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Abstract

In this paper a DC (Difference of two Convex functions) formula-
tion approach for sparse optimization problems is proposed. First we
provide an exact DC representation of the cardinality constraint by
using the largest-k norm. Next we show exact penalties for quadratic
minimization problems which often appear in practice. A DC Algo-
rithm (DCA) is presented, where the dual step at each iteration can be
efficiently carried out due to the accessible subgradient of the largest-
k norm. Furthermore, we can solve each DCA subproblem in linear
time via a soft thresholding operation if there are no additional con-
straints. The framework is extended to the rank-constrained problem
as well as the cardinality- and the rank-minimization problems. Nu-
merical experiments demonstrate the efficiency of the proposed DCA
in comparison with existing methods which have other penalty terms.

1 Introduction

Optimization problems which seek sparsity of solutions have recently re-
ceived broad attention. For example, it is often required to select a subset
of informative variables in regression analysis [2, 6] and principal component
analysis [54]; compressed sensing aims at a sparse representation of signal
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or image data (e.g., [12, 17]); fund management requires a relatively small
number of invested assets in a portfolio (e.g., [11, 44]); finding meaningful
fragments in genes is vital in bioinformatics (e.g., [41]).

Such types of problems can be cast as an optimization problem having
a nonconvex constraint called the cardinality constraint:

∥w∥0 := |{i ∈ {1, . . . , n} : wi ̸= 0}| ≤ K,

where w ∈ Rn and K ∈ {1, . . . , n}. By convention, we call ∥w∥0 the ℓ0-
norm of w. Due to the nonconvexity and discontinuity of the ℓ0-norm, the
resulting optimization problem is known to be intractable (see, e.g., [31] for
the NP-hardness of the ℓ0-minimization over a linear system). While deter-
ministic global optimization algorithms (see, e.g., [23]) can be employed (or
developed) to solve such a non-convex optimization problem, it is imprac-
tical to rigorously apply them because guaranteeing its global optimality is
often unacceptably time-consuming except for small-scale instances; accord-
ingly, local search algorithms based on relaxation and/or approximation via
tractable convex optimization are more popular.

A common approach is to replace the ℓ0-norm with the ℓ1-norm, ∥w∥1 :=∑n
i=1 |wi|, as ℓ1-norm is a tight convex relaxation of ℓ0-norm. Especially in

compressed sensing, popularity of the ℓ1-relaxation is enormous due to the
exact recovery property under some conditions [15]. A host of nonconvex
approximation approaches based on the so-called DC (Difference of two
Convex functions) formulations have also been studied (e.g., [21, 26, 53, 33]).
Most of the existing approaches based on DC representations regard the ℓ0-
norm as a sum of indicator functions and replace each indicator function
with a difference of two convex functions:

∥w∥0 =
n∑

i=1

1{wi ̸=0} ≈
n∑

i=1

(d(wi)− c(wi)),

where 1{cond} is the indicator function, i.e., it returns 1 if “cond” is true, and
0 otherwise and d and c are some continuous convex functions on R with their
difference approximating the indicator function (see, e.g., Table 1 of [26] for
examples of the pairs). Approaches in this direction have been applied
to many applications, such as the sparse Fisher discriminant analysis [34,
26], feature selection in Support Vector Machines (SVMs) [10, 21], portfolio
selection [53], and compressed sensing [33].

In this paper, a different approach to the cardinality-constrained problem
is developed. More precisely, we propose an exact DC representation of the
cardinality constraint, and employ the DC Algorithm (DCA) [38, 25, 37].

An exact DC representation has been proposed by [37], where the car-
dinality constraint is represented with 0-1 variables, as

1⊤u ≤ K, u ∈ {0, 1}n, |wi| ≤ Mjuj , j = 1, . . . , n, (1)
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by assuming that the so-called big-M constants, Mj , are available.
Our formulation is, however, different and advantageous in that while

tightness of the resulting DC formulation based on (1) can be affected by
the magnitude of the big-M constants,1 our formulation and the behavior
of DCA does not rely on such a big-M parameter.

