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Finding a Path in Group-Labeled Graphs

with Two Labels Forbidden

Yasushi Kawase∗ Yusuke Kobayashi† Yutaro Yamaguchi‡

Abstract

The parity of the length of paths and cycles is a classical and well-studied topic in graph
theory and theoretical computer science. A basic problem concerned with parity is to find
an odd or even s–t path in an undirected graph. It can be solved in polynomial time easily,
whereas its directed version is NP-hard. In this paper, as a generalization of this problem,
we focus on the problem of finding an s–t path in a group-labeled graph, which is a directed
graph with a group label on each arc. It is not difficult to see that finding an odd or even
path in an undirected graph can be formulated as finding a zero path in a Z2-labeled graph.

For group-labeled graphs, efficient algorithms for finding non-zero paths or cycles with
some conditions have been devised recently. On the other hand, the difficulty of finding a
zero path is heavily dependent on the group, e.g., it is NP-complete to determine whether
there exists an s–t path of label zero (or another specified label) in a Z-labeled graph, but
quite easy in a Z2-labeled graph. It is in fact known that a zero path in a Γ-labeled graph
can be found in polynomial time for any constant-size abelian group Γ by getting help of
the graph minor theory.

In this paper, we present a solution to finding an s–t path in a group-labeled graph
with two labels forbidden. This also leads to an elementary solution to finding a zero path
in a Z3-labeled graph, which is the first nontrivial case of finding a zero path. This case
generalizes the 2-disjoint paths problem in undirected graphs, which also motivates us to
consider that setting. More precisely, we provide an elementary polynomial-time algorithm
for testing whether there are at most two possible labels of s–t paths in a group-labeled
graph or not, and finding s–t paths attaining at least three distinct labels if exist. We
also give a necessary and sufficient condition for a group-labeled graph to have exactly two
possible labels of s–t paths, and our algorithm is based on this characterization.

1 Introduction

1.1 Background

The parity of the length of paths and cycles in a graph is a classical and well-studied topic in
graph theory and theoretical computer science. As the simplest example, one can easily check
the bipartiteness of a given undirected graph, i.e., we can determine whether it contains a cycle
of odd length or not. This can be done in polynomial time also in the directed case by using
the ear decomposition. It is also an important problem to test whether a given directed graph
contains a directed cycle of even length or not, which is known to be equivalent to Pólya’s
permanent problem [12] (see, e.g., [11]). A polynomial time algorithm for this problem was
devised by Robertson, Seymour, and Thomas [14].

In this paper, we focus on paths connecting two specified vertices s and t. It is easy to
test whether a given undirected graph contains an s–t path of odd (or even) length or not,
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whereas the same problem is NP-complete in the directed case [10] (follows from [5]). A natural
generalization of this problem is to consider paths of length p modulo q. One can easily see
that, when q = 2, both of the following problems generalize the problem of finding an odd (or
even) s–t path in an undirected graph:

• finding an s–t path of length p modulo q in an undirected graph, and

• finding an s–t path whose length is NOT p modulo q in an undirected graph, which is
equivalent to determining whether all s–t paths are of length p modulo q or not.

Although these two generalizations are similar to each other, they are essentially different in
the case of q ≥ 3. In fact, a linear time algorithm for the second generalization was given by
Arkin, Papadimitriou, and Yannakakis [1] for any q, whereas not so much was known about the
first generalization.

Recently, as another generalization of the parity constraints, paths and cycles in a group-
labeled graph have been investigated, where a group-labeled graph is a directed graph with
each arc labeled by a group element. In a group-labeled graph, the label of a walk is defined as
the sum (or the ordered product when the underlying group is non-abelian) of the labels of the
traversed arcs, where each arc can be traversed in the converse direction and then the label is
inversed (see Section 2 for the precise definition). In a similar way to paths of length p modulo
q, it is natural to consider the following two problems: for a given element α,

(I) finding an s–t path of label α in a group-labeled graph, and

(II) finding an s–t path whose label is NOT α in a group-labeled graph, which is equivalent
to determining whether all s–t paths are of label α or not.

Note that, when we consider Problem (I) or (II), by changing uniformly the labels of the arcs
incident to s if necessary, we may assume that α is the identity of the underlying group. Hence,
each problem is equivalent to finding a zero path or a non-zero path in a group-labeled graph.

If the underlying group is Z2 = Z/2Z = ({0, 1},+) and the label of each arc is 1, then the
label of a path corresponds to the parity of its length because −1 = 1 in Z2. This shows that
both of these two problems generalize the problem of finding an odd (or even) s–t path in an
undirected graph. We note that, in a Z2-labeled graph, finding an s–t path of label α ∈ Z2 is
equivalent to finding an s–t path whose label is not α + 1 ∈ Z2, but such equivalence cannot
hold for any other nontrivial group.

Problem (II) can be reduced to testing whether the group-labeled graph (precisely, the 2-
connected component of the graph obtained from the input graph by adding an arc from s to
t with label α that contains both s and t) contains a non-zero cycle, whose label is not the
identity. With this observation, Problem (II) can be easily solved in polynomial time for any
underlying group (see, e.g., [18] and Proposition 6). We mention that there are several results
for packing non-zero paths [2, 3, 18,20] and non-zero cycles [9, 19] with some conditions.

On the other hand, the difficulty of Problem (I) is heavily dependent on the underlying
group. When the underlying group is isomorphic to Z2, since Problems (I) and (II) are equivalent
as discussed above, it can be easily solved in polynomial time. When the underlying group is
Z, Problem (I) is NP-complete since the undirected Hamiltonian path problem reduces to this
problem by replacing each edge with a pair of two arcs of opposite directions with label 1 and
letting α := n− 1, where n denotes the number of vertices. Huynh [8] showed the polynomial-
time solvability of Problem (I) for any constant-size abelian group, which is deeply dependent
on the graph minor theory.

To investigate the gap between Problems (I) and (II), we make a new approach to these
problems by generalizing Problem (II) so that multiple labels are forbidden. In this paper,
we provide a solution to the case that two labels are forbidden. Our result also leads to an
elementary solution to the first nontrivial case of Problem (I), i.e., when the underlying group
is isomorphic to Z3 = Z/3Z = ({0,±1},+).
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1.2 Our contribution

Let Γ be an arbitrary group. For a Γ-labeled graph G and two distinct vertices s and t, let
l(G; s, t) be the set of all possible labels of s–t paths in G. Our first contribution is to give
a characterization of Γ-labeled graphs G with two specified vertices s, t such that l(G; s, t) =
{α, β}, where α and β are distinct elements in Γ. Roughly speaking, we show that l(G; s, t) =
{α, β} if and only if G is obtained from planar graphs with some condition by “gluing” them
together (see Section 3.2). It is interesting that the planarity, which is a topological condition,
appears in the characterization.

Note that there exists an easy characterization of triplets (G, s, t) with l(G; s, t) = {α},
which is used to solve Problem (II) (see Section 2.2 for details). Hence, our characterization
leads to the first nontrivial classification of Γ-labeled graphs in terms of the possible labels of
s–t paths, and the classification is complete when Γ ≃ Z3.

We also show an algorithmic result, which is our second contribution. Based on the fact that
our characterization can be tested in polynomial time, we present a polynomial-time algorithm
for testing whether |l(G; s, t)| ≤ 2 or not and finding at least three s–t paths whose labels are
distinct if exist (see Theorem 11). In particular, our algorithm leads to an elementary solution
to Problem (I) when Γ ≃ Z3, i.e., for each α ∈ Z3, we can test whether α ∈ l(G; s, t) or not,
and find an s–t path of label α if exists.

Note again that our results are not dependent on Γ, which can be non-abelian or infinite.

1.3 k-disjoint paths problem

Problem (I) in a Z3-labeled graph in fact generalizes the 2-disjoint paths problem, which also
motivates us to consider the situation when two labels are forbidden. The 2-disjoint paths
problem is to determine whether there exist two vertex-disjoint paths such that one connects
s1 and t1 and the other connects s2 and t2 for distinct vertices s1, s2, t1, t2 in a given undirected
graph. We can reduce the 2-disjoint paths problem to Problem (I) in a Z3-labeled graph as
follows: let s := s1 and t := t2, replace every edge in the given graph with an arc with label
0, add one arc from t1 to s2 with label 1, and ask whether the constructed Z3-labeled graph
contains an s–t path of label 1 or not. If the answer is YES, then there exist desired two disjoint
paths, and otherwise there do not.

The 2-disjoint paths problem can be solved in polynomial time [15–17], and the following
theorem characterizes the existence of two disjoint paths.

Theorem 1 (Seymour [16]). Let G = (V,E) be an undirected graph and s1, t1, s2, t2 ∈ V distinct
vertices. Then, there exist two vertex-disjoint paths Pi connecting si and ti (i = 1, 2) if and
only if there is no family of disjoint vertex sets X1, X2, . . . , Xk ⊆ V \ {s1, t1, s2, t2} such that

1. N(Xi) ∩Xj = ∅ for distinct i, j ∈ {1, 2, . . . , k},
2. |N(Xi)| ≤ 3 for i = 1, 2, . . . , k, and

3. if G′ is the graph obtained from G by deleting Xi and adding a new edge joining each
pair of distinct vertices in N(Xi) for each i ∈ {1, 2, . . . , k}, then G′ can be embedded on a
plane so that s1, s2, t1, t2 are on the outer boundary in this order.

Our characterization (Theorem 14) for triplets (G, s, t) with l(G; s, t) = {α, β} is inspired
by Theorem 1, and we use this theorem in our proof.

We next mention that the k-disjoint paths problem can also be regarded as a special case of
Problem (I) for any fixed integer k ≥ 2. The k-disjoint paths problem is, for a given undirected
graph with 2k distinct vertices si, ti (i = 1, . . . , k), to find k vertex-disjoint paths such that each
path connects si and ti. This problem can be formulated as Problem (I) using the alternating
group A2k−1 (which is indeed isomorphic to Z3 when k = 2) as follows: replace each edge with
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an arc with label id ∈ A2k−1, add an arc from ti to si+1 with label (2i− 1 2i+ 1 2i) ∈ A2k−1

for each i = 1, 2, . . . , k − 1, and ask whether there exists an s–t path of label

σ := (1 3 2)(3 5 4) · · · (2k − 3 2k − 1 2k − 2)

or not. It is easy to check that σ is the unique permutation mapping 1 to 2k − 1 which can be
constructed in such an A2k−1-labeled graph.

Although the k-disjoint paths problem can be solved in polynomial time for fixed k [13], its
solution requires sophisticated arguments based on the graph minor theory. This suggests that
Problem (I) is a challenging problem even if the size of the underlying group is bounded.

2 Preliminaries

2.1 Terms and notations

Throughout this paper, let Γ be a group (which can be non-abelian or infinite), for which we
usually use multiplicative notation with denoting the identity by 1Γ (also we sometimes use
additive notation with denoting the identity by 0, e.g., for Γ ≃ Z3). We assume that the
following operations can be done in constant time for any α, β ∈ Γ: getting the inverse element
α−1 ∈ Γ, computing the product αβ ∈ Γ, and testing the identification α = β. A directed graph
G = (V,E) with a mapping ψG : E → Γ (called a label function) is called a Γ-labeled graph.

2.1.1 Graphs

Let G = (V,E) be a directed graph. A sequence W = (v0, e1, v1, e2, v2, . . . , el, vl) is called a
walk in G if v0, v1, . . . , vl ∈ V are vertices, e1, e2, . . . , el ∈ E are arcs, and either ei = vi−1vi or
ei = vivi−1 for each i = 1, 2, . . . , l. A walk W is called a path (in particular, a v0–vl path) if
v0, v1, . . . , vl are distinct, and a cycle if v0, v1, . . . , vl−1 are distinct and v0 = vl. We call v0 and
vl (which may coincide) the end vertices of W , and each vi (1 ≤ i ≤ l − 1) an inner vertex on
W . For 0 ≤ i < j ≤ l, let W [vi, vj ] denote the subwalk (vi, ei+1, vi+1, . . . , ej , vj) of W . Let W̄
denote the reversed walk of W , i.e., W̄ = (vl, el, . . . , v1, e1, v0).

Let X ⊆ V be a vertex set. We denote by δG(X) the set of arcs incident to X in G and
by NG(X) the neighbor of X in G, i.e., δG(X) := { e = xy ∈ E | |{x, y} ∩ X| = 1 } and
NG(X) := { y ∈ V \X | δG(X) ∩ δG({y}) ̸= ∅ }. We often omit the subscript G and denote a
singleton {x} by its element x if there is no confusion.

Let G[X] := (X,E(X)) denote the subgraph of G induced by X, where E(X) := { e = xy ∈
E | {x, y} ⊆ X }. We denote by G−X the subgraph of G obtained by removing all vertices in
X, i.e., G−X = G[V \X]. For an arc set F ⊆ E, we also denote by G− F the subgraph of G
obtained by removing all arcs in F , i.e., G− F = (V,E \ F ).

For an integer k ≥ 0 and a vertex set X ⊊ V with |X| = k, we call X a k-cut in G if G−X
is not connected. A directed graph is called k-connected if it contains at least k vertices1 and
no k′-cut for every k′ < k. A k-connected component of G is a maximal k-connected induced
subgraph G[X] (X ⊆ V with |X| ≥ k) of G.

Suppose that G is embedded on a plane. We call a unique unbounded face of G the outer
face of G, and another face an inner face. For a face F of G, let bd(F ) denote the cycle obtained
by walking the boundary of F in an arbitrary direction from an arbitrary vertex.

2.1.2 Labels

Let G = (V,E) be a Γ-labeled graph with a label function ψG, and W = (v0, e1, v1, . . . , el, vl)
a walk in G. The label ψG(W ) of W is defined as the ordered product ψG(el, vl) · · ·ψG(e2, v2) ·

1Although it may be popular to exclude the case that there are exactly k vertices, we here admit that case.
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ψG(e1, v1), where ψG(ei, vi) := ψG(ei) if ei = vi−1vi and ψG(ei, vi) := ψG(ei)
−1 if ei = vivi−1.

Note that, for the reversed walk W̄ of W , we have ψG(W̄ ) = ψG(W )−1. In particular, since
an arc uv with label α and an arc vu with label α−1 are equivalent, we identify such two arcs.
We say that W is balanced (or a zero walk) if ψG(W ) = 1Γ and unbalanced (or a non-zero walk)
otherwise, and also that G is balanced if G contains no unbalanced cycle. Note that whether
a cycle C is balanced or not does not depend on the choices of the direction and the end
vertex, since ψG(C̄) = ψG(C)

−1 and ψG(C
′) = ψG(e1) · ψG(C) · ψG(e1)

−1, where C = W and
C ′ := (v1, e2, v2, . . . , el, vl = v0, e1, v1). Hence, when we consider whether a cycle is balanced or
not, we can choose the direction and the end vertex arbitrarily.

