaced by w̄⊤

k w = 1 constructed at feasible solutions
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Table 3: The coherent risk minimization based on Bregman divergence (coh.) and the mean-
standard deviation (msd) minimization for Nikkei monthly dataset

n = 10

nonconv.ratio training.ER test.ER var. SR turnover

coh. NoNormConst - 0.3929 0.1852 33.5758 0.0320 0.1388
NormConst 0.4600 0.3809 0.1551 28.5189 0.0290 0.1162

Proposed (29) 0.7733 0.4531 0.6044 48.6692 0.0866 0.0993

msd NoNormConst - 0.3929 0.1852 33.5758 0.0320 0.1388
NormConst 0.5000 0.3675 0.1613 30.6813 0.0291 0.1488

Proposed (29) 0.7733 0.4615 0.5921 49.1772 0.0844 0.1014

n = 20

nonconv.ratio training.ER test.ER var. SR turnover

coh. NoNormConst - 0.5451 0.1516 28.5356 0.0284 0.2395
NormConst 0 0.4179 0.2202 22.4922 0.0464 0.1035

Proposed (29) 0 0.4242 0.4839 29.4037 0.0892 0.0886

msd NoNormConst - 0.5459 0.1364 28.1943 0.0257 0.2227
NormConst 0 0.4219 0.1295 23.8368 0.0265 0.1793

Proposed (29) 0 0.4427 0.4210 28.7550 0.0785 0.0984

n = 30

nonconv.ratio training.ER test.ER var. SR turnover

coh. NoNormConst - 0.7241 -0.5472 101.4126 -0.0543 1.0043
NormConst 0 0.4376 0.2149 19.3609 0.0488 0.1421

Proposed (29) 0 0.4424 0.2820 24.2553 0.0573 0.1149

msd NoNormConst - 0.5204 0.0085 26.1599 0.0017 0.3150
NormConst 0 0.3767 0.1287 18.7299 0.0297 0.1973

Proposed (29) 0 0.4585 0.2370 23.0839 0.0493 0.1071
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Table 4: The coherent risk minimization based on Bregman divergence (coh.) and the mean-
standard deviation (msd) minimization for Nikkei weekly dataset

n = 10

nonconv.ratio training.ER test.ER var. SR turnover

coh. NoNormConst - 0.0983 -0.0700 6.7167 -0.0270 0.0690
NormConst 0.2033 0.0879 -0.0511 6.4965 -0.0200 0.0595

Proposed (29) 0.4484 0.0842 0.0077 9.3668 0.0025 0.0428

msd NoNormConst - 0.0983 -0.0700 6.7167 -0.0270 0.0690
NormConst 0.2539 0.0987 -0.0636 6.6868 -0.0246 0.0704

Proposed (29) 0.4446 0.0879 0.0014 9.4676 0.0005 0.0461

n = 15

nonconv.ratio training.ER test.ER var. SR turnover

coh. NoNormConst - 0.1124 -0.0734 6.6039 -0.0285 0.1007
NormConst 0.0019 0.0790 -0.0530 6.1997 -0.0213 0.0649

Proposed (29) 0.0107 0.0922 0.0220 8.8630 0.0074 0.0491

msd NoNormConst - 0.1124 -0.0734 6.6039 -0.0285 0.1007
NormConst 0.0136 0.1024 -0.0638 6.4990 -0.0250 0.0921

Proposed (29) 0.0097 0.1087 0.0170 8.7689 0.0057 0.0600

n = 20

nonconv.ratio training.ER test.ER var. SR turnover

coh. NoNormConst - 0.1319 -0.0537 6.8060 -0.0206 0.1316
NormConst 0 0.0904 -0.0375 6.1941 -0.0150 0.0703

Proposed (29) 0 0.0883 0.0233 8.3588 0.0081 0.0624

msd NoNormConst - 0.1319 -0.0537 6.8060 -0.0206 0.1316
NormConst 0 0.1182 -0.0362 6.6094 -0.0141 0.1122

Proposed (29) 0 0.1076 0.0178 8.0960 0.0062 0.0753
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w̄k, and finds new feasible solutions w̄k+1 by projecting the resulting optimal solutions onto the
quadratic surface, w⊤w = 1. [21] moreover incorporated the iterative local search algorithm
in cutting plane scheme in order to find a global optimal solution of Eν-SVM (28). The global
search algorithm repeatedly finds a local solution in the remaining feasible region and removes
the region consisting of the local solution and its neighbourhood. However, the global search
algorithm needs large computational time especially when the problem size (m,n) becomes large
and the nonconvexity is increased, i.e., ν is rather smaller than the convexity threshold ν̂ of (22).