In addition, our DC formulation is quite simple and easier to interpret.
Actually, we rewrite the cardinality constraint as

“the (K + 1)-st largest absolute value component of w” = 0,

and represent this by using the difference of two norms, i.e.,

|||w|||K+1 − |||w|||K = 0,

where |||w|||K is the largest-k norm (or vector k-norm [52]), which is defined
as the sum of the k largest absolute value elements of w.2 One advantage
of the use of the largest-k norm representation is that its subgradient can
be efficiently computed, which can make DCAs efficient.

More interestingly, we can replace the difference with that of the ℓ1-norm
and the largest-K norm, i.e., ∥w∥1 − |||w|||K = 0. This fact motivates us to
develop a soft thresholding technique, which is popular in the context of
proximal methods, and thus allows us to use a closed-form solution of the
DCA subproblem.

Our DC approach can be also applied to matrix optimization problems
with rank-constraint. Considering that the nuclear norm, the Ky Fan k
norm, and the number of non-zero singular values of a matrix correspond to
the ℓ1-norm, the largest-k norm, and the ℓ0-norm, respectively, of the singu-
lar values of the matrix, our DC approach can be straightforward applied to
the rank-constrained problems, which have attracted huge attentions in the
context of compressed sensing. Our DC-penalty formulation of the problem
can be associated with the existing nuclear norm minimization (e.g., [48]),
and provides an insight and interpretation.

On the other hand, our approach has some commonality with a couple of
existing papers proposing non-convex penalties (or regularizers) in the con-
text of the rank minimization. Hu et al. [24] addresses the matrix completion
problem, which minimizes the rank of a matrix, by reformulating it to the
minimization of the difference of two Ky Fan k norms (or the truncated
nuclear norm in their term), and proposes to apply the Alternating Direc-
tion Method of Multipliers (ADMM), which requires to introduce additional

1When some state-of-the-art solver is employed, (1) should be represented in the so-
called Specially Ordered Sets of Type 1 (SOS-1) and it does not have to bother about the
big-M constants.

2While the largest-k norm has been anonymously known (see, e.g., exercise problems
in [7, 9, 16]), it became popular in operations research community after [4] implicitly
introduced it in the context of robust optimization.
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variable updates. Likewise, using the Ky Fan k norm, [22] provides equiva-
lent bilinear (matrix) inequality representations of the rank and cardinality
constraints, but does not present algorithm or computational results. It is
contrastive that our main concern is to associate those sparsity constraints
with DC optimizations and to provide DCAs.

Contributions of this paper are summarized as follows:

• Exact DC reformulations of the cardinality constraint and the rank
constraint are posed;

• Lower bounds of the exact penalty for the cardinality-constrained
quadratic optimization problems which appear in regression and ma-
trix completion are shown. Those results can be helpful in relating the
sparsity-constrained formulations to the existing penalty methods;

• A proximal gradient technique is proposed so that the DCA can be
efficient and treat large-scale problems with the help of a soft thresh-
olding operation.

The remainder of this paper is structured as follows. The next section
presents equivalent DC expressions for the cardinality constraint. In Section
3, we further reformulate the DC-constrained problem to a DC minimiza-
tion problem and show exact penalty parameters, above which the two DC
formulations become equivalent. A DCA framework and a soft threshold-
ing operation are proposed in the second part of the section. Section 4
extends the results for the cardinality-constrained problems to the rank-
constrained ones. An exact penalty is proved for the matrix completion
problem. Section 5 extends to the cardinality and the rank minimizations
and a matrix norm-constrained problem. Section 6 reports numerical exper-
iments, demonstrating the behavior of the proposed DCAs in comparison
with other existing methods which employ different penalty terms.

Notation. Lower-case bold type is reserved for representing vectors in Rn,
while upper-case bold type is for matrices. Especially, I and O denote the
identity and zero matrices, respectively; 1 and 0 denote the vectors with all
the elements being ones and zeros, respectively, while ei denotes the column
vector whose i-th element is 1 and 0 otherwise. The inner product of vectors
a, b ∈ Rn are denoted by a⊤b or b⊤a, while that of matrices A,B ∈ Rm×n

is denoted by A •B = Tr(A⊤B) where Tr(C) denotes the trace of a square
matrix C. λmax(Q) and λmin(Q) denote the largest and smallest eigenvalues
ofQ ∈ Rn×n, respectively. Frobenius norm of a matrixW ∈ Rm×n is defined
by ∥W ∥F :=