For distinct vertices s, t ∈ V , let l(G; s, t) be the set of all possible labels of s–t paths in G.
When l(G; s, t) = {α} for some α ∈ Γ, we also denote the element α itself by l(G; s, t). Without
loss of generality, we may assume that there is no vertex v ∈ V that is not contained in any s–t
path, since such a vertex does not make any effect on l(G; s, t). To consider only such cases,
let D be the set of all triplets (G′, s, t) such that G′ is a Γ-labeled graph with two specified
vertices s, t ∈ V (G′) in which every vertex is contained in some s–t path. The following lemma
guarantees that one can efficiently compute an induced subgraph G′ of G such that (G′, s, t) ∈ D
and l(G′; s, t) = l(G; s, t).

Lemma 2. For a connected Γ-labeled graph G = (V,E) and distinct vertices s, t ∈ V , one can
test whether (G, s, t) ∈ D or not in polynomial time. Moreover, one can compute, in polynomial
time, the set X of vertices that are not contained in any s–t path in G.

Proof. Add an arc from s to t, and compute the 2-connected component that contains both
s and t (e.g., by [6]). Let Y ⊆ V be the vertex set of the 2-connected component (if no 2-
connected component contains both s and t, then let Y := ∅). If Y = V , then (G, s, t) ∈ D.
Otherwise, we have X = V \ Y , and moreover, (G−X, s, t) ∈ D unless Y = ∅.

2.2 Finding a non-zero path

In this section, we show that a non-zero s–t path can be found (i.e., Problem (II) can be solved)
efficiently by using well-known properties of Γ-labeled graphs. The following techniques are
often utilized in dealing with Γ-labeled graphs (see, e.g., [2, 3, 18]).

Definition 3 (Shifting). Let G = (V,E) be a Γ-labeled graph. For a vertex v ∈ V and an
element α ∈ Γ, shifting (a label function ψG) by α at v means the following operation: update
ψG to ψ′

G defined as, for each e ∈ E,

ψ′
G(e) :=


ψG(e) · α−1 (e ∈ δG(v) leaves v)
α · ψG(e) (e ∈ δG(v) enters v)
ψG(e) (otherwise).

Shifting at v ∈ V does not change the label of any walk whose end vertices are not v, and
neither that of any cycle C whose end vertex is v up to conjugate, i.e., ψ′

G(C) = α ·ψG(C) ·α−1.
Furthermore, when we apply shifting multiple times, the order of applications does not make
any effect on the resulting label function. We say that two Γ-labeled graphs G1 and G2 are
(s, t)-equivalent if G2 is obtained from G1 by shifting by some αv ∈ Γ at each v ∈ V \{s, t} (and
then G1 is obtained from G2 by shifting by α−1

v at each v). Note that l(G1; s, t) = l(G2; s, t) if
G1 and G2 are (s, t)-equivalent.

Lemma 4. For a connected and balanced Γ-labeled graph G = (V,E) and distinct vertices
s, t ∈ V , there exists a Γ-labeled graph G′ which is (s, t)-equivalent to G such that

ψG′(e) =


α (e ∈ δG(s) leaves s),
α−1 (e ∈ δG(s) enters s),
1Γ (otherwise),
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for every arc e ∈ E(G′) = E and for some α ∈ Γ (in fact, α = l(G; s, t)).

Proof. Take an arbitrary spanning tree T of G, and assume that all arcs in T are directed toward
t. Consider the following procedure. Let X := {t}. While X ̸= V , take a neighbor v ∈ NT (X),
apply shifting the current label function ψ by ψ(e) at v for a unique arc e ∈ δT (v)∩ δT (X) from
v to X (so that ψ(e) = 1Γ after shifting), and update X := X + v.

After the procedure, we have ψ(e) = 1Γ for every arc e ∈ E(T ), and also for every arc e ∈ E
since G is balanced. Suppose that we applied shifting by α at s. Then, we obtain desired G′

by shifting ψ by α−1 at s after the procedure. Note that G′ is (s, t)-equivalent to G since the
resulting label function does not depends on the order of applications of shifting.

Lemma 5. For any (G, s, t) ∈ D, |l(G; s, t)| = 1 if and only if G is balanced.

Proof. “If” part is obvious from Lemma 4. To prove the converse direction, suppose that G is
unbalanced and let C be an unbalanced cycle in G. Since (G, s, t) ∈ D implies that G + st is
2-connected (cf. the proof of Lemma 2), for any distinct x, y ∈ V (C), there exist two disjoint
paths (possibly of length 0, i.e., s = x or y = t) between {s, t} and {x, y} in G. Take an s–x path
P and a y–t path Q in G so that V (P )∩V (C) = {x}, V (Q)∩V (C) = {y}, and V (P )∩V (Q) = ∅,
and choose x as the end vertex of C. Since ψG(C̄[x, y])

−1 · ψG(C[x, y]) = ψG(C) ̸= 1Γ, we have
ψG(C[x, y]) ̸= ψG(C̄[x, y]). Hence, by extending C[x, y] and C̄[x, y] using P and Q, we can
construct two s–t paths in G whose labels are distinct, which implies |l(G; s, t)| ≥ 2.

Lemmas 2 and 5 lead to the following proposition. Note that G′ in Lemma 4 can be found
in O(|E|) time, since it is needed just to perform one breadth first search and |V | − 1 shiftings.

Proposition 6. Let G = (V,E) be a Γ-labeled graph with a label function ψG and two specified
vertices s, t ∈ V . Then, for any α ∈ Γ, one can test whether l(G; s, t) ⊆ {α} or not in polynomial
time. Furthermore, if l(G; s, t) ̸⊆ {α}, then one can find an s–t path P with ψG(P ) ̸= α in
polynomial time.

2.3 New operations

For our characterization of triplets (G, s, t) ∈ D with |l(G; s, t)| = 2, we introduce several new
operations which do not make any effect on l(G; s, t). Let (G = (V,E), s, t) ∈ D.

Definition 7 (3-contraction). For a vertex set X ⊆ V \ {s, t} such that |NG(X)| = 3 and
GX := G[X ∪ NG(X)] − E(NG(X)) is connected and balanced, the 3-contraction of X is the
following operation (see Fig. 1):

• remove all vertices in X, and

• add an arc from x to y with label l(GX ;x, y) (which consists of a single element by
Lemma 5) for each pair of x, y ∈ NG(X) if there is no such arc.

The resulting graph is denoted by G/3X.

For vertex sets X,Y, Z ⊆ V , we say that X separates Y and Z in G if every two vertices
y ∈ Y \ X and z ∈ Z \ X are contained in different connected components in G − X. In
particular, if X separates Y and Z in G and Y \X ̸= ∅ ̸= Z \X, then X is an |X|-cut in G.

Definition 8 (2-contraction). For a vertex set X ⊊ V with x ∈ X and y ∈ V \X such that

• G[X] is a balanced 2-connected component of G− y (hence, |X| ≥ 2), and

• {x, y} separates X and {s, t} (hence, {x, y} is a 2-cut in G unless {x, y} = {s, t}),

the 2-contraction of X is the following operation (see Fig. 2):
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• apply shifting by l(G[X]; v, x) at each vertex v ∈ X − x, so that the label of every arc in
G[X] becomes 1Γ (which can be checked similarly to Lemma 4),

• merge all vertices in X into a single vertex, which we refer to also as x, and

• identify the parallel arcs with the same label.

The resulting graph is denoted by G/2X.

Figure 1: 3-contraction. Figure 2: 2-contraction.

Remark. Although the 2-contraction and the 3-contraction are different operations, we use
the same term “contraction” to refer to one of these two operations because of the following
correspondence. Let X ⊆ V \ {s, t} be a vertex set such that NG(X) = {x, y} for some distinct
vertices x, y ∈ V and GX := G[X ∪NG(X)]− E(NG(X)) is balanced. Then, by a sequence of
the 2-contractions of some X ′ ⊆ X + x with x ∈ X ′ and y ̸∈ X ′, we can replace the balanced
subgraph GX with a single arc from x to y with label l(GX ;x, y). This sequential operation and
the 3-contraction are analogous to the contractions of Xi in Theorem 1 (which means removing
all vertices in Xi and adding an edge between each pair of distinct neighbors of Xi).

We call a sequence of contractions a contraction sequence. We also say that a vertex set
X ⊊ V is 2-contractible (or 3-contractible) if the 2-contraction (or 3-contraction) of X can be
performed in G. Furthermore, X is said to be contractible ifX is 2-contractible or 3-contractible.

It should be noted that any contraction does not change l(G; s, t), since each s–t path enters
the removed vertex set at most once in both cases (2-contraction and 3-contraction).

Definition 9 (Replacing). For a triplet (H,x′, y′) ∈ D with V (H) ∩ V = ∅ and parallel arcs
ei ∈ E (i ∈ I) (possibly |I| = 1) from x ∈ V to y ∈ V with l(H;x′, y′) = {ψG(ei) | i ∈ I }, we
say that G′ is obtained from G by replacing ei (i ∈ I) with (H,x′, y′) when G′ is obtained from
the disjoint union of G and H by removing ei (i ∈ I) and by identifying x and y with x′ and
y′, respectively.

The following operation can be regarded as the inverse operation of the replacing.

Definition 10 (Reduction). For a connected induced subgraph H of G with 3 ≤ |V (H)| < |V |
such that {x, y} ⊊ V (H) separates {s, t} and V (H), the reduction of (H,x, y) is the following
operation:

• remove all vertices in V (H) \ {x, y}, and
• add an arc from x to y with label α for each α ∈ l(H;x, y) if there is no such arc.

The resulting graph is denoted by G/(H,x, y).

It should be remarked again that l(G; s, t) = l(G′; s, t) for a Γ-labeled graph G′ obtained
from G by any operation shown here, since there exists an s–t path in G of label α ∈ Γ if and
only if so does in G′. Moreover, we also have (G′, s, t) ∈ D.
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3 Main Results

3.1 Algorithmic results

As described in Section 2.2, Problem (II) can be solved efficiently, i.e., one can find a non-zero
s–t path in polynomial time (Proposition 6). The following theorem, one of our main results,
is the first nontrivial extension of this property, which claims that not only one label but also
another can be forbidden simultaneously.

Theorem 11. Let G = (V,E) be a Γ-labeled graph with a label function ψG and two specified
vertices s, t ∈ V . Then, for any distinct α, β ∈ Γ, one can test whether l(G; s, t) ⊆ {α, β} or
not in polynomial time. Furthermore, if l(G; s, t) ̸⊆ {α, β}, then one can find an s–t path P
with ψG(P ) ̸∈ {α, β} in polynomial time.

Such an algorithm is constructed based on a characterization of Γ-labeled graphs with
exactly two possible labels of s–t paths shown in Section 3.2. Our algorithm and a proof of this
theorem are presented later in Section 4. It should be mentioned that this theorem leads to a
solution to Problem (I) for Γ ≃ Z3.

Corollary 12. Let G = (V,E) be a Z3-labeled graph with a label function ψG and two specified
vertices s, t ∈ V . Then one can compute l(G; s, t) in polynomial time. Furthermore, for each
α ∈ l(G; s, t), one can find an s–t path P with ψG(P ) = α in polynomial time.

3.2 Characterizations

Recall that D denotes the set of all triplets (G, s, t) such that G is a Γ-labeled graph with
s, t ∈ V (G) in which every vertex is contained in some s–t path. In this section, we provide
a complete characterization of triplets (G, s, t) ∈ D with l(G; s, t) = {α, β} for some distinct
α, β ∈ Γ. We consider two cases separately: when αβ−1 = βα−1 and when αβ−1 ̸= βα−1.

First, we give a characterization in the easier case: when αβ−1 = βα−1. Note that this case
does not appear when Γ ≃ Z3. The following proposition holds analogously to Lemmas 4 and
5 in Section 2.2, which characterize triplets (G, s, t) ∈ D with |l(G; s, t)| = 1.

Proposition 13. Let α and β be distinct elements in Γ with αβ−1 = βα−1. For any (G, s, t) ∈
D, l(G; s, t) = {α, β} if and only if G is not balanced and there exists a Γ-labeled graph G′ which
is (s, t)-equivalent to G such that

ψG′(e) =


α or β (e ∈ δG(s) leaves s),
α−1 or β−1 (e ∈ δG(s) enters s),
1Γ or αβ−1 (otherwise),

(∗)

for every arc e ∈ E(G′) = E(G).

Proof. “If” part is easy to see as follows. Since G is not balanced, |l(G; s, t)| ≥ 2 by Lemma 5.
Furthermore, since αβ−1 = βα−1, the label of any s–t path in G′ is α or β. Hence, the
(s, t)-equivalence between G and G′ leads to l(G; s, t) = l(G′; s, t) = {α, β}.

The converse direction is rather difficult. Similarly to the proof of Lemma 4, take an
arbitrary spanning tree T of G and apply shifting at each v ∈ V − t so that ψ(e) = 1Γ for
every arc e ∈ E(T ), where ψ denotes the resulting label function. Since l(G; s, t) = {α, β}
and l(T ; s, t) = 1Γ, we applied shifting by α or β at s. Hence, by shifting ψ by α−1 or β−1,
respectively, at s after the above procedure, we can obtain a Γ-labeled graph G′ which is (s, t)-
equivalent to G, and this G′ is in fact desired one.

To see this, suppose to the contrary that some arc e′ ∈ E(G′) does not satisfy (∗), and
let E′ ⊊ E(G′) be the set of arcs satisfying (∗). Note that E(T ) ⊆ E′, and hence G′[E′] is
connected. Take an s–t path P in G′ with E(P ) \ E′ ̸= ∅ so that |E(P ) \ E′| is minimized.

8



If |E(P ) \ E′| = 1, then ψG′(P ) ̸∈ {α, β}, which contradicts l(G′; s, t) = l(G; s, t) = {α, β}.
Otherwise, we have |E(P ) \ E′| ≥ 2. Let e1, e2 ∈ E(P ) \ E′ be the first two arcs traversed
in walking along P , and Q be the subpath of P from the head of e1 to the tail of e2 (hence,
E(Q) ⊆ E′). Since G′[E′] is connected, there exists a path R from u ∈ V (Q) to w ∈ V (P )\V (Q)
in G′[E′]. We can construct an s–t path P ′ from P by replacing P [u,w] (or P [w, u]) with
R (or R̄) such that |E(P ′) ∩ {e1, e2}| = 1 and E(P ′) \ E′ ⊆ E(P ) \ E′. This implies that
1 ≤ |E(P ′) \ E′| ≤ |E(P ) \ E′| − 1, which contradicts the choice of R.

