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Shortest Disjoint Non-zero A-paths

via Weighted Matroid Matching

Yutaro Yamaguchi∗

Abstract

The problem of packing non-zero A-paths in group-labeled graphs was introduced by
Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour (2006), which commonly
generalizes several disjoint paths problems, e.g., Mader’s disjoint S-paths problem. Tani-
gawa and Yamaguchi (2013) showed a reduction of this problem to matroid matching, which
leads to alternative proofs for a min-max formula due to Chudnovsky et al. and its efficient
solvability. In addition, Yamaguchi (2014) provided a reduction to linear matroid parity
under some condition for groups, which leads to faster algorithms than the first one due to
Chudnovsky, Cunningham, and Geelen (2008). In this paper, we extend these reductions
to a weighted version, and present various cases that can be solved in polynomial time by
weighted linear matroid parity algorithms thanks to Iwata (2013) and Pap (2013).

1 Introduction

1.1 Packing Non-zero A-paths

Let Γ be a group. A Γ-labeled graph is a directed graph G = (V,E) with each edge labeled by an
element of Γ, i.e., with a mapping ψG : E → Γ called a label function. The label of an undirected
walk W = (v0, e1, v1, e2, v2, . . . , el, vl) in G (i.e., vi ∈ V for each i = 0, 1, . . . , l and ei = vi−1vi ∈
E or ei = vivi−1 ∈ E for each i = 1, 2, . . . , l) is defined as ψG(W ) := ψG(el) · · ·ψG(e2) · ψG(e1)
if ei = vi−1vi for every i, and otherwise by replacing the corresponding label ψG(ei) with its
inverse ψG(ei)

−1 for each i with ei = vivi−1. A walk is called balanced (or a zero walk) if its
label is the identity element 1Γ of Γ, and unbalanced (or a non-zero walk) otherwise. For a
prescribed terminal set A ⊆ V , an A-path is a path (a walk intersecting each vertex at most
once) that starts and ends in A and does not intersect A in between.

The problem of packing non-zero A-paths, introduced by Chudnovsky et al. [4], is to find a
maximum number of vertex-disjoint non-zero A-paths in a given Γ-labeled graph. It generalizes
Mader’s disjoint S-paths problem [14] (see [17, Chapter 73]) and packing odd-length A-paths,
depending on the choice of the group Γ (see [4, Section 2]). For this problem, a min-max formula
and a polynomial-time algorithm were given by Chudnovsky et al. [4] and Chudnovsky et al. [3],
respectively.

In this paper, we deal with a weighted version of this problem: to minimize the total length
of a designated number of vertex-disjoint non-zero A-paths for a given edge length.

Problem 1 (ShortestDisjointNon-zeroA-paths).

Input A Γ-labeled graph G = (V,E), a terminal set A ⊆ V , a nonnegative edge length ℓ ∈ RE
≥0,

and a positive integer k.

Find A family P of vertex-disjoint non-zero A-paths in G such that |P| = k and the total
length ℓ(E(P)) of the edges used in P is minimized.
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Even for such a weighted version of Mader’s disjoint S-paths problem, any polynomial-
time algorithm was not known, while Karzanov [9] had shown one for a similar problem in the
edge-disjoint A-paths setting (which is a special case of Mader’s setting), whose full proof had
been left to an unpublished paper [8]. Karzanov’s problem can be solved by finding shortest
k vertex-disjoint S-paths for possible k, where the number of iterations is at most |A|/2 and
can be reduced to O(log |A|) by binary search. It should be remarked that Hirai and Pap [6]
discussed a generalization of Karzanov’s setting, in which each pair of two terminals has weight.

1.2 Matroid Matching

The matroid matching problem introduced by Lawler [11] commonly generalizes the matroid
intersection problem and the non-bipartite matching problem. This problem cannot be solved
in polynomial time in general, but is known to be efficiently solvable as well as to admit a good
characterization when the matroid in question is linearly represented (or in a more general
situation) due to Lovász [12,13].

We here describe the problem setting. A pair of a finite set S and an integer-valued set
function f : 2S → Z is called a 2-polymatroid if

(1) f(∅) = 0,

(2) f(X) ≤ f(Y ) for each X ⊆ Y ⊆ S,

(3) f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for each X,Y ⊆ S, and

(4) f({e}) ≤ 2 for each e ∈ S.