√
W •W , while the nuclear norm (also known as trace norm)

is by ∥W ∥∗ :=
∑min{m,n}

i=1 σi(W ), where σi(W ) is the i-th largest singular

value of W , and the spectral norm is denoted by ∥W ∥2 :=
√

λmax(W⊤W ).
By ∥·∥p, we denote the ℓp-norm, i.e., ∥w∥p := (

∑n
i=1 |wi|p)1/p for p ∈ [1,∞),

and maxi{|wi|} for p = ∞. [x]+ := max{x, 0}.
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2 DC Formulations of Cardinality-constrained
Problems

We consider a cardinality-constrained optimization problem:

minimize
w

f(w)

subject to ∥w∥0 ≤ K, w ∈ S,
(2)

where f : Rn → R, S ⊂ Rn is a closed convex set, and K ∈ {1, 2, . . . , n}.
Besides, we allow for nonconvexity of the objective function.

Assumption 1. f is represented as a difference of two convex functions:
f(w) = g(w)− h(w), where g, h : Rn → R are closed and convex.

While our aim is to show DC formulations and algorithms for tackling
with (2), special attention will be paid to cases where the objective and
constraints are given by quadratic (or linear) functions since they include
many important applications listed below.

Example 1 (Subset selection in regression). Let A ∈ Rm×n, b ∈ Rm. When
f(w) = g(w) = ∥Aw − b∥22 (i.e., h(w) = 0), and S = Rn, the problem (2)
is least square estimation of a linear model equipped with variable selection
[12, 6]. Some variations are found in [2, 28, 29].

Example 2 (SVM with feature selection). Let {(xi, yi) : i = 1, . . . , ℓ} be
a given data set, where xi ∈ Rn denotes attributes of sample i and yi ∈
{+1,−1} is its label. An SVM equipped with a feature selection is formulated
by setting f(w, b, z) = g(w, b,z) = 1⊤z, S = {(w, b,z) : zi ≥ 1− yi(x

⊤
i w−

b), z ≥ 0}. An ℓ0 minimization version is in [10, 21].

Example 3 (Sparse eigenvalue problems). Let Q ∈ Rn×n be a symmetric
matrix such that λmin(Q) < 0. When f(w) = w⊤Qw and S = {w ∈
Rn : ∥w∥22 ≤ 1}, the problem (2) is a problem seeking a sparse vector which
approximates the smallest eigenvector. Note that f is DC-decomposable as
g(w) = w⊤(Q− λmin(Q)I)w and h(w) = −λmin(Q)w⊤w. Especially when
Q is negative semidefinite, it can be regarded as (a variant of) the sparse
principal component analysis (PCA) [47]. Besides, for the classification
problem as in Example 2, the sparse Fisher Linear Discriminant Analysis
[30] can be formulated by setting Q = −V1 and S = {w : w⊤V2w ≤ 1}
where V1,V2 are the between-class and within-class covariance matrices,
respectively.

Example 4 (Sparse portfolio selection). Let V ∈ Rn×n be a covariance
matrix, r ∈ Rn a mean return vector, l,u ∈ Rn, and τ ∈ R. When f(w) =
g(w) = w⊤V w (i.e., h(w) = 0), and S = {w ∈ Rn : r⊤w ≥ τ,1⊤w =
1, l ≤ w ≤ u}, the problem (2) is a sparse portfolio selection (see, e.g.,
[20, 44, 53] for its variations).
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While we allow for a nonconvex objective in the problem (2), our main
concern in this paper is the nonconvexity stemming from the combinatorial
nature of the cardinality constraint. To address that, we propose to rewrite
the constraint with its exact DC representation by employing the largest-k
norm.

Let us denote by w(i) the element whose absolute value is the i-th largest
among the n elements of a vector w ∈ Rn, i.e., |w(1)| ≥ |w(2)| ≥ · · · ≥ |w(n)|,
while wi indicates the i-th element of w.

Definition 1. For an integer k ∈ {1, . . . , n}, the largest-k norm of w ∈
Rn, denoted by |||w|||k, is defined as the sum of the largest k components in
absolute value. Namely,

|||w|||k := |w(1)|+ |w(2)|+ . . .+ |w(k)|.