We next consider the main case, which is much more difficult: when αβ−1 ̸= βα−1. The
following theorem, one of our main results, completes a characterization of triplets (G, s, t) ∈ D
with l(G; s, t) = {α, β} for some distinct α, β ∈ Γ. The definition of the set Dα,β ⊆ D,
which appears in the theorem, is shown later through Definitions 15–17 in Section 3.3. In
short, (G, s, t) ∈ Dα,β if one can obtain, from G by a contraction sequence, a Γ-labeled graph
constructed by “gluing” together planar Γ-labeled graphs with some simple conditions.

Theorem 14. Let α and β be distinct elements in Γ with αβ−1 ̸= βα−1. For any (G, s, t) ∈ D,
l(G; s, t) = {α, β} if and only if (G, s, t) ∈ Dα,β.

Recall that |l(G; s, t)| = 1 if and only if G is balanced by Lemma 5, which can be easily
tested by shifting along an arbitrary spanning tree of G (cf. the proof of Lemma 4). Hence,
these characterizations lead to the first nontrivial classification of Γ-labeled graphs in terms of
the number of possible labels of s–t paths, and the classification is also complete when Γ ≃ Z3.

3.3 Definition of Dα,β

Fix distinct elements α, β ∈ Γ with αβ−1 ̸= βα−1. In order to characterize triplets (G, s, t) ∈ D
with l(G; s, t) = {α, β}, let us define several sets of triplets (G, s, t) ∈ D for which it is easy to see
that l(G; s, t) = {α, β}. Theorem 14 claims that any triplet (G, s, t) ∈ D with l(G; s, t) = {α, β}
is in fact contained in one of them.

Definition 15. For distinct α, β ∈ Γ with αβ−1 ̸= βα−1, let D0
α,β be the set of all triplets

(G, s, t) ∈ D such that

• there is no contractible vertex set X ⊊ V (G) (well-contracted), and

• G can be embedded on a plane with the face set F satisfying the following properties:

– both s and t are on the boundary of the outer face F0 ∈ F ,
– one s–t path along the boundary of F0 is of label α and the other is of β, and

– there exists a unique inner face F1 whose boundary is unbalanced, i.e., ψG(bd(F )) =
1Γ for any F ∈ F \ {F0, F1}.

Figure 3: (G, s, t) ∈ D0
α,β.

It is not difficult to see that l(G; s, t) = {α, β} for any triplet (G, s, t) ∈ D0
α,β (see Fig. 3).

This also follows from a stronger claim shown later as Lemma 20 in Section 5.2.
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Definition 16. For distinct α, β ∈ Γ with αβ−1 ̸= βα−1, we define D1
α,β as the minimal set of

triplets (G, s, t) ∈ D satisfying the following conditions:

• D0
α,β ⊆ D1

α,β, and

• if (G/(H,x, y), s, t) ∈ D1
α,β (recall that G/(H,x, y) denotes the Γ-labeled graph obtained

from G by the reduction of (H,x, y)) for some triplet (H,x, y) ∈ D0
α′,β′ , where α′, β′ ∈ Γ

satisfy α′β′−1 ̸= β′α′−1, then (G, s, t) ∈ D1
α,β.

We are now ready to define Dα,β.

Definition 17. For distinct α, β ∈ Γ with αβ−1 ̸= βα−1, let Dα,β be the set of all triplets
(G, s, t) ∈ D with the following property: there exists a Γ-labeled graph G̃ obtained from G by
a contraction sequence such that (G̃, s, t) ∈ D1

α,β.

It is also easy to see that l(G; s, t) = {α, β} for any triplet (G, s, t) ∈ Dα,β since contractions
and reductions do not change l(G; s, t). A proof of the non-trivial direction (“only if” part of
Theorem 14) is presented later in Section 5.

4 Algorithm

In this section, we give a proof of Theorem 11. That is, we present an algorithm to test
whether l(G; s, t) ⊆ {α, β} or not for given distinct α, β ∈ Γ and to find an s–t path of label
γ ∈ Γ \ {α, β} if l(G; s, t) ̸⊆ {α, β}, in a given Γ-labeled graph G = (V,E) with s, t ∈ V . It
should be mentioned that, when Γ ≃ Z3, such an algorithm can compute l(G; s, t) itself and
find an s–t path of label α for each α ∈ l(G; s, t). Without loss of generality, we assume that G
does not have parallel arcs with the same label.

4.1 Algorithm description

For the simple description, we separate our algorithm into two parts: to test whether |l(G; s, t)| ≤
2 or not and return at most two s–t paths which attain all labels in l(G; s, t) when |l(G; s, t)| ≤ 2,
and to find three s–t paths whose labels are distinct when it has turned out that |l(G; s, t)| ≥ 3
(note that it is easy to find two s–t paths whose labels are distinct when |l(G; s, t)| ≥ 2).

We first present an algorithm to test whether |l(G; s, t)| ≤ 2 or not and return at most two
s–t paths which attain all labels in l(G; s, t) when |l(G; s, t)| ≤ 2. It should be noted again
that this algorithm can compute l(G; s, t) itself when Γ ≃ Z3. Throughout this algorithm, let
G′ = (V ′, E′) denote a temporary Γ-labeled graph currently considered.

TestTwoLabels(G, s, t)

Input A Γ-labeled graph G = (V,E) and distinct vertices s, t ∈ V .

Output The set l(G; s, t) of all possible labels of s–t paths in G with those which attain the
labels if |l(G; s, t)| ≤ 2, and “|l(G; s, t)| ≥ 3” otherwise.

Step 0. Compute the set X of vertices which are not contained in any s–t path in G by
Lemma 2. If X = V , then halt with returning ∅ since there is no s–t path in G. Otherwise,
set G′ ← G−X. Note that (G′, s, t) ∈ D and l(G′; s, t) = l(G; s, t).

Step 1. Test whether G′ is balanced or not by Lemma 4 (i.e., take an arbitrary spanning tree,
and apply shifting along it). If G′ is balanced, then halt with returning the label of an
arbitrary s–t path in G with the path. Otherwise, by using an unbalanced cycle, obtain
two s–t paths in G whose labels are distinct (cf. the proof of Lemma 5), say α, β ∈ Γ. In
the following steps, we check whether l(G′; s, t) = {α, β} or not.
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Step 2. If αβ−1 = βα−1, then check the condition in Proposition 13. If it is satisfied, then
return {α, β} with the two s–t paths obtained in Step 1, and “|l(G; s, t)| ≥ 3” otherwise.
Otherwise (i.e., αβ−1 ̸= βα−1), to make G′ 2-connected, add to G′ an arc from s to t with
label α if there is no such arc.

Step 3. While G′ is not 3-connected (and |V ′| ≥ 3), do the following procedure. Let x, y ∈ V ′

be distinct vertices such that G′ − {x, y} is not connected. Let X be the vertex set of a
connected component of G′ − {x, y} that contains none of s and t (such X exists, since s
and t are adjacent in G′), and Y := X∪{x, y} ⊊ V . Test whether |l(G′[Y ];x, y)| ≤ 2 or not
recursively by TestTwoLabels(G′[Y ], x, y). Update G′ ← G′/(G′[Y ], x, y) (reduction)
if |l(G′[Y ];x, y)| ≤ 2, and return “|l(G; s, t)| ≥ 3” otherwise.

Step 4. While there exists a 3-contractible vertex set X ⊆ V ′ \ {s, t}, update G′ ← G′/3X
(3-contraction).

Step 5. Test whether (G′, s, t) ∈ D0
α,β or not by Lemma 18 below (and the case of |V ′| = 2 is

trivial). Return {α, β} with the s–t paths in G whose labels are α and β which have been
obtained in Step 1 if (G′, s, t) ∈ D0

α,β, and “|l(G; s, t)| ≥ 3” otherwise.

Next, we show an algorithm to find three s–t paths whose labels are distinct when it has
turned out that |l(G; s, t)| ≥ 3. Also it should be noted again that this algorithm finds three
s–t paths which attain all labels when Γ ≃ Z3.

FindThreePaths(G, s, t)

Input A Γ-labeled graph G = (V,E) and distinct vertices s, t ∈ V such that |l(G; s, t)| ≥ 3.

Output Three s–t paths in G whose labels are distinct.

Step 0. If V = {s, t}, then halt with returning three s–t paths each of which consists of a single
arc st ∈ E. Note that E consists of at least three parallel arcs st with distinct labels.

Step 1. For each s′ ∈ NG(s)−t, test whether |l(G−s; s′, t)| ≤ 2 or not byTestTwoLabels(G−
s, s′, t).

Step 2. If |l(G− s; s′, t)| ≤ 2 for all s′ ∈ NG(s)− t, then we have already obtained s′–t paths
which attain all labels in l(G− s; s′, t). Choose three s–t paths whose labels are distinct
among the s–t paths obtained by extending such s′–t paths using an arc (possibly parallel
arcs) ss′ ∈ E for each s′ ∈ NG(s)− t and the s–t paths each of which consists of a single
arc st ∈ E, and halt with returning them.

Step 3. Otherwise, for at least one s̃ ∈ NG(s)− t, we obtained |l(G− s; s̃, t)| ≥ 3. Then, find
three s̃–t paths whose labels are distinct by FindThreePaths(G − s, s̃, t). Extend the
three s̃–t paths using an arc ss̃ ∈ E, and return the extended s–t paths.

4.2 Proof of Theorem 11

To prove Theorem 11, we first show the detailed description of Step 5 in TestTwoLabels.

Lemma 18. Let (G, s, t) ∈ D. Suppose that G = (V,E) is 3-connected and contains no 3-
contractible vertex set, that s and t are adjacent, and that {α, β} ⊆ l(G; s, t) for some distinct
α, β ∈ Γ. Then, one can test whether (G, s, t) ∈ D0

α,β or not in polynomial time.

Proof. Since s and t are adjacent and G is 3-connected, G contains no 2-contractible vertex set.
This implies that G is well-contracted since G contains no 3-contractible vertex set. Hence, it
suffices to check the second condition in Definition 15.

First, test the planarity of G. If G is not planar, then we can conclude (G, s, t) ̸∈ D0
α,β.

Otherwise, compute an embedding of G on a plane in which both s and t are on the outer
boundary (because of an arc st ∈ E, there exists a face on whose boundary both s and t are).
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SinceG is 3-connected, the face set is unique if there are no parallel arcs (see, e.g., [4, Chapter 4]).
Although there may be parallel arcs in G, we can say that the number of parallel arcs is bounded
as seen below. It should be noted that the planar embeddings can be compted in polynomial
time (e.g., by [7]).

Claim. We may assume that there is no parallel arcs from s to t.

Suppose that there exist parallel arcs from s to t, which may be assumed to have distinct
labels. Moreover, we may assume that there are exactly two such arcs eα, eβ ∈ E with labels
α, β, respectively, since otherwise, we have |l(G; s, t)| ≥ 3 and hence (G, s, t) ̸∈ D0

α,β. By the
3-connectivity of G, there exists an s–t path in G−{eα, eβ}, and let γ be its label. If α ̸= γ ̸= β,
then |l(G; s, t)| ≥ 3. Otherwise, remove eγ from G. Note that this removal does not violate the
hypotheses of this lemma, and does not make an effect on whether (G, s, t) ∈ D0

α,β or not.

Claim. We may assume that there exists at most one pair of parallel arcs.

Suppose that there exist parallel arcs from x to y with distinct labels, where {x, y} ̸= {s, t}.
Then, by the 3-connectivity of G, the parallel arcs form an inner face whose boundary is
unbalanced. Hence, there is a unique pair of such parallel arcs if (G, s, t) ∈ D0

α,β, since the

existence of at least two pairs of parallel arcs immediately implies (G, s, t) ̸∈ D0
α,β.

Recall that we have to test whether there exists an embedding of G such that the outer
boundary is unbalanced and there exists a unique inner face whose boundary is unbalanced.
Since a pair of parallel arcs is unique if exists, there are at most two possible face sets of
G. Furthermore, since there exists exactly one arc from s to t, both of the two faces whose
boundaries share the arc st ∈ E can be the outer face, i.e., there are two choices of the outer
face. It can be done in polynomial time to check, in each of the at most four (= 2 × 2) cases,
whether exactly one inner face has an unbalanced boundary or not, and hence one can do the
whole procedure in polynomial time.

We are ready to prove Theorem 11.

Proof of Theorem 11. Recall that our goal is to test whether |l(G; s, t)| ≤ 2 or not, and to find
min{3, |l(G; s, t)|} s–t paths whose labels are distinct. These are achieved as follows. We first
test whether |l(G; s, t)| ≤ 2 or not by TestTwoLabels(G, s, t) for the input triplet (G, s, t)
(which may not be in D). If we obtain |l(G; s, t)| ≤ 2, then we also obtain at most two s–t
paths in G which attain all labels in l(G; s, t). Otherwise, we can obtain three s–t paths whose
labels are distinct by FindThreePaths(G, s, t). Hence, it suffices to show the correctness and
polynomiality of these two algorithms.

The correctness of these two algorithms is almost obvious. It should be noted that we
have l(G′; s, t) = l(G; s, t) in any step of TestTwoLabels(G, s, t). This follows from the fact
that all of the following operations do not change l(G′; s, t): the removal of X in Step 0, the
reductions in Step 2, and the 3-contractions in Step 3.

Let Tlabels(n) and Tpaths(n) denote the computational time of TestTwoLabels(G, s, t) and
FindThreePaths(G, s, t), respectively, where n is the number of vertices in G. TestTwoLa-
bels runs in polynomial time, i.e., Tlabels(n) is polynomially bounded, since in the recursion
step (Step 2) we just divide the graph G′ into two smaller graphs which have |V ′| − |X| and
|X|+ 2 vertices. By a reccurence relation

Tpaths(n) ≤ n · Tlabels(n− 1) + Tpaths(n− 1),

we have Tpaths(n) ≤ n2 · Tlabels(n) + const., which is also polynomially bounded.

5 Proof of Necessity of Theorem 14

In this section, we give a proof of the necessity of Theorem 14, and begin with its outline.
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5.1 Proof sketch

To derive a contradiction, assume that there exist distinct α, β ∈ Γ and a triplet (G, s, t) ∈ D
such that αβ−1 ̸= βα−1, l(G; s, t) = {α, β}, and (G, s, t) ̸∈ Dα,β. We choose such α, β ∈ Γ and
(G, s, t) ∈ D so that G is as small as possible.