In this section, we solve ℓ1 and ℓ∞-norm problems ((13) and (14), respectively) corresponding
to U of (5) for the CVaR risk measure. Using UCI repository dataset [4], we compare prediction
performance of global optimal solutions of ℓ1-norm and ℓ∞-norm problems to local optimal
solutions of Eν-SVM (28) found by [20]. As a measure of prediction performance, we use
average test (out-of-sample) errors [%] for 3-fold cross validation.

Figure 2 shows average test errors and average computation times for four datasets: liver-disorders
((n − 1) = 6, m = 345), diabetes ((n − 1) = 8,m = 768), heart ((n − 1) = 13,m = 270) and
breast-cancer ((n − 1) = 10,m = 683). Remind that inputs for (28) and its ℓ1/ℓ∞ variants
are sample vectors xi ∈ IRn−1 and yi ∈ {+1,−1}, i = 1, . . . ,m. The green vertical line means
that at least one of the three problems (3) constructed in the cross-validation was essentially
nonconvex, i.e., the green line indicates the threshold for convexity, ν̂ (for the definition of ν̂,
see (22) in Example 5).

The figures in the left column of Figure 2 show that either of global solutions of ℓ1-norm and
ℓ∞-norm models achieved better prediction performance than a local solution of ℓ2-norm Eν-
SVM (28) in most values of ν. We can see that ℓ2-norm model achieved intermediate prediction
performance under three different types of norm constraints. This implies that computing global
solutions for ℓ1-norm and ℓ∞-norm models may be enough to find good performance classifiers.

Classifiers with good prediction performance were found by convex problems with ν ≥ ν̂ for
three UCI datasets. However, for liver-disorders dataset, nonconvex cases of all three models
performed well. The computational time in the right column shows that in convex cases (ν ≥
ν̂), LP formulations of ℓ1-norm or ℓ∞-norm problems were solved faster than the quadratic
programming formulation of ℓ2-norm problem which has the quadratic constraint w⊤w ≤ 1.
On the other hand, in nonconvex cases (ν ≤ ν̂), MIO formulations of ℓ1-norm or ℓ∞-norm
problems required more computational times than an iterative local search algorithm [20] that
finds a local optimum solution. However, within reasonable computational time, we could obtain
global solutions of ℓ1-norm or ℓ∞-norm problems by those MIO formulations.

7 Conclusion

We have proposed minimizing a coherent risk measure under a norm equality constraint with
the use of robust optimization formulation. Not only well-known coherent risk measures but also
a new coherent risk measure was investigated by setting a new uncertainty set with the use of a
Bregman divergence. The norm equality constraint itself has a practical meaning or plays a role
to prevent a meaningless solution, the zero vector, in the context of portfolio optimization or
binary classification in machine learning, respectively. We have proposed to use an ℓ1 or ℓ∞-norm
constraint for achieving a global optimal solution for the nonconvex optimization problems with
the use of a mixed integer optimization formulation. Numerical experiments confirmed that the
ℓ1 or ℓ∞-norm equality constraint as well as coherent risk measures works effectively in portfolio
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Figure 2: Classification results for UCI datasets. The left column and the right column respec-
tively indicate average test (out-of-sample) errors [%] and average CPU time [sec.] for 3-fold
cross validation with respect to ν. Each row shows numerical results for liver-disorders

((n − 1) = 6, m = 345), diabetes ((n − 1) = 8,m = 768), heart ((n − 1) = 13,m = 270) and
breast-cancer ((n − 1) = 10,m = 683) from UCI repository dataset [4]. The left-hand side of
the green vertical line in each figure indicates that the problem (3) is essentially nonconvex, i.e.,
ν ≤ ν̂.
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optimization and binary classification.
There are a lot of possibilities for uncertainty set U to improve our binary classification model

and portfolio optimization models shown in the numerical experiments. As a future work, we
want to consider a new type of uncertainty set U that fits to these applications by setting a new
class of sets for U satisfying U ⊆ conv(Z).
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