A subset X ⊆ S is called a matching in a 2-polymatroid (S, f) if f(X) = 2|X|, and a base if
f(X) = 2|X| = f(S).

The matroid matching problem is to find a maximum matching in a given 2-polymatroid.
In this paper, we utilize a weighted version: to minimize the total weight of a base.

Problem 2 (WeightedMatroidMatching).

Input A 2-polymatroid (S, f) and a weight vector w ∈ RS .

Find A base X ⊆ S in (S, f) such that the total weight w(X) is minimized.

A 2-polymatroid (S, f) is said to be linearly represented over a field F if we have a matrix
Z = (Ze)e∈S ∈ Fd×2S obtained by concatenating d × 2 matrices Ze ∈ Fd×2 (e ∈ S) such that
f(X) = rankZ(X) for every X ⊆ S, where d is a positive integer and Z(X) = (Ze)e∈X denotes
the submatrix of Z obtained by selecting the corresponding columns. A subset X ⊆ S is called
a parity base for Z if rankZ(X) = 2|X| = rankZ.

In the linearly represented case, the matroid matching problem is called the linear matroid
parity problem, for which various polynomial-time algorithms have been proposed, e.g., by
Gabow and Stallmann [5], Orlin [15], and Cheung et al. [2]. As announced by Iwata [7] and
Pap [16], the following weighted version is also solved in polynomial time.

Problem 3 (WeightedLinearMatroidParity).

Input A finite set S, a matrix Z ∈ Fd×2S over a field F, and a weight vector w ∈ RS .

Find A parity base X ⊆ S for Z such that the total weight w(X) is minimized.

1.3 Results

With the aid of a generalized frame matroid, Tanigawa and the author [18] showed a reduction of
the problem of packing non-zero A-paths to the matroid matching problem, which also implies
the min-max formula [4] and the polynomial-time solvability [3]. In addition, the author [19]
clarified a neccesary and sufficient condition for the groups in question to admit a natural, more
direct reduction to the linear matroid parity problem, which leads to much faster algorithms.
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Using a trick shown in the next section, the following theorem can be derived from a reduc-
tion of packing non-zero A-paths to matroid matching due to Tanigawa and the author [18].

Theorem 1. ShortestDisjointNon-zeroA-paths reduces to WeightedMatroidMat-
ching.

In the same way, the next theorem can be obtained from a more direct reduction to linear
matroid parity due to the author [19]. Define PGL(n,F) := GL(n,F)/⟨In⟩, where GL(n,F)
denotes the general linear group of degree n over a field F (i.e., the set of all nonsingular n× n
matrices over F with the ordinary multiplication), In ∈ GL(n,F) the n × n identity matrix,
and ⟨y⟩ the 1-dimensional subspace of a linear space Λ spanned by a vector y ∈ Λ \ {0} (i.e.,
⟨y⟩ = { ky | k ∈ F } when Λ is a linear space over a field F).

Theorem 2. Let Γ be a group and F a field. If there exists a homomorphism ρ : Γ → PGL(2,F)
such that ρ(α)

(
1
0

)
̸∈
⟨(

1
0

)⟩
for every α ∈ Γ\{1Γ}, then ShortestDisjointNon-zeroA-paths

in Γ-labeled graphs reduces to WeightedLinearMatroidParity over F.

Thanks to Iwata [7] and Pap [16], Theorem 2 leads to the first polynomial-time algorithm
for the weighted version of Mader’s disjoint S-paths problem (see Section 3.1). In Section 3,
we present other solvable cases, and it is still open whether ShortestDisjointNon-zeroA-
paths (as well as WeightedMatroidMatching derived from it by Theorem 1) is efficiently
solvable or not.

2 Proofs

2.1 Construction of Auxiliary Graph

First we construct a common auxiliary Γ-labeled graph from a given Γ-labeled graph G = (V,E)
with terminal set A ⊆ V . We may assume that |A| ≥ 2k, since otherwise there cannot be a
feasible solution.

The construction is summarized as follows. Add |A| − 2k extra terminals so that each extra
terminal is adjacent to every original terminal by an edge with an arbitrary non-zero label.
Besides, add two other extra terminals b1, b2 so that there is an edge from b1 to b2 with a
non-zero label and b1 is adjacent to all original non-terminal vertices.