Fix an arbitrary arc e0 in G leaving s, and consider the graph G′ := G − e0. By using the
minimality of G, we can show that (G′, s, t) ∈ Dα,β (see Claims 24 and 25). Furthermore, we
can see that a triplet (G̃, s, t) ∈ D0

α,β is obtained from (G′, s, t) ∈ Dα,β by applying a contraction
at most once, which removes the head of e0 (see Claims 26–28).

By the definition of D0
α,β, G̃ can be embedded on a plane satisfying the conditions in Defi-

nition 15. By using the fact that G is obtained from G̃ by expanding a vertex set and adding
e0, we try to extend the planar embedding of G̃ to G. Then, we have one of the following cases.

• Such an extension is possible, i.e., G can be embedded on a plane satisfying the conditions
in Definition 15. This contradicts that (G, s, t) ̸∈ Dα,β.

• G̃ contains a contractible vertex set, which contradicts that (G̃, s, t) ∈ D0
α,β .

• G contains a contractible vertex set or a 2-cut (i.e., G− {x, y} is not connected for some
distinct x, y ∈ V ), which contradicts that G is a minimal counterexample (cf. Claim 23).

• We can construct an s–t path of label γ ∈ Γ \ {α, β} in G by using e0 and some arcs in
G′, which contradicts that l(G; s, t) = {α, β}.

In each case, we have a contradiction, which completes the proof of the necessity of Theorem 14.
We note that Theorem 1 plays an important role in this case analysis.

5.2 Useful lemmas

Before starting the proof, we show several lemmas which are utilized in it.

Lemma 19. For any (G = (V,E), s, t) ∈ Dα,β, we have the following properties.

(1) Let G′ be the graph obtained from G by shifting by γ ∈ Γ at s. Then, (G′, s, t) ∈ Dα′,β′,
where α′ := αγ−1 and β′ := βγ−1.

(2) Let G′ := (V + s′, E + e′) be the graph obtained from G by adding a vertex s′ ̸∈ V and an
arc e′ = s′s with label γ ∈ Γ. Then, (G′, s′, t) ∈ Dα′,β′, where α′ := αγ and β′ := βγ.

(3) For an arc e ∈ E and a triplet (H,x′, y′) ∈ D with l(H;x′, y′) = ψG(e), let G
′ be the graph

obtained from G by replacing e with (H,x′, y′). Then, (G′, s, t) ∈ Dα,β.

(4) For parallel arcs e1, e2 ∈ E whose labels are α′, β′ ∈ Γ with α′β′−1 ̸= β′α′−1, let G′

be the graph obtained from G by replacing e1, e2 with some (H,x′, y′) ∈ Dα′,β′ . Then,
(G′, s, t) ∈ Dα,β.

Proof. (1) Since (G, s, t) ∈ Dα,β , there exists a Γ-labeled graph G̃ obtained from G by a contrac-
tion sequence such that (G̃, s, t) ∈ D1

α,β. Note that shifting at any vertex does not make an effect
on whether an arbitrarily fixed subgraph is balanced or not, and hence the same contraction
sequence can be applied to G′. For the resulting graph G̃′, we show (G̃′, s, t) ∈ D1

α′,β′ .

Since (G̃, s, t) ∈ D1
α,β, there exists a sequence of Γ-labeled graphs G1, . . . , Gr = G̃ such

that (G1, s, t) ∈ D0
α,β and Gi = Gi+1/(Hi, xi, yi) for each i = 1, . . . , r − 1, where (Hi, xi, yi) ∈

D0
αi,βi

and αi ̸= βi. Let H ′
i be Hi itself if s ̸∈ {xi, yi}, and the Γ-labeled graph obtained

from Hi by shifting by γ at xi if xi = s (without loss of generality by the symmetry). We
then obtain a sequence of Γ-labeled graphs G′

1, . . . , G
′
r = G̃′ such that (G′

1, s, t) ∈ D0
α′,β′ and

G′
i = G′

i+1/(H
′
i, xi, yi) for each i = 1, . . . , r − 1, where (H ′

i, xi, yi) ∈ D0
α′
i,β

′
i
, α′

i = αi ̸= βi = β′i if

s ̸∈ {xi, yi}, and α′
i = αiγ

−1 ̸= βiγ
−1 = β′i if xi = s. Hence, (G̃′, s, t) ∈ D1

α′,β′ .
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(2) For X := {s′, s} ⊊ V (G′) with s′ ∈ X and t ∈ V (G′) \ X, the Γ-labeled graph G′/2X is
obtained from G by shifting by γ−1 at s and by identifying s ∈ V and s′ ∈ V (G′/2X). This
implies (G′/2X, s

′, t) ∈ Dα′,β′ since (G, s, t) ∈ Dα,β, and hence we have (G′, s′, t) ∈ Dα′,β′ .

(3) Suppose that e is from x ∈ V to y ∈ V , and let X := (V (H) \ {x′, y′}) + x ⊊ V (G′). Then,
X can be merged into a single vertex x by a 2-contraction sequence, since G′[X] is balanced
(note that H is balanced by Lemma 5) and {x, y} separates X and {s, t} in G′. The resulting
graph coincides with G, which implies (G′, s, t) ∈ Dα,β.

(4) Suppose that e1 and e2 are from x ∈ V to y ∈ V . Since (G, s, t) ∈ Dα,β and (H,x′, y′) ∈
Dα′,β′ , there exist Γ-labeled graphs G̃ and H̃ obtained from G and H, respectively, by contrac-
tion sequences such that (G̃, s, t) ∈ D1

α,β and (H̃, x′, y′) ∈ D1
α′,β′ .

By the construction of G′, {x, y} separates V (H)\{x′, y′} and V in G′. This implies that the
2-contractions in G and H to construct G̃ and H̃, respectively, can be applied independently
also in G′, since each 2-contracted vertex set does not contain both x and y. Furthermore,
any 3-contraction in G cannot remove x nor y (since, for a vertex set X ⊆ V \ {s, t} with
X ∩ {x, y} ̸= ∅, GX cannot be balanced because of the parallel arcs e1 and e2), and any 3-
contraction in H can remove neither x′ nor y′. Hence, also the 3-contractions in G and H to
construct G̃ and H̃, respectively, can be applied independently also in G′.

Let G̃′ be the Γ-labeled graph obtained from G̃ by replacing e1 and e2 with (H̃, x′, y′). By
the last paragraph, we can obtain G̃′ also from G′ by a contraction sequence, and hence it
suffices to show (G̃′, s, t) ∈ D1

α,β. Recall that (G̃, s, t) ∈ D1
α,β and (H̃, x′, y′) ∈ D1

α′,β′ . The latter

implies that, by a sequence of reductions of triplets (Hi, xi, yi) ∈ D0
αi,βi

, we can obtain from H̃
the Γ-labeled graph H0 consisting of two parallel arcs from x′ to y′ with labels α′, β′ Therefore,
by identifying x, y ∈ V (G̃′) with x′, y′ ∈ V (H̃), respectively, and applying the same sequence of
reductions to G̃′, we can confirm (G̃′, s, t) ∈ D1

α,β since (G̃, s, t) ∈ D1
α,β.

By Lemma 19-(1), it suffices to consider the case when β = 1Γ and α−1 ̸= α (i.e., α2 ̸= 1Γ).
The following lemma gives a useful characterization of D0

1Γ, α
.

Lemma 20. For any (G = (V,E), s, t) ∈ D0
1Γ, α

, there exists a Γ-labeled graph G′ which is
(s, t)-equivalent to G and embeddable with the following conditions.

1. The arc set E is partitioned into {E0, E1}, where Ei := { e ∈ E | ψG′(e) = αi } (i = 0, 1).

2. There exists an s–t path P = (s = u0, e1, u1, . . . , el, ul = t) along the outer boundary of
G′ − E1 such that

• every arc in E1 is embedded on the outer face of G′ − E1 and is from ui ∈ V (P ) to
uj ∈ V (P ) for some i < j, and

• for any distinct arcs e1 = ui1uj1 , e2 = ui2uj2 ∈ E1, one of two paths P [ui1 , uj1 ] and
P [ui2 , uj2 ] is a subpath of the other.

Figure 4: Lemma 20 cliams that (G′, s, t) ∈ D0
1Γ, α

can be embedded as above.
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Proof. Fix an embedding of G with the conditions of D0
1Γ, α

, and let P0 and P1 be the s–t paths
along the boundary of the outer face F0 of G whose labels are 1Γ and α, respectively.

Let G∗ be the dual graph of G (as an undirected graph), i.e., the vertex set of G∗ is the
face set F of G, the edge set of G∗ coincides with the arc set of G, and each two faces whose
boundaries share an arc e ∈ E in G are connected by the same-named edge e in G∗. Take a
shortest F1–F0 path Q in G∗−E(P0). We prove that the second property holds with E1 = E(Q).

Note that G′ := G−E(Q) is connected since Q is a shortest path without the corresponding
edge to any arc in E(P0), and that G′ is balanced since F1 is the unique unbalanced inner
face. We then have l(G′; s, t) = 1Γ by Lemma 5. Hence, by Lemma 4, we may assume that
ψG(e) = 1Γ for any arc e ∈ E(G′) by shifting at some vertices v ∈ V \ {s, t}. Thus we obtain
G with the second property, since ψG(bd(F )) = 1Γ for any F ∈ F \ {F0, F1}.

The following two lemmas show properties of triplets (G, s, t) ∈ D satisfying l(G; s, t) =
{α, β} for distinct α, β ∈ Γ with αβ−1 ̸= βα−1.

Lemma 21. If a triplet (G, s, t) ∈ D satisfies l(G; s, t) = {α, β} for distinct α, β ∈ Γ with
αβ−1 ̸= βα−1, then G contains no unbalanced cycle C with ψG(C̄) = ψG(C).

Proof. We first note that the equality ψG(C̄) = ψG(C) does not depend on the choices of the
direction and the end vertex of the cycle C. Suppose to the contrary that G contains such a
cycle C. In the same way as the proof of Lemma 5, take an s–x path P and a y–t path Q in
G so that V (P ) ∩ V (C) = {x}, V (Q) ∩ V (C) = {y}, V (P ) ∩ V (Q) = ∅, and x, y ∈ V (C) are
distinct, and choose y as the end vertex of C.

Let α′ := ψG(C[x, y]) and β′ := ψG(C̄[x, y]). We then have α′β′−1 = ψG(C) = ψG(C̄) =
β′α′−1. By extending C[x, y] and C̄[x, y] using P and Q, we obtain two s–t paths in G whose
labels are α′′ := ψG(Q)·α′·ψG(P ) and β

′′ := ψG(Q)·β′·ψG(P ), which are distinct. Since α′β′−1 =
β′α′−1 implies α′′β′′−1 = β′′α′′−1, we have {α′′, β′′} ̸⊆ {α, β} = l(G; s, t), a contradiction.

Lemma 22. Suppose that a triplet (G, s, t) ∈ D satisfies l(G; s, t) = {α, β} for distinct α, β ∈ Γ
with αβ−1 ̸= βα−1. Then, there is no family of two distinct unbalanced cycles C1, C2 and three
disjoint paths P1, P2, P3 in G (possibly of length 0) such that

• C1 ∩ C2 is either empty (Fig. 5) or a path (Fig. 6),

• P1 is from s to x1 ∈ V (C1) \ V (C2), P3 is from y2 ∈ V (C2) \ V (C1) to t, P2 is from
y1 ∈ V (C1)− x1 to x2 ∈ V (C2)− y2, where possibly s = x1, y1 = x2, or y2 = t,

• V (P1)∩V (C1) = {x1}, V (P1)∩V (C2) = ∅, V (P2)∩V (C1) = {y1}, V (P2)∩V (C2) = {x2},
V (P3) ∩ V (C1) = ∅, and V (P3) ∩ V (C2) = {y2}.

Figure 5: When C1 ∩ C2 is empty. Figure 6: When C1 ∩ C2 is a path.

Proof. Suppose to the contrary that there exist such a family of distinct unbalanced cycles
C1, C2 and disjoint paths P1, P2, P3 in G. When C1∩C2 is a path, choose one of its end vertices
as x2 = y1. For each i = 1, 2, choose xi as the end vertex of Ci, and let Qi := Ci[xi, yi],
Ri := C̄i[xi, yi], αi := ψG(Qi), and βi := ψG(Ri), where the direction of Ci is fixed arbitrarily.
Note that, by Claim 21, we have βi

−1αi = ψG(Ci) ̸= ψG(C̄i) = αi
−1βi for each i = 1, 2.
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By concatenating P1, either Q1 or R1, P2, either Q2 or R2, and P3 (ignoring the path C1∩C2

if it exists and is traversed in both directions), we construct four s–t paths whose labels are

γ1 := ψG(P3) · α2 · ψG(P2) · α1 · ψG(P1),

γ2 := ψG(P3) · α2 · ψG(P2) · β1 · ψG(P1),

γ3 := ψG(P3) · β2 · ψG(P2) · α1 · ψG(P1),

γ4 := ψG(P3) · β2 · ψG(P2) · β1 · ψG(P1).

Since l(G; s, t) = {α, β} and γ1 ̸= γ2 ̸= γ4 ̸= γ3 ̸= γ1, we have γ1 = γ4 and γ2 = γ3. This
implies α2 · ψG(P2) · α1 = β2 · ψG(P2) · β1 and α2 · ψG(P2) · β1 = β2 · ψG(P2) · α1. The former
leads to α1 = ψG(P2)

−1 ·α−1
2 β2 ·ψG(P2) · β1, and by substituting this into the latter, we obtain

α2 · ψG(P2) · β1 = β2α
−1
2 β2 · ψG(P2) · β1, which implies β−1

2 α2 = α−1
2 β2, a contradiction.

5.3 Minimal counterexample

Here we start a proof of “only if” part of Theorem 14. To derive a contradiction, suppose to the
contrary that there exist distinct α, β ∈ Γ and a triplet (G, s, t) ∈ D such that αβ−1 ̸= βα−1,
l(G; s, t) = {α, β}, and (G, s, t) ̸∈ Dα,β. We choose such α, β ∈ Γ and (G = (V,E), s, t) ∈ D
so that the value of |V | + |E| is minimized. Note that we have |V | ≥ 3 obviously, and we
may assume β = 1Γ and α−1 ̸= α (i.e., α2 ̸= 1Γ) by Lemma 19-(1). By the minimality, G is
well-contracted, and moreover we have the following property.

Claim 23. There is no 2-cut in G.