Following [5, 36, 19], |||w|||k can be extensively defined for non-integer
k ∈ [1, n],3 but for simplicity, we consider only integers for k in the remainder
of this paper.

With the norm, we can obtain simple, but key representations of the
cardinality constraint of (2).

Theorem 1. For any integers K,h such that 1 ≤ K < h ≤ n, and w ∈ Rn,
the following three conditions are equivalent:

1. ∥w∥0 ≤ K,

2. |||w|||h − |||w|||K = 0, and

3. ∥w∥1 − |||w|||K = 0.

Furthermore, the following three conditions are equivalent:

4. ∥w∥0 = K,

5. K = min{k : |||w|||h − |||w|||k = 0}, and

6. K = min{k : ∥w∥1 − |||w|||k = 0}.

Proof. By definition, |||w|||h−|||w|||K is nonnegative and equals the sum of the
(K+1)-st to h-th largest absolute value elements, i.e., |w(K+1)|+ · · ·+ |w(h)|,
and for any h ∈ {K+1, . . . , n}, the condition 2. ensures that at least n−K
elements are zero. This condition is equivalent to that the number of non-
zero elements is no greater than K, i.e., ∥w∥0 ≤ K. The equivalence of
the conditions 2. and 3. comes from the fact ∥w∥1 = |||w|||n. The second
part is shown by noting that ∥w∥0 = K if and only if |w(K)| > 0 and
|w(K+1)| = 0.

3In general, for k ∈ [1, n], it is valid that |||w|||k = minc

{
kc+

∑n
i=1[|wi| − c]+

}
, which

can be further rewritten as a linear program and solved in time of order n. For further
properties of the norm, see [5, 36, 19, 52].
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Note that |||w|||h−|||w|||K ≥ 0 holds for K < h, and that the conditions 2.
and 5. are equivalent to |||w|||h−|||w|||K ≤ 0 and K = min{k : |||w|||h−|||w|||k ≤
0}, respectively. Likewise the equality signs in the conditions 3. and 6. can
be replaced with inequality signs, ≤.

While Theorem 1 shares a base with that of [22], which also presents
an equivalent expression of the cardinality constraint, the above equivalent
relations are beneficial both for DC optimization approaches and connections
to existing ℓ1-relaxation methods, as will be shown.

By Theorem 1, (2) is rewritten in a DC form.

Corollary 1. The cardinality-constrained problem (2) can be rewritten as a
DC-constrained problem:

minimize
w∈S

f(w)

subject to ∥w∥1 − |||w|||K = 0.
(3)

Problem (3) is straightforward from the equivalence between the con-
ditions 1. and 3. of Theorem 1. Although another DC-constrained for-
mulation can be obtained by using the condition 2. of Theorem 1 with
h = K + 1, . . . , n − 1, we omit to present it in the remainder of this paper
for simplicity.

One of the advantages of the formulation (3) over the existing DC ap-
proaches, such as those in [21, 53], is that (3) is an exact DC reformulation
of the cardinality constraint (and, thus, more interpretable), while the oth-
ers approximate the ℓ0-norm with some functions, leading to pass over the
discontinuity of the ℓ0-norm. Moreover, (3) is advantageous over another
exact DC formulation of [26] in that it does not need a big-M constant.
On the other hand, (3) may look to have a disadvantage that it has a DC
constraint, which we will address in the next section.

3 DC Algorithms for Cardinality-Constrained
Problems

Associated with (3), we solve a penalized formulation:

f∗ := minimize
w∈S

f(w) + ρ (∥w∥1 − |||w|||K) , (4)

where ρ is a positive constant.
Since ∥w∥1 − |||w|||K ≥ 0 for any w ∈ Rn, we may view that the added

term plays a role of a penalty function of the cardinality constraint, ∥w∥0 ≤
K.

Conditions for exact penalty, under which a penalized DC problem, such
as (4), is equivalent to a DC-constrained problem, such as (3), have been
studied for a general class of problems (see, e.g., [39] for exact penalty for
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DC optimization problems). Those conditions tend to be restrictive and
inappropriate for general problems in practice.