Formally, for the vertex set, let ai (i = 1, 2, . . . , |A|−2k) and bj (j = 1, 2) be distinct vertices
not in V , and define A1 := { ai | i = 1, 2, . . . , |A| − 2k }, A2 := {b1, b2}, V ′ := V ∪ A1 ∪ A2,
and A′ := A ∪ A1 ∪ A2. Next, for the edge set, let E1 := { eit = ait | ai ∈ A1, t ∈ A },
E2 := { ev = b1v | v ∈ V \ A }, and E′ := E ∪ E1 ∪ E2 ∪ {e′ = b1b2}. Finally, for the label
function of G′ := (V ′, E′), extend ψG : E → Γ to ψG′ : E′ → Γ as follows: for each edge e ∈ E′,

ψG′(e) :=

{
ψG(e) (e ∈ E),

α (e ∈ E′ \ E),

where 1Γ ̸= α ∈ Γ.

2.2 Proof of Theorem 1

For the resulting graph G′ = (V ′, E′) with terminal set A′ ⊆ V ′, consider the 2-polymatroid
constructed in [18], whose ground set is the edge set E′. Define a weight vector w ∈ RE′

as
follows: for each e ∈ E′,

we :=

{
ℓe (e ∈ E),

0 (e ∈ E′ \ E).
(1)

Note that to minimize the total weight makes incentive to take edges in E′ \ E rather than in
E, since ℓe ≥ 0 for every e ∈ E.
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We omit the construction procedure of the 2-polymatroid correspinding to G′ (see [18]), and
only show its properties as follows. We denote the 2-polymatroid by (E′, f), and by C(F ) the
family of maximal connected subsets of an edge set F ⊆ E′.

Claim 3 (From Tanigawa–Yamaguchi [18, Lemma 3.1]).

f(E′) = 2|V ′| − |A′| = 2(|V | − k + 1).

Claim 4 (Tanigawa–Yamaguchi [18, Lemma 3.2]). An edge set F ⊆ E′ satisfies f(F ) = 2|F |
if and only if

• F contains no cycle, and

• for each F ′ ∈ C(F ), we have |V (F ′) ∩A′| ≤ 2 and the A′-path between the two terminals
is non-zero if |V (F ′) ∩A′| = 2.

Suppose that G contains k vertex-disjoint non-zero A-paths. By extending the edge set of
such paths using edges in E1 ∪ E2 ∪ {e′}, we can obtain a spanning forest F ⊆ E′ such that
|V (F ′) ∩ A′| = 2 and the A′-path between the two terminals is non-zero for each F ′ ∈ C(F ),
since each unused terminal can be connected to an extra terminal in A1 by an edge in E1 (and
vice versa), each unused non-terminal can be connected to the extra terminal b1 ∈ A2 by an
edge in E2, and b1, b2 ∈ A2 are adjacent by a non-zero edge e′. Then, the number of connected
components of G′[F ] is k+ (|A| − 2k) + 1 = |A| − k+1, and hence, by Claims 3 and 4, we have

f(F ) = 2|F | = 2
(
|V ′| − (|A| − k + 1)

)
= 2(|V | − k + 1) = f(E′),

which means that F is a base in (E′, f). Therefore, for each family P of k vertex-disjoint non-
zero A-paths in G, there exists a base FP in (E′, f) with w(FP) = ℓ(E(P)) (recall the definition
(1) of the weight w ∈ RE′

).
To the contrary, for each base F in (E′, f), there exists a family PF of k vertex-disjoint

non-zero A-paths in G with E(PF ) ⊆ F (hence, we have ℓ(E(PF )) ≤ w(F )) as follows. Thus
we have done, i.e., shortest k vertex-disjoint non-zero A-paths in G can be obtained by finding
a minimum-weight base in (E′, f).

Claim 5. For a base F in (E′, f), the subgraph G′[F ] is a spanning forest with |A| − k + 1
connected components, each of which contains exactly one non-zero A′-path.