Proof. Suppose to the contrary that there exists a 2-cut {x, y} ⊊ V such that G[X] is one
of the connected components of G − {x, y} for X ⊆ V \ {x, y}. Since (G, s, t) ∈ D, we also
have (G[X ∪ {x, y}], x, y) ∈ D. If |l(G[X ∪ {x, y}];x, y)| ≥ 3, then we also have |l(G; s, t)| ≥ 3,
a contradiction. In the case that l(G[X ∪ {x, y}];x, y) = {α′, β′} for distinct α′, β′ ∈ Γ with
α′β′−1 = β′α′−1, there exists an unbalanced cycle C in G[X ∪ {x, y}] such that ψG(C)

−1 =
ψG(C) by Proposition 13, which contradicts Claim 21.

Otherwise, i.e., if |l(G[X ∪ {x, y};x, y)| = 1 or l(G[X ∪ {x, y}];x, y) = {α′, β′} for distinct
α′, β′ ∈ Γ with α′β′−1 ̸= β′α′−1, we can construct a smaller counterexample by the reduction
of (G[X ∪ {x, y}], x, y) (Lemma 19-(3), (4)), a contradiction. Note that, since G is a minimal
counterexample, (G[X ∪ {x, y}], x, y) ∈ Dα′,β′ if l(G[X ∪ {x, y}];x, y) = {α′, β′}.

Fix an arbitrary arc e0 = sv0 ∈ δG(s) leaving s, and let G′ := G − e0. We next show the
following claims, which lead to (G′, s, t) ∈ Dα,β.

Claim 24. (G′, s, t) ∈ D.
Proof. Suppose to the contrary that there exists a vertex which is not contained in any s–t path
in G′. If G′ is not connected, then we have l(G− e0; v0, t) = {α′, β′} and (G− e0, v0, t) ̸∈ Dα′,β′ ,
where α′ = α · ψG(e0)

−1 and β′ = β · ψG(e0)
−1 (since otherwise (G, s, t) ∈ Dα,β by Lemma 19-

(2)). This contradicts the minimality of G.
Otherwise (i.e., if G′ is connected and (G′, s, t) ̸∈ D), there exists a 1-cut x ∈ V −s in G′+st

(cf. the proof of Lemma 2). This implies that {s, x} ⊊ V is a 2-cut in G as well as in G + st,
which contradicts Claim 23.

Claim 25. l(G′; s, t) = {α, β}.
Proof. Since each s–t path in G′ is also in G, l(G′; s, t) ⊆ l(G; s, t) = {α, β}. Suppose to the
contrary that |l(G′; s, t)| = 1. Then, G′ is balanced by Lemma 5. Hence, for the vertex set
X := V − s with t ∈ X and s ∈ V \ X, we have that |X| ≥ 2, G[X] (= G′[X]) is balanced,
and {s, t} separates X and {s, t}. This implies that we can obtain, from G by a 2-contraction
sequence, the Γ-labeled graph G0 consisting of two parallel arcs from s to t whose labels are α
and β. Since (G0, s, t) ∈ D0

α,β ⊆ D1
α,β is obvious, we have (G, s, t) ∈ Dα,β, a contradiction.
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By Claims 24 and 25 and the minimality of G, we have (G′, s, t) ∈ Dα,β. Hence, by Defini-
tions 16 and 17, there exists a sequence of Γ-labeled graphs G0, G1, . . . , Gr such that

• G0 consists of two vertices s, t and two parallel arcs from s to t whose labels are α and β,

• for i = 1, 2, . . . , r, we have Gi−1 = Gi/(Hi, xi, yi) for some triplet (Hi, xi, yi) ∈ D0
αi,βi

with

|V (Hi)| ≥ 3 and αiβ
−1
i ̸= βiα

−1
i , and

• Gr is obtained from G′ by a contraction sequence.

By the minimality of G, we can show the following claims.

Claim 26. Let i ∈ {2, 3}. For any i-contractible vertex set X in G′ = G − e0, the head v0 of
e0 does not remain in the resulting graph G′/iX.

Proof. Fix an arbitrary contractible vertex set X ⊊ V . If X ⊆ V \ {s, t} is 3-contractible in
G′, then we have v0 ∈ X, since otherwise X is 3-contractible also in G, a contradiction. Hence,
v0 ̸∈ V (G′/3X).

Suppose that X ⊊ V is 2-contractible in G′, and to the contrary that v0 ∈ V (G′/2X).
Let x ∈ X and y ∈ V \X be the vertices satisfying the conditions in Definition 8, i.e., {x, y}
separates X and {s, t} in G′, and G′[X] is a balanced 2-connected component of G′ − y. Let Y
be the vertex set of the connected component of G′ − {x, y} that contains X − x.

If v0 ∈ V \ Y , then X is 2-contractible also in G, a contradiction. Since v0 ∈ V (G′/2X) =
(V \ X) + x, we have v0 ∈ Y \ X =: Z. Suppose that G′[Z] is not connected. Then, at
least one connected component of G′[Z] does not contain v0, and hence G contains a 2-cut
separating such a component and {x, y}, which contradicts Claim 23. Thus, G′[Z] is connected,
and G′[Y ∪ {x, y}] contains a 2-cut {y, z} separating X and Z, where z ∈ X − x ⊆ V \ {s, t}.
This implies y ̸= s. Since NG(Z) = {s, y, z} and G contains no 3-contractible vertex set,
GZ := G[Z ∪ NG(Z)] − E(NG(Z)) is not balanced, and neither is GZ − s in particular. Note
that GZ − {s, y} is 2-connected, since otherwise some vertex w ∈ Z separates v0 and some
vertex in Z − w in GZ − {s, y}, which implies that {w, y} is a 2-cut in G, a contradiction.

Figure 7: The situation currently considered (possibly x = s, x = t, or y = t).

Recall that G[X] = G′[X] is balanced, and we may assume that the label of every arc
in E(X) is 1Γ by shifting at vertices in X − x ⊆ V \ {s, t} in advance if necessary. Let
X ′ := X \ {x, z}. Since NG(X

′) = {x, y, z} and G contains no 3-contractible vertex set,
GX′ := G[X ′ ∪NG(X

′)] − E(NG(X
′)) is not balanced. Hence, at least two arcs e1 = u1y and

e2 = u2y in δG(y) with u1, u2 ∈ X ′ have different labels.
Here we consider the following three cases separately, and derive a contradiction using

Claim 22: (a) x = s and y = t, (b) x ̸= s and y = t, and (c) x ̸= s and y ̸= t (possibly x = t).
Note that, if x = s and y ̸= t, then {s, y} is a 2-cut also in G = G′ + e0, a contradiction.

(a) Suppose that x = s and y = t. By Claim 23, G − t is 2-connected. Since G contains no
2-contractible vertex set, G− t contains an unbalanced cycle C1. Besides, by extending a u1–u2
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path in G[X] − s using e1 and e2, we can construct an unbalanced cycle C2 in G[X + y] − s.
Note that G[X]− s = G′[X]− s is conneceted since G′[X] is 2-connected.

If C1 is contained in GZ −{s, t} (see Fig. 8), then we can take an s–x1 path P1 and an y1–z
path P ′

2 in GZ − t such that V (P1)∩V (C1) = {x1}, V (P ′
2)∩V (C1) = {y1}, V (P1)∩V (P ′

2) = ∅,
and x1, y1 ∈ V (C1) are distinct, since GZ − {s, t} is 2-connected. Besides, we can take an z–x2
path P ′′

2 in G[X]−s such that V (P ′′
2 )∩V (C2) = {x2} ⊊ V (C2)− t. Let P2 be the path obtained

by concatenating P ′
2 and P ′′

2 , and P3 := (t) a path of length 0. Then, these paths Pi (i = 1, 2, 3)
and cycles Cj (j = 1, 2) compose a counterexample for Claim 22, a contradiction.

Otherwise, C1 traverses e0 = sv0 and intersects z (see Fig. 9). If C1 and C2 are disjoint,
then, to derive a contradiction, it suffices just to take a y1–x2 path P2 in G[X] − s such that
y1 ∈ V (C1)− s and x2 ∈ V (C2)− t. Otherwise, we can choose C1 and C2 so that C1 ∩C2 forms
a path, say Q, since the label of every arc in E(X) is 1Γ and E(C2) \ {e1, e2} ⊆ E(X). In this
case, to derive a contradiction, it suffices just to choose one of the end vertices of Q as x1 = y2.

Figure 8: When C1 is in GZ − {s, t}. Figure 9: When C1 traverses e0 = sv0.

(b) Suppose that x ̸= s and y = t. Then, since G contains no 2-contractible vertex set, there
exists an unbalanced cycle C ′

1 in the 2-connected component of G− t that contains s and v0. By
taking two disjoint paths between {s, v0} and {x1, y1} for distinct x1, y1 ∈ V (C ′

1) and extending
them using two x1–y1 paths C ′

1[x1, y1] and C̄ ′
1[x1, y1] and the arc e0 = sv0 (see Fig. 10), we

construct an unbalanced cycle C1 traversing e0 (see Fig. 11). Also in this case, we can derive a
contradiction in the same way as (a), where it suffices just to take a path P2 (possibly of length
0) connecting C1 and C2.

Figure 10: Construction of C1 from C ′
1. Figure 11: When x ̸= s and y = t.

(c) Suppose that x ̸= s and y ̸= t (possibly x = t). Let C2 be an arbitrary unbalanced cycle in
GX′ , which traverses e1 and e2. IfGZ−{s, y} contains an unbalanced cycle C1 (see Fig. 12), then,
to derive a contradiction, take an s–x1 path P1 and a y1–z path P

′
2 in GZ−y, a z–x2 path P ′′

2 in
G[X]− x, and a y–t path P3 in G− s such that V (P1)∩ V (C1) = {x1}, V (P ′

2)∩ V (C1) = {y1},
V (P1) ∩ V (P ′

2) = ∅, V (P ′′
2 ) ∩ V (C2) = {x2} ⊆ V (C2) − y, and x1, y1 ∈ V (C1) are distinct.

Otherwise, there exists an unbalanced cycle C1 intersecting y in GZ − s (see Fig. 13). In this
case, it suffices just to take an s–x1 path P1 in GZ and a y2–t path P3 in G− {s, z} such that
x1 ∈ V (C1)− y ⊆ Z and y2 ∈ V (C2)− y ⊆ X ′.
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Figure 12: When y ̸∈ V (C1). Figure 13: When y ∈ V (C1).

Claim 27. There exists a contraction sequence to construct Gr from G′ which consists of at
most one contraction.

Proof. To prove the claim by a contradiction, suppose that any contraction sequence to con-
struct from G′ to Gr consists of at least two contractions. Choose one of the shortest such
contraction sequences, and let X,Y ⊆ V be the first two contracted vertex sets, i.e., Gr is ob-
tained from (G′/iX)/j Y by a contraction sequence (which may be empty) for some i, j ∈ {2, 3}.
Let Ĝ := G′/iX. Note that v0 ∈ X and v0 ̸∈ V (Ĝ) by Claim 26

• Suppose that i = j = 3. If Y ∩ NG′(X) = ∅, then Y is 3-contractible also in G, which
contradicts the minimality of G. Otherwise, X∪Y is 3-contractible in G′, and in particular
G′/3 (X ∪Y ) = Ĝ/3Y . Hence, there exists a shorter contraction sequence to construct Gr

from G′, a contradiction.

• Suppose that i = 3 and j = 2. If |Y ∩NG′(X)| ̸= 2, then Y is 2-contractible also in G′,
which contradicts Claim 26. Otherwise, NG′(X) = {x1, x2, y} for distinct x1, x2 ∈ Y − x,
where x ∈ Y and y ∈ V (Ĝ) \ Y be the vertices satisfying the conditions in Definition 8
(i.e., Ĝ[Y ] is a balanced 2-connected component of Ĝ − y containing x). Let Y ′ be the
2-contractible vertex set in G′ with x ∈ Y ′ and y ∈ V \ Y ′ such that Y ⊊ Y ′ ⊆ X ∪ Y .
If Y ′ = X ∪ Y , then we have G′/2Y

′ = Ĝ/2Y , which leads to a shorter contraction
sequence, a contradiction. Otherwise, by Claim 26, we have v0 ∈ Y ′. In this case, since
G′ − y = G′[X ∪ Y ] is not 2-connected, there exists a vertex z ∈ X separating Y ′ and
some vertex z′ ∈ X − z in G′ − y. Then, G contains a 2-cut {y, z} separating v0 and z′,
which contradicts Claim 23.

• Suppose that i = 2 and j = 3. Let x ∈ X and y ∈ V \ X be the vertices satisfying
the conditions in Definition 8 (hence, x remains in Ĝ as the merged vertex). Note that
G′[X−x] is a connected component of G′−{x, y} by Claim 23. We derive a contradiction
separately in the following cases.

– If Y ∩ {x, y} = ∅, then Y is 3-contractible also in G.

– If x ∈ Y , then X ∪ Y is also 3-contractible in G′, and G′/3 (X ∪ Y ) = Ĝ/3Y .

– Otherwise, we have x ̸∈ Y and y ∈ Y . In this case, (X ∪Y )−x is also 3-contractible
in G′, and the resulting graph coincides with Ĝ/3Y .

• Suppose that i = j = 2. Let x ∈ X, y ∈ V \X, x′ ∈ Y , and y′ ∈ V (Ĝ) \ Y be the vertices
satisfying the conditions in Definition 8 with respect to X and Y , respectively. Note again
that G′[X − x] is a connected component of G′ − {x, y} by Claim 23. If {x, y} ⊆ Y , then
G′[X + y] is balanced. Since X is not 2-contractible and X −x is not 3-contractible in G,
we have x = s, which also implies x′ = s. In this case, {s, y} is a 2-cut in G separating
v0 ∈ X − s and y′ ̸= y, a contradiction. Otherwise (i.e., if x ̸∈ Y or y ̸∈ Y ), Y is
2-contractible also in G′, a contradiction.
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Claim 28. (Gr, s, t) ∈ D0
α,β.

Proof. We prove (Gi, s, t) ∈ D0
α,β by induction on i. Suppose that (Gi−1, s, t) ∈ D0

α,β, and let
F1 be the unique inner face of Gi−1 with ψGi−1(bd(F1)) ̸= 1Γ as in Definition 15.

We show that the resulting parallel arcs of the reduction of (Hi, xi, yi) ∈ D0
αi,βi

form the
boundary of F1. Suppose to the contrary that the parallel arcs xiyi ∈ E(Gi−1) do not form
bd(F1). Then, there exists a connected subgraphH ofGi−1 such that xi, yi ∈ V (H), |V (H)| ≥ 3,
and {xi, yi} separates V (H) and {s, t}. Let H̃ and H̃i be the connected subgraphs of Gr corre-
sponding to H and Hi, respectively (i.e., H and Hi are obtained from H̃ and H̃i, respectively,
by the sequence of reductions to construct Gi from Gr).