Now we here analyze a case where the objective function is quadratic:

f(w) =
1

2
w⊤Qw + q⊤w, (5)

where Q = (qij) ∈ Rn×n is symmetric and q = (qi) ∈ Rn.

Lemma 1. Suppose that f is given by (5) and there exists a constant C > 0
such that ∥w⋆∥2 ≤ C for any optimal solution w⋆ of (4). Then, the problems
(3) and (4) are equivalent if

ρ > max
i

{|qi|+ (∥Qei∥2 + |qii|/2)C} .

See Appendix A.1 for the proof of Lemma 1.
Based on Lemma 1, we can show the equivalence for a case where the

sparse regression problem in Example 1 is included.

Theorem 2. Suppose that Q ∈ Rn×n is positive semi-definite and

K < R := max{r : any r × r principal minor of Q is positive definite}.

Then the problems (3) and (4) are equivalent if

ρ > max
i

{
|qi|+

(2∥Qei∥2 + |qii|)∥q∥2
λ̂R

}
,

where λ̂R := min{λmin([Q]I) : I ⊂ {1, . . . , n}, |I| = R}, and [Q]I denotes
the principal minor of Q, corresponding to the index set I.

Note that λ̂R equals λmin(Q) if Q is positive definite. See Appendix A.2
for the proof of Theorem 2.

Lemma 1 directly shows an exact penalty for the sparse eigenvalue prob-
lems of Example 3 since C = 1 holds.

Corollary 2. For the sparse eigenvalue problem, i.e., f is given in (5) and
S = {w : ∥w∥2 ≤ 1}, the problems (3) and (4) are equivalent if

ρ > max
i

{|qi|+ ∥Qei∥2 + |qii|/2} .

These results motivate us to solve (4), which is more tractable to apply
DCA than (3). 4

On the other hand, the bounds for exact penalty are often too conserva-
tive. In addition, a large value of the parameter ρ can induce computational

4Needless to say, if ∥w∗∥1−|||w∗|||K > 0 at an optimal solution w∗ for such a sufficiently
large ρ, the constrained problem (3) is proved to be infeasible.
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instability during the DCA. To address this issue, updating the value of ρ is
proposed by [37], where a sequence {ρt : ρ0 < ρ1 < · · · } is applied instead of
a fixed value of ρ. Appropriate updating rules for the sequence {ρt} ensure
global convergence to a critical point of the problem (3).

Here let us consider the meaning of the penalized reformulation (4)
again. An essential difference in (4) from the ℓ1-approximation methods
is the largest-K norm term “−ρ|||w|||K .” Namely, our DC approach to the
cardinality-constrained problem can be viewed as a modification of the ℓ1-
relaxation. By definition, the parameter K denotes the upper bound of the
density of a vector, i.e., the number of the nonzero elements. The effect of
the parameter K on the resulting sparseness will be numerically examined
in Section 6.

The penalized formulation (4) can also be viewed as one of the non-
convex regularization methods, which are recently attracting attentions (e.g.,
[18]). The equivalence between (3) and (4) provides a new clear-cut perspec-
tive on the cardinality constraint and non-convex penalty methods.

3.1 DC Algorithms for Problem with DC Objective

Next we consider a DCA to solve (4).
To that aim, first let us observe that the objective function of (4) is

expressed by a difference of two convex functions, u and v, as follows:

f(w) + ρ (∥w∥1 − |||w|||K) = g(w) + ρ∥w∥1︸ ︷︷ ︸
convex: u(w)

− (h(w) + ρ|||w|||K)︸ ︷︷ ︸
convex: v(w)

,

= u(w)− v(w).

At each iteration, DCA solves a convex subproblem, which is defined by
linearizing the concave term −v(w) = −(h(w) + ρ|||w|||K), and repeats until
a convergence condition is fulfilled. More specifically, at the t-th iteration,
DCA solves the following convex optimization problem:

f t := minimize
w∈S

g(w) + ρ∥w∥1 −w⊤gt−1
w , (6)

where gt−1
w is a subgradient of v(w) at wt−1, i.e.,

gt−1
w ∈ ∂v(wt−1) = ∂h(wt−1) + ρ∂|||wt−1|||K ,

and provides an optimal solution of (6), wt. The entire picture of a generic
DCA is described below as Algorithm 1.