Proof. By the first condition in Claim 4, F contains no cycle. Since |A′| = |A|+(|A|−2k)+2 =
2(|A|−k+1) and each F ′ ∈ C(F ) intersects at most two terminals in A′ by the second condition
in Claim 4, there are at least |A| − k + 1 connected components in G′[F ]. Hence, we have

|F | ≤ |V ′| − (|A| − k + 1) = |V | − k + 1. (2)

Recall that 2|F | = f(F ) = f(E′) = 2(|V | − k + 1) by Claim 3, which implies that the equality
holds in (2). This means that G′[F ] has exactly |A|−k+1 connected components, each of which
contains exactly two terminals in A′ and the A′-path between the two terminals is non-zero by
the second condition in Claim 4. Then, F is obviously spanning.

Claim 6. For a base F in (E′, f), the subgraph G[F ∩ E] contains k vertex-disjoint non-zero
A-paths in G.

Proof. By Claim 5, there are |A|−k+1 connected components in G′[F ] each of which contains
exactly one non-zero A-paths. Since there is only one edge e′ = b1b2 ∈ E′ incident to the extra
terminal b2 ∈ A2, the connected component containing b2 must contain b1 ∈ A2. Besides, since
each edge in E′ incident to each extra terminal ai ∈ A1 ends an original terminal in A, the
connected component containing ai must contain some original terminal in A. The number
of such connected components is |A1| = |A| − 2k, and hence the number of the connected
components containing non-zero A-paths in G is |A| − k + 1− (|A| − 2k + 1) = k.
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2.3 Proof of Theorem 2

For the Γ-labeled graph G′ = (V ′, E′) with terminal set A′ ⊆ V ′ constructed in Section 2.1,
consider the matrix constructed in [19] with a 1-dimensional subspace Y =

⟨(
1
0

)⟩
⊆ F2, whose

column set is associated with the edge set E′. Define a weight vector w ∈ RE′
in the same way

as the previous section (see (1)).
Formally, let us construct a matrix Z ∈ F2V ′×2E′

as follows, where Zv,e ∈ F2×2 denotes the
2×2 submatrix of Z corresponding to a vertex v ∈ V ′ and an edge e ∈ E′. Fix a homomorphism
ρ : Γ → PGL(2,F) such that ρ(α)

(
1
0

)
̸∈
⟨(

1
0

)⟩
for every α ∈ Γ \ {1Γ}. For each edge e = uv ∈ E′

and each vertex w ∈ V ′, define

Z ′
w,e :=


I2 (w = u),

−ρ(ψG′(e)) (w = v),

O2 (w ∈ V ′ \ {u, v}),

where O2 ∈ F2×2 denotes the 2× 2 zero matrix. Next, for each non-terminal vertex v ∈ V ′ \A′

and each edge e ∈ E′, let Zv,e := Z ′
v,e. Finally, for each terminal t ∈ A′ and each edge e ∈ E′,

let Zt,e be the matrix obtained from Z ′
t,e by eliminating the first row using the vector

(
1
0

)
∈ Y ,

i.e., replacing each entry in the first row with 0.
Then, the following claim holds for the resulting matrix Z ∈ F2V ′×2E′

. Recall that C(F )
denotes the family of maximal connected subsets of an edge set F ⊆ E′.

Claim 7 (Yamaguchi [19, Lemmas 3.2 and 3.3]). An edge set F ⊆ E′ satisfies rankZ(F ) = 2|F |
if each F ′ ∈ C(F ) satisfies the following condition (b) or (c), and only if (a), (b), or (c):

(a) |V (F ′) ∩A′| = 0 and G′[F ′] contains exactly one non-zero cycle;

(b) |V (F ′) ∩A′| ≤ 1 and G′[F ′] contains no cycle;

(c) |V (F ′) ∩ A′| = 2, G′[F ′] contains no cycle, and the A′-path between the two terminals is
non-zero.

This claim implies the following claim.

Claim 8. An edge set F ⊆ E′ is a parity base for Z if F is spanning in G′ with each F ′ ∈ C(F )
satisfying Condition (c) in Claim 7, and only if F is spanning in G′ with (a) or (c).

Proof. By the construction of Z, we have

rankZ ≤ 2|V ′| − |A′| = 2(|V | − k + 1).