By Claim 27, Gr is obtained from G′ by at most one contraction. If there is no contraction
or the contracted vertex set contains none of xi, yi ∈ V , then it is easy to see that {xi, yi}
separates {s, t} and each of V (H̃) and V (H̃i) in G′. This contradicts Claim 23, since at least
one of H̃ and H̃i does not contain v0 and hence {xi, yi} is a 2-cut in G.

Suppose that xi ∈ V (Gr) is the resulting vertex of the 2-contraction of X ⊊ V with xi ∈ X
and some y ∈ V \ X. If y ̸∈ V (H̃) or y ̸∈ V (H̃i), then H̃ or H̃i, respectively, is a connected
subgraph of G′ separated from {s, t} by {xi, yi} as well as of Gr and does not contain v0 ∈ X,
which contradicts Claim 23. Otherwise, y must coincide with yi. In this case, by the definition
of the 2-contraction, there exists x ∈ X (which may coincide with xi) such that {x, yi} is a
2-cut separating X and V (H̃) in G′, which contradicts Claim 23 since v0 ̸∈ V (H̃).

Then, since (Gi−1, s, t) ∈ D0
α,β and (Hi, xi, yi) ∈ D0

αi,βi
, by combining the embeddings of

Gi−1 and Hi, we obtain an embedding of Gi which satisfies the conditions of D0
α,β.

Let G̃ := Gr. Recall that we may assume β = 1Γ and α−1 ̸= α (i.e., α2 ̸= 1Γ). By Lemma 20,
we may assume also that G̃ = (Ṽ , Ẽ) is embedded on a plane so that the two properties hold
(we apply shifting at each vertex v ∈ V \ {s, t} to G in advance of the construction of G̃ if
necessary). Let Ẽi ⊆ Ẽ be the arc set corresponding to Ei ⊆ E in Lemma 20 for each i = 0, 1,
and we refer to the path P = (s = u0, e1, u1, . . . , el, ul = t) along the outer boundary of G̃− Ẽ1

as P itself.
By Claim 27, we consider only three cases:

Case 1. G̃ = G′,

Case 2. G̃ = G′/2X for some vertex set X ⊊ V containing v0, and

Case 3. G̃ = G′/3X for some vertex set X ⊆ V \ {s, t} containing v0.

Here, we also assume that, in Cases 2 and 3, the label of every arc in G[X] and G′
X − y for

some y ∈ NG′(X), respectively, is 1Γ (by shifting in advance of the contractions if necessary),
where G′

X := G′[X ∪NG′(X)]− E(NG′(X)).
In what follows, we derive a contradiction by showing that (G, s, t) ∈ D1Γ, α, γ ∈ l(G; s, t)

for some γ ∈ Γ\{1Γ, α} (in particular, γ = α2 or α−1), or G contains a 3-contractible vertex set
or a 2-cut (which contradicts Claim 23). Recall that (G′, s, t) ∈ D implies (G̃, s, t) ∈ D. Hence,
G̃−s is connected. Since every arc in Ẽ1 connects two vertices on the path P in G̃− Ẽ1 defined
in Lemma 20, G̃ − Ẽ1 − s is also connected. Thus we have ψG(e0) ∈ l(G; s, t) = {1Γ, α}, and
consider the following two cases separately: when ψG(e0) = 1Γ, and when ψG(e0) = α.

Note that we have Ẽ1 \ δG̃(s) ̸= ∅. To see this, suppose that Ẽ1 \ δG̃(s) = ∅. In this case,

G̃− s is balanced, and hence, unless G̃ = G0, there exists a 2-contractible vertex set X ⊆ Ṽ − s
with t ∈ X and s ∈ Ṽ \X, a contradiction. Hence, we have G̃ = G0, which implies Case 2 and
e0 ∈ E(X). If ψG(e0) = 1Γ, then X is 2-contractible also in G, a contradiction. Otherwise, we
have ψG(e0) = α, which leads to an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a contradiction.
We can also see Ẽ1 \ δG̃(t) ̸= ∅ in the same way.

Let F̃0 and F̃ ′
0 denote the outer faces of G̃ and G̃− s, respectively.
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5.4 When ψG(e0) = 1Γ

5.4.1 Case 1. G̃ = G′

Case 1.1. v0 ∈ V (bd(F̃ ′
0)) \ V (P )

In this case, we can embed G = G̃ + e0 on a plane by adding e0 on F̃0 so that (G, s, t)
satisfies the conditions of D0

1Γ, α
(see Definition 15), a contradiction.

Case 1.2. v0 ∈ V (bd(F̃ ′
0)) ∩ V (P )

Suppose that v0 = uh ∈ V (P ). Take an s–t path P ′ so that (P ′ ∪ P ) − s forms the outer
boundary of G̃− Ẽ1− s. Let j be the minimum index such that E(P [uj , t]) ⊆ E(P ′), and i the
index such that P [ui, uj ] ∪ P ′[ui, uj ] forms a cycle (i.e., they intersect only at ui and uj). Take
an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) so that j′ − i′ is maximized.

Suppose that j′ ≤ i. Then, G contains a 2-cut {s, ui} separating ui−1 ̸= s and t ̸= ui, which
contradicts Claim 23. Hence, we have i < j′, and consider the following two cases.

Case 1.2.1. Suppose that v0 = uh ∈ V (P ) ∩ V (P ′) or h ≤ i′. In this case, we can embed e0
without violating the condition of D0

1Γ, α
.

Case 1.2.2. Otherwise, we have j′ ≤ h < j since uh = v0 ∈ V (bd(F̃ ′
0)) ∩ V (P ). If 0 < i′ ≤ i,

then we can construct an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, by
concatenating e0, P̄ [uh, uj′ ], ē

′, P [ui′ , ui], P
′[ui, uj ], and P [uj , t]. Otherwise, i.e., in the

case of i < i′, we can derive the same contradiction by replacing P [ui′ , ui] with P̄ [ui′ , ui].

Figure 14: Case 1.2.

Case 1.3. v0 ̸∈ V (bd(F̃ ′
0))

Take a path Q in G̃ − Ẽ1 − E(P ) − s from ui ∈ V (P ) to uj ∈ V (P ) with 0 < i < j such
that Q ∪ P [ui, uj ] forms a cycle which encloses v0 (possibly v0 ∈ V (P )), i.e., V (Q ∪ P [ui, uj ])
separates v0 and {s, t} in G̃. If there are multiple choices of Q, then we choose Q so that the
region enclosed by Q ∪ P [ui, uj ] is maximized.

Suppose that V (Q) separates v0 and V (P ) in G̃. Then, there exists a 3-contractible vertex set
X ⊆ V \V (P ) such that v0 ∈ X andNG(X) = {s, w1, w2}, a contradiction, where w1, w2 ∈ V (Q)
are the vertices closest ui, uj ∈ V (P ) ∩ V (Q), respectively, among those which are reachable
from v0 in G̃ without intersecting Q in between. Thus we can take a v0–uh path R in G̃−V (Q)
(possibly of length 0, i.e., v0 = uh) with i < h < j. If there are multiple choices of R, then we
choose R so that h is maximized under the condition that V (R) ∩ V (P ) = {uh}.

Case 1.3.1. Suppose that there is no arc in Ẽ1 \ δG(s) incident to an inner vertex on P [ui, uj ].
If every arc in Ẽ1 ∩ δG̃(s) enters a vertex on P [s, ui] ∪ P [uj , t], then G contains a 3-
contractible vertex set X ⊆ V \ {s, ui, uj} such that v0 ∈ X, NG(X) = {s, ui, uj}, and
E(X)∪ δG(X) ⊆ Ẽ0+ e0, a contradiction. Otherwise, every arc in Ẽ1 \ δG̃(s) ̸= ∅ enters a
vertex on P [s, ui]. Then, G contains a 2-cut {s, ui} separating ui−1 ̸= s and t ̸= ui, which
contradicts Claim 23.
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Case 1.3.2. Suppose that there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) such that i′ < h and
i < j′ < j. In this case, similarly to Case 1.2.1, we can construct an s–t path of label
α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g., by concatenating e0, R, P [uh, uj′ ], ē

′,
P̄ [ui′ , ui], Q, and P [uj , t] if i ≤ i′ and h ≤ j′.

Case 1.3.3. Suppose that every arc in Ẽ1\δG̃(s) connects two vertices on P [uh, t]. In this case,

every arc in Ẽ1∩ δG̃(s) also enters a vertex on P [uh, t], and v0 ̸= uh since v0 ̸∈ V (bd(F̃ ′
0)).

Let w be the vertex closest to uj among those on Q which are reachable from v0 in G−uh
without intersecting Q in between. By the maximality of j and h (i.e., the choice of Q and
R), {s, uh, w} separates v0 ∈ V \ {s, uh, w} and V (P [uh, t]) in G, and hence G contains a
3-contractible vertex set X ⊆ V \ {s, uh, w} such that v0 ∈ X and NG(X) = {s, uh, w}, a
contradiction.

Figure 15: Case 1.3.1.

Figure 16: Case 1.3.2. Figure 17: Case 1.3.3.

These three cases imply that there exists an arc in Ẽ1 \ δG̃(s) entering a vertex on P [uj , t].
To see this, suppose to the contrary that every such arc enters a vertex on P [u1, uj−1], and take
e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) so that j′ − i′ is maximized. We may assume i < j′ by Case 1.3.1, and
hence h ≤ i′ by Case 1.3.2, which leads to the condition of Case 1.3.3, a contradiction. This
implies also that no arc in Ẽ1 ∩ δG̃(s) enters a vertex on P [u1, uj−1].

Case 1.3.4. Suppose that all arcs in Ẽ1 \ δG̃(s) leave the same vertex ui∗ ∈ V (P ) with i∗ < h.

In this case, by Case 1.3.2, we may assume that every arc in Ẽ1 \ δG̃(s) enters a vertex
on P [uj , t]. Then, since {s, ui∗ , uj} separates v0 ∈ V \ {s, ui∗ , uj} and V (P [uj , t]) in G,
there exists a 3-contractible vertex set X ⊆ V \ {s, ui∗ , uj} in G such that v0 ∈ X and
NG(X) = {s, ui∗ , uj}, a contradiction.

Case 1.3.5. Suppose that all arcs in Ẽ1 \ δG̃(s) enter the same vertex uj∗ ∈ V (P ) with j ≤ j∗.
In this case, {s, uj , uj∗} separates v0 ∈ V \ {s, uj , uj∗} and V (P [uj , t]) in G. If j < j∗,
then G contains a 3-contractible vertex set X ⊆ V \ {s, uj , uj∗} such that v0 ∈ X and
NG(X) = {s, uj , uj∗}, a contradiction. Otherwise (i.e., if j∗ = j), G contains a 2-cut
{s, uj} separating v0 and t ̸= uj (recall that Ẽ1 \ δG̃(t) ̸= ∅), a contradiction.
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Figure 18: Case 1.3.4. Figure 19: Case 1.3.5.

Otherwise, there exist two arcs e1 = ui1uj1 and e2 = ui2uj2 in Ẽ1 \ δG̃(s) such that i2 <
i1 < j1 < j2 by Cases 1.3.4 and 1.3.5. We choose e2 so that j2− i2 is maximized. We then have
i2 < h by Case 1.3.3, and j ≤ j2 by the argument just after Case 1.3.3. Since there exists an
arc in Ẽ1 \ δG̃(s) incident to an inner vertex on P [ui, uj ] by Case 1.3.1, we can choose e1 so that
i < i1 (which is obvious if i ≤ i2, and consider Case 1.3.2 otherwise). We then have h < j1,
since otherwise we have i < i1 < j1 ≤ h < j, which implies that e1 satisfies the condition of
Case 1.3.2. We choose e1 so that i1 is minimized under the condition that i < i1.

Case 1.3.6. Suppose that j ≤ i1. In this case, {s, ui2 , uj} separates v0 ∈ V \ {s, ui2 , uj} and
P [uj , t] in G, and hence G contains a 3-contractible vertex set X ⊆ V \ {s, ui2 , uj} such
that v0 ∈ X and NG(X) = {s, ui2 , uj}, a contradiction.

Case 1.3.7. Suppose that j2 = j. We then have h ≤ i1 by i < i1 < j1 < j2 = j and Case 1.3.2.
Let h∗ be the maximum index such that there exists a w–uh∗ path R∗ in G̃− uj for some
w ∈ (V (Q)\V (P ))+v0 such that V (R∗)∩V (Q) ⊆ {w} and V (R∗)∩V (P ) = {uh∗}. Note
that h ≤ h∗. If i1 < h∗, then we have h < h∗ because of h ≤ i1. In this case (see Fig. 22),
since R and R∗ are disjoint by the maximality of h and h∗, we can construct an s–t path
of label α2 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g., by concatenating e0, R, P [uh, ui1 ],
e1, P̄ [uj1 , uh∗ ], R̄∗, Q̄[w, ui], P̄ [ui, ui2 ], e2, and P [uj , t] if h

∗ ≤ j1 and i2 ≤ i. Otherwise
(i.e., if h∗ ≤ i1), by the minimality of i1 and the maximality of h∗, there exists a 2-cut
{uh∗ , uj} separating ui and uj1 (i < h ≤ h∗ ≤ i1 < j1 < j2 = j) in G (see Fig. 23), a
contradiction.

Case 1.3.8. Otherwise, we have i < i1 < j < j2 (also recall that i2 < i1 < j1 < j2 and
i2 < h < j1). In this case, we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a
contradiction, e.g., by concatenating e0, R, P̄ [uh, ui1 ], e1, P̄ [uj1 , uj ], Q̄, P [ui, ui2 ], e2, and
P [uj2 , t] if i1 ≤ h, j ≤ j1, and i ≤ i2.

Figure 20: Case 1.3.6. Figure 21: Case 1.3.8.

5.4.2 Case 2. G̃ = G′/2X for some X ⊊ V containing v0

Let x ∈ X and y ∈ V \X be the vertices satisfying the conditions in Definition 8, i.e., G′[X] is a
balanced 2-connected component of G′−y, and we also refer to the resulting vertex x ∈ Ṽ as v′0.
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Figure 22: Case 1.3.7 (an s–t path of label α2). Figure 23: Case 1.3.7 (a 2-cut {uh∗ , uj}).

Recall that the label of every arc in G[X] is assumed to be 1Γ by advance shifting. This implies
that s ̸∈ {x, y}, since otherwise X is 2-contractible also in G, a contradiction. By Claim 23, G
contains no 2-cut, and hence G[X − x] coincides with the connected component of G − {x, y}
that contains v0. Besides, since G contains no 3-contractible vertex set and G[X] is balanced,
there exist two arcs x0y and x1y in δG(y) with x0, x1 ∈ X (possibly x0 = x1) whose labels are
1Γ and either α or α−1, respectively. Since these arcs remain in G̃ as parallel arcs from x to y
(x0y ∈ Ẽ0 and either x1y ∈ Ẽ1 or yx1 ∈ Ẽ1), x = v′0 and y are adjacent on P .