Especially, if either the function u or v is polyhedral, the DCA is said to
be polyhedral and guaranteed to terminate in finite iterations [38]. Note that
the above DCA is polyhedral if h is polyhedral since the largest-K norm term
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Algorithm 1 DC Algorithm (DCA) for DC objective problem

Require: w0, and a small value ϵ > 0.
t = 1.
repeat

Select a gt−1
w ∈ ∂v(wt−1). [dual step]

Solve the convex subproblem (6). [primal step]
Increment t.

until
∣∣f t−1 − f t

∣∣ < ϵ holds.

−ρ|||w|||K is expressed as a pointwise maximum of 2K
(
n
K

)
linear functions,

i.e.,

−ρ|||w|||K = −max
z

{ρz⊤w : z ∈ {−1, 0, 1}n,z⊤z = K}.

For the details of DCA convergence properties, see [38, 37].

Remark 1. There is another approach for DC-constrained problems, which
iteratively linearizes the nonconvex part of the DC constraint in the problem
(3) until convergence (e.g., [42, 43, 53]). [37] discussed, however, a drawback
of the approach. Indeed, applying the approach to the cardinality-constrained
problem (3), the convex constraint, ∥w∥1 −w⊤qt−1 ≤ 0, can be overly con-
servative because 0 ≤ ∥w∥1 − |||w|||K ≤ ∥w∥1 −w⊤qt−1. Even if there exists
a feasible solution for the original problem (3) satisfying ∥w∥1 − |||w|||K ≤ 0,
there is not necessarily a solution satisfying ∥w∥1 −w⊤qt−1 ≤ 0.

3.2 Solving DCA Subproblems

The subdifferential of |||w|||K at a point wt is given in, e.g., [51, 49], as

∂|||wt|||K = argmax
g

{
n∑

i=1

|wt
i |gi :

n∑
i=1

gi = K, 0 ≤ gi ≤ 1, i = 1, . . . , n

}
(7)

= {(g1, . . . , gn) : g(1) = · · · = g(K) = 1, g(K+1) = · · · = g(n) = 0, for wt},

where g(i) denotes the element of g, corresponding to w(i) in the linear
program (7). Note that a subgradient g ∈ ∂|||w|||K can be computed ef-
ficiently as follows: (i) sort the elements of |w| in decreasing order, i.e.,
|w(1)| ≥ |w(2)| ≥ · · · ≥ |w(n)|; (ii) assign 1 to gi which corresponds to
w(1), . . . , w(K).

5

For example, let us consider the case where f is a convex quadratic
function given by (5) and S = Rn. At the (t− 1)-st dual step of the DCA,

5Theoretically, the subgradient of the largest-k norm of w ∈ Rn can be obtained in
time of the order O(n) by using a selection algorithm.
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we pick a subgradient gt−1
w of v(w) = −q⊤w + ρ|||w|||K6 of the penalized

objective, i.e.,

gt−1
w ∈ ρ · {g : g(1) = · · · = g(K) = 1, g(K+1) = · · · = g(n) = 0, for wt−1}

− {q}.

Then at the (t− 1)-st primal step, we solve the convex subproblem:

wt ∈ argmin
w

{
1

2
w⊤Qw + ρ∥w∥1 −w⊤gt−1

w

}
. (8)

More generally, as long as the subgradient of h at wt−1 is readily avail-
able, so is gt−1

w . For example, if the subgradient of h at w can be given as
Aw using a matrix A,7 gt−1

w is computed by

gt−1
w ∈ {Awt−1}

+ ρ · {g : g(1) = · · · = g(K) = 1, g(K+1) = · · · = g(n) = 0, for wt−1}.

3.3 Closed-form Solution via a Soft Thresholding

The proposed DCA needs to solve subproblems (6) at each iteration. Each
subproblem differs only in the linear term, −w⊤gt−1

w , of its objective func-
tion. Therefore, we can solve them efficiently by using the incumbent (i.e.,
(t − 1)-st) solution wt−1 as an initial solution of the t-th subproblem, or
even using the solution information of wt−1 (e.g., basis information).