Suppose that G contains k vertex-disjoint non-zero A-paths. By extending the edge set of such
paths using edges in E1∪E2∪{e′}, we can obtain a spanning forest F ⊆ E′ with each F ′ ∈ C(F )
satisfying Condition (c) (cf. the argument just after Claim 4). Since the number of connected
components of G′[F ] is k + (|A| − 2k) + 1 = |A| − k + 1, by the “if” part of Claim 7, we have

rankZ(F ) = 2|F | = 2
(
|V ′| − (|A| − k + 1)

)
= 2(|V | − k + 1) ≥ rankZ ≥ rankZ(F ).

Hence, rankZ = 2(|V | − k + 1), and the “if” part follows from Claim 7.
The converse direction is also derived from Claim 7. Note that, for a parity base F ⊆ E′ for

Z, there are at most |A| − k + 1 connected components in G′[F ] that contain no cycle because
of the rank, and hence there cannot be a connected component of type (b).

By the same discussion as that between Claims 4 and 5 in Section 2.2, shortest k vertex-
disjoint non-zero A-paths in G can be obtained by finding a minimum-weight parity base for
Z. Note again that, we have incentive to take extra edges in E′ \ E rather than original edges
in E because of the definition (1) of the weight w, and hence the total length of any connected
component of type (a) in Claim 7 in a minimum-wight parity base for Z is 0.
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3 Applications

In this section, we present various cases to which Theorem 2 is applicable. Then, Short-
estDisjointNon-zeroA-paths can be solved in polynomial time via WeightedLinear
MatroidParity with the aid of Iwata [7] and Pap [16]. We also refer the readers to [19, Sec-
tion 5] for further explanation for the following examples.

3.1 Infinite Cyclic Group Z (Including Mader’s S-paths)

For the infinite cyclic group Z, there exists a desired homomorphism ρ : Z → PGL(2,Q) defined
as follows:

ρ(i) :=

(
1 0
i 1

)
(i ∈ Z).

It should be remarked that the weighted version of Mader’s disjoint S-paths can be for-
mulated as ShortestDisjointNon-zeroA-paths in Z-labeled graphs, and hence it can be
solved via WeightedLinearMatroidParity. We again emphasize that this is the first
polynomial-time algorithm for this problem.

3.2 Finite Cyclic Groups Zn (Including Odd-length A-paths)

For a finite cyclic group Zn = Z/nZ (n ≥ 2), there exists a desired homomorphism ρ : Zn →
PGL(2,R) defined as follows:

ρ(i) :=

 cos
iπ

n
− sin

iπ

n

sin
iπ

n
cos

iπ

n

 (i ∈ Zn).

It should be remarked that the problem of shortest disjoint odd-length A-paths can be
formulated as ShortestDisjointNon-zeroA-paths in Z2-labeled graphs, and hence it can
be solved via WeightedLinearMatroidParity. In the case of Z2 = {0, 1}, there exists a
simpler representation ρ′ over an arbitrary field such that

ρ′(0) =

(
1 0
0 1

)
, ρ′(1) =

(
0 1
1 0

)
.

3.3 Finitely Generated Abelian Groups

Suppose that k = 1 and a finitely generated abelian group Γ is given as decomposed into p
cyclic groups (cf. the fundamental theorem of finitely generated abelian groups). In this case,
because of the above two examples, one can solve ShortestDisjointNon-zeroA-paths by
solving WeightedLinearMatroidParity repeatedly p times.

While Kobayashi and Toyooka [10] gave an algebraic algorithm for the case when k = 1 and
Γ is a fixed finite abelian group inspired by the work of Björklund and Husfeldt [1], our result
provides a combinatorial solution to a more general case.

3.4 Dihedral Groups Dn

Even when Γ is non-abelian, there exists a solvable case. For the dihedral group Dn of degree
n ≥ 3, i.e., Dn = ⟨ r,R | rn = R2 = id, rR = Rrn−1 ⟩, there exists a desired homomorphism
ρ : Dn → PGL(2,R) defined as follows:

ρ(riRj) :=

 cos
iπ

n
− sin

iπ

n

sin
iπ

n
cos

iπ

n


 cos

π

n+ 1
sin

π

n+ 1

sin
π

n+ 1
− cos

π

n+ 1


j

(0 ≤ i ≤ n− 1, j ∈ {0, 1}).
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