Figure 24: Before the 2-contraction of X. Figure 25: After the 2-contraction of X.

Let e′0 = sv′0 ̸∈ Ẽ be an arc with label 1Γ, and G̃
+ := G̃ + e′0. If v′0 ̸∈ V (bd(F̃ ′

0)), then we
can derive a contradiction in the same way as Case 1.3, since any s–t path traversing e′0 in G̃+

can be expanded into an s–t path of the same label traversing e0 in G by using some arcs in
E(X) + x0y, whose labels are 1Γ. Hence, we may assume that v′0 = uh ∈ V (bd(F̃ ′

0)) ∩ V (P ).
Construct a new Γ-labeled graph H from G[X+y] by splitting the vertex y into two vertices

y0 and y1 so that every arc entering y in G[X + y] with label α±i ∈ {1Γ, α, α−1} enters yi in
H for each i ∈ {0, 1}. In particular, xi ∈ X is adjacent to yi for each i ∈ {0, 1}. Since G[X] is
2-connected, there exist two disjoint paths between {x, v0} and {y0, y1} in H. Let Q1, R1, Q2,
and R2 be a v0–y0 path, a y1–x path, a v0–y1 path, and a y0–x path, respectively, in H.

Case 2.1. y = uh+1 ∈ V (P )

Note that y ̸= t, since otherwise Ẽ1 \ δG̃(t) = ∅, a contradiction.

Case 2.1.1. Suppose that one can take the four paths in H so that V (Qi) ∩ V (Ri) = ∅ for
i = 1, 2. Then, we can construct two v0–x paths in G[X+y] whose labels are α−1 and α by
concatenating Qi and Ri with identifying y0, y1 ∈ V (H) with y ∈ V (e.g., see Figs. 26 and
27). Since l(G; s, t) = {1Γ, α}, for any j > h+1, there is no arc e′ = uiuj ∈ Ẽ1\δG̃(s), and
no ui–uj path P

′ in G̃−Ẽ1−s with i ≤ h which does not intersect P in between (otherwise,
we can construct an s–t path of label α2 or α−1 not in {1Γ, α} in G, a contradiction, by
concatenating e0, the above v0–x path of label α or α−1 in G[X + y], P̄ [x, ui], e

′ or P ′,
and P [uj , t]). Hence, G contains a 2-cut {s, y = uh+1} separating x = uh and t ̸= y, a
contradiction.

24



Figure 26: Disjoint paths Q1 and R1 in H. Figure 27: A v0–x path of label α−1 in G[X+y].

Otherwise, exactly one of the two pairs {Qi, Ri} (i = 1, 2) of disjoint paths cannot be taken in
H. Then, by Theorem 1, H can be embedded on a plane so that either v0, y1, y0, x or v0, y0, y1, x
are on the outer boundary in this order, when either {Q1, R1} or {Q2, R2}, respectively, cannot
be taken in H. Here, we may assume that no contraction (in the sense of Theorem 1) is needed,
since if there exists a vertex set Z ⊆ V (H) \ {x, v0, y0, y1} with |NH(Z)| ≤ 3, then G contains
a contractible (in the sense of Definitions 7 and 8) vertex set included in Z, a contradiction.
These embeddings of H immediately lead to embeddings of G[X+ y] by merging y0, y1 ∈ V (H)
into y ∈ V . By replacing the parallel arcs xy of G̃ with these embeddings of G[X + y], we can
obtain embeddings of G′ = G− e0 satisfying the condition of D0

1Γ, α
.

Case 2.1.2. Suppose that there is no pair of disjoint paths Q1, R1 in H. We then have an
embedding of H in which v0, y1, y0, x are on the outer boundary in this order. If there
is no arc ui′uj′ ∈ Ẽ1 \ δG̃(s) with i′ < h < j′, then we can add e0 = sv0 to G′ without
violating the embedding condition of D0

1Γ, α
, which contradicts (G, s, t) ∈ D1Γ, α. Besides,

if there exists an arc ui′uj′ ∈ Ẽ1 \ δG̃(s) with i
′ ≤ h and h+1 < j′, then we can construct

an s–t path of label α2 ∈ Γ \ {1Γ, α} in G (see Fig. 28), a contradiction, by using the
disjoint paths Q2, R2 in H. Hence, there exists an arc ui′uh+1 ∈ Ẽ1 \ δG̃(s) with i

′ < h,

and all arcs in Ẽ1 \ δG̃(s) enter y = uh+1.

Recall that x = uh ∈ V (bd(F̃ ′
0)). This implies that there is no ui–uj path in G̃− Ẽ1 − s

with i < h < j which does not intersect P in between. Therefore, {s, x, y} separates
ui′ ̸∈ {s, x} and t ̸= y in G, and the vertex set of the connected component of G−{s, x, y}
that contains ui′ is 3-contractable in G (see Fig. 29), a contradiction.

Figure 28: G contains an s–t path of label α2. Figure 29: G has a 3-contractible vertex set.

Case 2.1.3. Suppose that there is no pair of disjoint paths Q2, R2 in H. We then have an
embedding of H in which v0, y0, y1, x are on the outer boundary in this order. If there
is no ui–uj path in G̃ − Ẽ1 − s with i < h < j which does not intersect P in between,
then we can add e0 = sv0 to G′ without violating the embedding condition of D0

1Γ, α
,

a contradiction. Besides, if there exists a ui–uj path in G̃ − Ẽ1 − s with i ≤ h and
h + 1 < j which does not intersect P in between, then we can construct an s–t path of
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label α−1 ∈ Γ \ {1Γ, α} in G (see Fig. 30), a contradiction, by using the disjoint paths
Q1, R1 in H. Hence, there exists a ui–uh+1 path in G̃− Ẽ1− s with i < h which does not
intersect P in between.

The assumption x = uh ∈ V (bd(F̃ ′
0)) implies that all arcs in Ẽ1 \ δG̃(s) leave x = uh.

Therefore, {s, x, y} separates ui ̸∈ {s, x} and t ̸= y in G, and the vertex set of the
connected component of G−{s, x, y} that contains ui is 3-contractable in G (see Fig. 31),
a contradiction.

Figure 30: G contains an s–t path of label α−1. Figure 31: G has a 3-contractible vertex set.

Case 2.2. y = uh−1 ∈ V (P )

If there exist a v0–y0 path Q1 and a y1–x path R1 such that V (Q1) ∩ V (R1) = ∅, then we
can construct an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, by concatenating e0,
Q1, R1, and P [uh, t] with identifying y0, y1 ∈ V (H) with y ∈ V . Hence, we may assume that
there is no pair of such disjoint paths Q1, R1 in H. By Theorem 1, we then have an embedding
H in which v0, y0, y1, x are on the outer boundary in this order.

If there is no ui–uj path in G̃ − Ẽ1 − s with i < h < j which does not intersect P in
between, then we can add e0 = sv0 to G′ without violating the condition of D0

1Γ, α
(see Fig. 32),

a contradiction. Otherwise, there exists such a ui–uj path P ′. In this case, we can construct
an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G (see Fig. 33), a contradiction, by concatenating e0,
Q2, P̄ [uh−1, ui], and P [uh, t], P

′, and P [uj , t] with identifying y1 ∈ V (H) with y ∈ V .

Figure 32: e0 = sv0 can be embedded. Figure 33: G contains an s–t path of label α−1.

5.4.3 Case 3. G̃ = G′/3X for some X ⊆ V \ {s, t} containing v0

Let y1, y2, y3 ∈ Ṽ be the vertices of the resulting triangle of the 3-contraction of X (i.e.,
NG′(X) = {y1, y2, y3}). Consider a plane Γ-labeled graph G̃′ obtained from G′ by merging all
vertices in X into a single vertex v′0 and removing parallel arcs with the same label (see Fig. 34).
Let e′0 = sv′0 ̸∈ E(G̃′) be an arc with label 1Γ, and G̃+ := G̃′ + e′0. If v′0 is not on the outer
boundary of G̃′ − s, then we can derive a contradiction in the same way as Case 1.3, since any
s–t path traversing e′0 in G̃+ can be expanded into an s–t path of the same label traversing e0
in G by using some arcs in E(X), whose labels are 1Γ, and any 3-contractible vertex set Y in
G̃+ containing v′0 can be expanded to a 3-contractible vertex set X ∪ (Y − v′0) in G. Hence, we
may assume that v′0 is on the outer boundary of G̃′ − s.
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Figure 34: Correspondence between G̃ and G̃′.

Recall that the label of every arc in G′
X − y is assumed to be 1Γ for some y ∈ NG(X), say

y1 ∈ NG′(X), where G′
X := G′[X ∪ NG′(X)] − E(NG′(X)). This implies that the label of the

arc y2y3 in the resulting triangle is 1Γ. Let e1 = y1y2 be the arc in the resulting triangle. We
consider the following three cases separately: when e1 ∈ Ẽ1, when ē1 ∈ Ẽ1, and when e1 ∈ Ẽ0.
Note that y2 and y3 are symmetric.

Case 3.1. e1 = y1y2 ∈ Ẽ1

We may assume that y1, y2, y3 are on P in this order, and y2 and y3 are adjacent. Let hi be
the index such that yi = uhi

∈ V (P ) for each i = 1, 2, 3, and then we have h1 < h2 = h3 − 1.

Case 3.1.1. Suppose that y1 = s. Since Ẽ1 \ δG̃(s) ̸= ∅ (recall the argument just before

Section 5.4), there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s). Take such e′ so that j′ − i′ is
maximized. Since G − {s, uh} is connected for any h with j′ ≤ h ≤ h2, there exists an
ui–uj path P

′ in G̃− Ẽ1−s with i < j′ and h2 < j which does not intersect P in between.
Then, we can construct an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g.,
by concatenating e0, an arbitrary v0–y2 path in G′

X −{y1, y3}, P̄ [y2, uj′ ], ē, P [ui′ , ui], P ′,
and P [uj , t] if i

′ ≤ i.

Case 3.1.2. Suppose that y1 ̸= s and there exist a v0–y1 path Q and a y2–y3 path R in G′
X

such that V (Q)∩V (R) = ∅. Then, we can construct an s–t path of label α−1 ∈ Γ\{1Γ, α}
in G, a contradiction, by concatenating e0, Q, P [y1, y2], R, and P [y3, t].

Case 3.1.3. Otherwise, there is no such disjoint paths in G′
X . Then, by Theorem 1, G′

X can
be embedded on a plane so that v0, y2, y1, y3 are on the outer boundary in this order.
By replacing the triangle y1y2y3 in G̃ with this embedding, we obtain an embedding of
G′ = G − e0 satisfying the condition of D0

1Γ, α
. If there is no ui–uj path in G̃ − Ẽ1 − s

such that P [ui, uj ] intersects y2 and y3, then we can add e0 to G′ without violating the
embedding condition of D0

1Γ, α
, a contradiction. Otherwise, there exists such a ui–uj path

P ′ in G̃ − Ẽ1 − s. Then, we can construct an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G,
a contradiction, e.g., by concatenating e0, an arbitrary v0–y1 path Q in G′

X − {y2, y3},
P [y1, ui], P

′, and P [uj , t] if h1 ≤ i.

Figure 35: Case 3.1.1. Figure 36: Case 3.1.3 (e0 = sv0 is embeddable).
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Figure 37: Case 3.1.2 (disjoint paths Q,R in G′
X).

Case 3.2. ē1 = y2y1 ∈ Ẽ1

We may assume that y1, y2, y3 are on P in this order, and y2 and y3 are adjacent. Let hi be
the index such that yi = uhi

∈ V (P ) for each i = 1, 2, 3, and then we have h3 + 1 = h2 < h1.

Case 3.2.1. Suppose that there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) with i
′ ≤ h3 and h1 < j′.

If there exist a v0–y1 path Q and a y2–y3 path R in G′
X such that V (Q) ∩ V (R) = ∅,

then we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a contradiction, by
concatenating e0, Q, P̄ [y1, y2], R, P̄ [y3, ui′ ], e, and P [uj′ , t]. Hence, we may assume that
there is no such disjoint paths. By Theorem 1, G′

X can be embedded on a plane so that
v0, y2, y1, y3 are on the outer boundary in this order.

By replacing the triangle y1y2y3 in G̃ with this embedding of G′
X , we obtain an embedding

of G′ = G − e0 satisfying the condition of D0
1Γ, α

. Recall that the graph G̃′ obetain from
G′ by merging all vertices in X into a single vertex v′0 is embedded on a plane so that v′0
is on the outer boundary of G̃′ − s. Hence, there is no ui–uj path in G̃ − Ẽ1 − s with
i ≤ h3 and h2 ≤ j which does not intersect P in between. This implies that we can add
e0 = sv0 to G′ without violating the embedding condition of D0

1Γ, α
, a contradiction.

Case 3.2.2. Suppose that all arcs in Ẽ1 \ δG̃(s) enter y1. If y1 = t, then G− t is balanced, and
hence G contains a 2-contractible vertex set, a contradiction. Otherwise, since G contains
no 2-cut, there exists a ui–uj path P ′ in G̃ − Ẽ1 − s with i < h1 < j which does not
intersect P in between. Take P ′ so that i is minimized. If h2 ≤ i, then {s, ui, y1} separates
y3 ̸∈ {s, ui} and t in G, and the vertex set of the connected component of G− {s, ui, y1}
that contains y3 is 3-contractible in G, a contradiction.

Otherwise, we have i < h2. If there exist a v0–y2 path Q and a y1–y3 path R in G′
X such

that V (Q)∩V (R) = ∅, then we can construct an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G,
a contradiction, by concatenating e0, Q, P [y2, y1], R, P̄ [y3, ui], P

′, and P [uj , t]. Hence, we
may assume that there is no such disjoint paths. By Theorem 1, G′

X can be embedded on
a plane so that v0, y1, y2, y3 are on the outer boundary in this order. Since G̃′ is embedded
on a plane so that v′0 is on the outer boundary of G̃′ − s, there is no arc in Ẽ1 \ δG̃(s)
leaving an inner vertex on P [s, y3]. Also in this case, we can add e0 = sv0 to G′ without
violating the embedding condition of D0

1Γ, α
, a contradiction.

Case 3.2.3. Otherwise, there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) with h2 ≤ i′ < j′ < h1.

Take such e so that i′ is minimized, and take a ui–uj path P ′ in G̃− Ẽ1 − s with i < h2
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and j ̸= h1 which does not intersect P in between so that j is maximized (possibly a y3–y2
path consisting of a single arc y3y2 ∈ Ẽ0). If j ≤ i′, then {s, uj , y1} separates y3 ̸∈ {s, uj}
and t in G, and the vertex set of the connected component of G−{s, uj , y1} that contains
y3 is 3-contractible in G, a contradiction. Thus we have i′ < j.

If there is no pair of a v0–y2 path Q and a y3–y1 path R in G′
X such that V (Q)∩V (R) = ∅,

then, by Theorem 1, G′
X can be embedded on a plane so that v0, y1, y2, y3 are on the

outer boundary in this order. Since G̃′ is embedded on a plane so that v′0 is on the outer
boundary of G̃′− s, there is no arc in Ẽ1 \ δG̃(s) leaving an inner vertex on P [s, y3], which
implies that we can add e0 = sv0 to G′ without violating the embedding condition of
D0

1Γ, α
, a contradiction. Hence, we may assume that there exist a v0–y2 path Q and a

y3–y1 path R in G′
X such that V (Q) ∩ V (R) = ∅.

If i′ < j < h1, then we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a
contradiction, e.g., by concatenating e0, Q, P [y2, ui′ ], e, P̄ [uj′ , uj ], P̄

′, P [ui, y3], R, and
P [y1, t] if j ≤ j′. Otherwise, we have h1 < j. Then, we can construct an s–t path of label
α−1 ∈ Γ \ {1Γ, α} in G by concatenating e0, Q, P [y2, y1], R̄, P̄ [y3, ui], P

′, and P [uj , t].

Figure 38: Case 3.2.1. Figure 39: Case 3.2.2.

Figure 40: Case 3.2.3 (an s–t path of label α2). Figure 41: Case 3.2.3 (an s–t path of label α−1).

Case 3.3. e1 = y1y2 ∈ Ẽ0

In this case, y1, y2, y3 are all symmetric, and s ̸∈ {y1, y2, y3} since G = G′ + e0 contains no
3-contractible vertex set. Recall that the Γ-labeled graph G̃′ obtained from G′ by merging all
vertices in X into a single vertex v′0 and removing parallel arcs with the same label is embedded
on a plane so that v′0 is on the outer boundary of G̃′ − s. This implies that at least one arc
yiyj ∈ Ẽ0 (1 ≤ i < j ≤ 3) is in bd(F̃ ′

0). Take an s–t path P ′ so that (P ′ ∪ P ) − s forms the
outer boundary of G̃− Ẽ1 − s.

Case 3.3.1. Suppose that some arc yiyj ∈ Ẽ0 is in E(bd(F̃ ′
0))\E(P ). Without loss of general-

ity, take such an arc y1y3 so that y3 is closest to t along P ′ among y1, y2, y3. There exist a
v0–y2 path Q and a y1–y3 path R in G′

X such that V (Q) ∩ V (P ) = ∅, since otherwise, by
Theorem 1, we can embed G = G′ + e0 on a plane so that (G, s, t) satisfies the conditions
of D0

1Γ, α
, a contradiction.

If y2 ̸∈ V (bd(F̃ ′
0)), then we can derive a contradiction in the same way as Case 1.3. To

see this, let e′0 = sy2 ̸∈ Ẽ be an arc with label 1Γ, and consider the Γ-labeled graph
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G̃+ := G̃ + e′0. Then, any s–t path in G̃+ traversing e′0 can be expanded to an s–t path
of the same label in G traversing e0 by using Q and R (if it traverses y1y3 ∈ Ẽ0), and
any 3-contractible vertex set Y in G̃+ containing y2 can be expanded to a 3-contractible
vertex set X ∪ Y in G. Hence, we may assume that y2 ∈ V (bd(F̃ ′

0)).

If y2 ∈ V (bd(F̃ ′
0)) ∩ V (P ′), then, by the choice of y1y3, we have NG̃(y1) = {y2, y3},

which implies that X + y1 is 3-contractible in G, a contradiction. Thus we have y2 ∈
V (bd(F̃ ′

0))\V (P ′) ⊆ (V (bd(F̃ ′
0))∩V (P ))− t, and hence all arcs in Ẽ1 \ δG̃(s) either enter

leave those on P [y2, t] or vertices on P [s, y2]. In the former case, {s, y2, y3} separates y1
and t in G, and the vertex set of the connected component of G − {s, y2, y3} containing
y1 is 3-contractible in G, a contradiction.

In the latter case, take an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) so that j′ is maximized, and
let i and j be the indices, respectively, such that P [ui, uj ] ∪ P ′[ui, uj ] forms a cycle and
ui, y1, y3, uj are on P ′ in this order (possibly ui = y1 or y3 = uj). Note that uj is strictly
closer to t along P than y2 since y2 ∈ V (bd(F̃ ′

0))\V (P ′). If j′ ≤ i, then G contains a 2-cut
{s, ui} separating ui′ and t, a contradiction. Otherwise, we can construct an s–t path of
label α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g., by concatenating e0, Q, P̄ [y2, uj′ ], ē,
P [ui′ , ui], P

′[ui, uj ], and P [uj , t] if i
′ ≤ i.

Case 3.3.2. Otherwise, take an arc y1y3 ∈ E(bd(F̃ ′
0))∩E(P ) so that y3 is closest to t along P

among y1, y2, y3. Let i and j be the indices, respectively, such that P [ui, uj ] ∪ P ′[ui, uj ]
forms a cycle and ui, y1, y3, uj are on P in this order, and h the index such that y1 = uh.
Then, since the arcs y1y2 and y2y3 in Ẽ0 are not in E(bd(F̃ ′

0)) \E(P ), we have i ≤ h < j
and P ′ does not traverse these arcs y1y2, y2y3 ∈ Ẽ0, and hence there is no arc ui′uj′ ∈
Ẽ1 \δG̃(s) with i

′ ≤ h < j (recall that G̃′ is embedded on a plane so that v′0 is on the outer

boundary of G̃′ − s). Take an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) so that j′ − i′ is maximized.

Suppose that every arc in Ẽ1\δG̃(s) enters a vertex on P [s, y1], i.e., j
′ ≤ h. If j′ ≤ i, thenG

contains a 2-cut {s, ui} separating ui′ and t, a contradiction. Otherwise, we can construct
an s–t path of label α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g., by concatenating e0,
an arbitrary v0–y1 path in G′

X − {y2, y3}, P̄ [y1, uj′ ], ē, P [ui′ , ui], P ′[ui, uj ], and P [uj , t] if
i′ ≤ i.
Otherwise, every arc in Ẽ1 \ δG̃(s) leaves a vertex on P [y3, t], i.e., h < i′. In this case,
there exist a v0–y2 path Q and a y1–y3 path R in G′

X such that V (Q) ∩ V (P ) = ∅, since
otherwise, by Theorem 1, we can embed G = G′ + e0 on a plane so that (G, s, t) satisfies
the conditions of D0

1Γ, α
, a contradiction. We then have y2 ∈ V (bd(F̃ ′

0)), since otherwise
we can derive a contradiction in the same way as Case 1.3 (see Case 3.3.1).

If y2 ∈ V (bd(F̃ ′
0))\V (P ), then {s, y2, y3} separates y1 and t in G, and the vertex set of the

connected component ofG−{s, y2, y3} containing y1 is 3-contractible inG, a contradiction.
Otherwise, y2 ∈ V (bd(F̃ ′

0)) ∩ V (P ). Also in this case, X + y1 is 3-contractible in G
(NG(X + y1) = {s, y2, y3}), a contradiction.

Figure 42: Case 3.3.1. Figure 43: Case 3.3.2.
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5.5 When ψG(e0) = α

This case is rather easier than when ψG(e0) = 1Γ. When G̃ = G′/3X for some X ⊆ V \ {s, t}
containing v0, we redefine G̃ as a plane Γ-labeled graph obtained from G′ by merging all
vertices in X into a single vertex v′0 and removing parallel arcs with the same label (cf. G̃′ in
Section 5.4.3). This G̃ also satisfies (G̃, s, t) ∈ D0

1Γ, α
with a natural embedding obtained from

G′/3X (put v′0 in the resulting triangle), and redefine Ẽ0, Ẽ1, P, F̃0, F̃
′
0 for this G̃ in the same

way. In the other cases, let v′0 be the corresponding vertex in G̃, i.e., v′0 = v0 when G̃ = G′,
and v′0 = x when G̃ = G′/2X for some X ⊊ V with x ∈ X and y ∈ V \X containing v0.

If there exists a v′0–t path of label α in G̃ then we can construct an s–t path of label
α2 ∈ Γ \ {1Γ, α} in G, a contradiction, by expanding it to a v0–t path of the same label in G′

and extending it using e0. Hence, we may assume that there is no such v′0–t path in G̃. In what
follows, to distinguish from Section 5.4, we use Roman numerals for the case numbers.

Case i. v′0 ∈ V (bd(F̃ ′
0)) \ V (P )

Let i be the minimum index such that there exists a v′0–ui path Q in G̃− Ẽ1− s which does
not intersect P in between. If there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) with i < j′, then we
can construct a v′0–t path of label α, a contradiction, e.g., by concatenating Q, P̄ [ui, ui′ ], e

′,
and P [uj′ , t] if i

′ ≤ i. Hence, every arc in Ẽ1 \ δG̃(s) connects two vertices on P [u1, ui]. This
implies that G contains a 2-cut {s, ui} separating u1 and v0, a contradiction.

Figure 44: Case i.

Case ii. v′0 ∈ V (bd(F̃ ′
0)) ∩ V (P )

Suppose that v′0 = uh ∈ V (P ). If there exists an arc e′ = ui′uj′ ∈ Ẽ1\δG̃(s) with h < j′, then

we can construct a v′0–t path of label α in G̃, a contradiction, e.g., by concatenating P [uh, ui′ ],
e, and P [uj′ , t] if h ≤ i′. Hence, every arc in Ẽ1\δG̃(s) connects two vertices on P [u1, uh]. Then,

we can embed an arc e′0 = sv′0 on some face of G̃ without violating the embedding conditions
in Definition 15.

Case ii.1. If v′0 = v0, then this immediately contradicts that (G, s, t) ̸∈ D1Γ, α.

Case ii.2. Suppose that v′0 is the resulting vertex of the 2-contraction of some X ⊊ V with
x ∈ X and y ∈ V \X. By the same argument as Case 2 in Section 5.4, either y = uh+1

or y = uh−1. Since there must be an arc connecting x and y in Ẽ1 \ δG̃(s), we have
y = uh−1. Construct a new Γ-labeled graph H from G[X + y] in the same way as Case 2
in Section 5.4, i.e., by splitting the vertex y into two vertices y0 and y1 so that every arc
entering y in G[X + y] with label αi ∈ {1Γ, α} leaves yi in H for each i ∈ {0, 1}. If there
exist a v0–y0 path Q and a y1–x path R in H such that V (Q) ∩ V (R) = ∅, then we can
construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a contradiction, by concatenating e0,
Q, R, and P [x, t], with identifying y0, y1 ∈ V (H) with y ∈ V . Otherwise, by Theorem 1,
H can be embedded on a plane so that v0, y1, y0, x are on the outer boundary in this order,
and hence we can add e0 to G′ without violating the embedding conditions of D0

1Γ, α
, a

contradiction.
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Figure 45: Case ii.2.

Case ii.3. Otherwise, v′0 is the new vertex obtained by merging some X ⊆ V \ {s, t}. In the
same way as Case 3 in Section 5.4, let y1, y2, y3 ∈ Ṽ be the vertices of the resulting
triangle, and assume that the label of every arc in G′

X − y1 is 1Γ.

Without loss of generality, assume that the arc y1y3 is in the outer boundary of G′/3X,
and y3 is closest to t along P among y1, y2, y3. If there is no pair of a v0–y2 path Q and a
y1–y3 path R in G′

X := G′[X ∪NG′(X)]−E(NG′(X)) such that V (Q) ∩ V (R) = ∅, then,
by Theorem 1, G′

X can be embedded on a plane so that v0, y1, y2, y3 are on the outer
boundary in this order, and hence we can add e0 to G′ without violating the embedding
conditions of D0

1Γ, α
, a contradiction. Hence, there exist such disjoint paths Q,R in G′

X .

Suppose that y1v
′
0 ∈ Ẽ1. In this case, y1 ̸= s since otherwise X is 3-contractible also in

G, a contradiction. Besides, y2 ∈ V (bd(F̃ ′
0)) ∩ V (P ) since there exists an arc y1y2 with

label α in G′/3X. Then, we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a
contradiction, by concatenating e0, Q, P̄ [y2, y1], R, and P [y3, t].

Otherwise, the label of every arc in G′
X is 1Γ. If y2 ̸∈ V (bd(F̃ ′

0)), then we can reduce this
case to Case iii below by regarding y2 as v′0. Otherwise, y2 ∈ V (bd(F̃ ′

0))\V (P ). If y1 = s,
then G − s is balanced, and hence G contains 2-contractible vertex set, a contradiction.
Hence, by the same argument as Case i, in which we regard y2 as v′0 and G′/3X as G̃
(i.e., take an y2–ui path in G′/3X so that i is minimized, and so on), we can derive a
contradiction. Note that we can use the arc y1y3 ∈ E(P ) because of the two disjoint paths
Q,R in G′

X .

Figure 46: Case ii.3 (y1v
′
0 ∈ Ẽ1). Figure 47: Case ii.3 (y1v

′
0 ∈ Ẽ0).

Case iii. v′0 ̸∈ V (bd(F̃ ′
0))

Let i and j be the minimum and maximum indices, respectively, such that there exist a
v′0–ui path Q and a v′0–uj path R in G̃− Ẽ1 − s which do not intersect P in between. If there
exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) with i < j′, then we can construct a v′0–t path of label α

in G̃, a contradiction, e.g., by concatenating Q, P̄ [ui, ui′ ], e
′, and P [uj′ , t] if i

′ ≤ i.
Otherwise, every arc in Ẽ1 \ δG̃(s) enters a vertex on P [u1, ui], and at least one such arc

ui′uj′ ∈ Ẽ1 \ δG̃(s) exists. Since G contains no 3-contractible vertex set, there exists an arc

from s to the connected component of G̃− {s, ui, uj} containing v′0 with label 1Γ in G̃. Hence,
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there is no path from an inner vertex on P [s, ui] to a vertex on P [uj , t] in G̃ − Ẽ1 − s which
does not intersect P in between. This implies that G contains a 2-cut {s, ui} separating ui′ and
t, a contradiction.

Figure 48: Case iii.
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