Recently some research papers (e.g., [18, 27]) criticize that DCA re-
quires some other iterative algorithm to solve its subproblems, which can
be computationally expensive for large-scale problems. For special types of
nonconvex problems, however, closed-form solutions are readily available at
each iteration. For example, for large-scale nonsmooth convex optimization
problems having the ℓ1-term, [3, 32] report that proximal gradient methods
and accelerated proximal-gradient methods efficiently solve the problems by
using proximal mappings to handle the nonsmooth part, which leads to a
closed-form solution in each iteration; for the trust region subproblem, [45]
derived a simple closed-form solution of its subproblems.

Proximal DC Decomposition Algorithm. We here derive a closed-
form solution of DCA subproblems for the case where a quadratic function
given by (5) is minimized only with the cardinality constraint, i.e., S = Rn.
Following [45], the function f(w) is decomposed as g(w)− h(w), where

g(w) =
λ̄

2
∥w∥22, h(w) =

1

2
w⊤(λ̄I −Q)w − q⊤w,

6For notational convenience in the latter part, the linear term is included in the concave
part −v(w).

7Note that many applications, such as Examples 1 to 4, fulfill this.
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where λ̄ is a positive value defined by λ̄ := [λmax(Q)]+ + ϵ with ϵ > 0, so
that it makes λ̄I−Q positive definite.8 Then the problem (3) is equivalently
rewritten as

min
w∈Rn

{
λ̄

2
∥w∥22 −

1

2
w⊤(λ̄I −Q)w + q⊤w + ρ(∥w∥1 − |||w|||K)

}
. (9)

The DCA for (9) amounts to repeating the following procedure until con-
vergence:

gt−1
w ∈ {(λ̄I −Q)wt−1 − q}+ ρ · argmax

g

{
n∑

i=1

|wt−1
i |gi :

1⊤g = K,
0 ≤ g ≤ 1

}
,

wt ∈ argmin
w

{
λ̄

2
∥w∥22 −w⊤gt−1

w + ρ∥w∥1
}
. (10)

Note that the subproblem (10) is equivalent to

min
w

{
1

2

∥∥∥∥w − gt−1
w

λ̄

∥∥∥∥2
2

+
ρ

λ̄
∥w∥1

}
,

and its optimal solution is explicitly given by

wt
i =


gt−1
w,i − ρ

λ̄
(gt−1

w,i ≥ ρ),

0 (−ρ ≤ gt−1
w,i ≤ ρ),

gt−1
w,i + ρ

λ̄
(gt−1

w,i ≤ −ρ),

where gt−1
w,i denotes the i-th element of gt−1

w . This type of operation is called

soft thresholding in the context of proximal methods9. This gives a sparse
solution wt close to

gt−1
w

λ̄
= wt−1 − 1

λ̄
(Qwt−1 + q) +

ρ

λ̄
g∗,

8Note that we can assume a nonlinear twice continuously differentiable function with a
Lipschitz constant L of ∇f(w) for feasible points w (i.e., upper bound on the maximum
eigenvalue of the Hessian of f(w) for feasible w) and similarly solve the DCA subproblems
using the decomposition with the convex function L

2
∥w∥22 − f(w) as L

2
∥w∥22 − (L

2
∥w∥22 −

f(w)), but to make the paper simple, we assume a quadratic function for f(w).
9In general, the proximal mapping of a function h : Rn → R at u ∈ Rn is defined as

proxh(u) := argmin
w

1

2
∥w − u∥22 + h(w).

For h(w) = β∥w∥1, each element of proxh(u) is explicitly given by

proxh(u)i =


ui − β, (ui ≥ β),
0, (−β ≤ ui ≤ β),
ui + β, (ui ≤ −β).

12



where g∗ ∈ argmaxg
{∑n

i=1 |w
t−1
i |gi : 1⊤g = K, 0 ≤ g ≤ 1

}
. Here 1

λ̄
can be

regarded as a step size for the direction −(Qwt−1 + q − ρg∗).
Thus we can solve each subproblem (10) more efficiently, while the forced

DC-decomposition, f = h− g, may destroy the polyhedrality of DCA.
When Q is positive semidefinite, i.e., f is convex, the DC-decomposition

seems to be a redundant procedure. However, the decomposition generates
a proximal term for the subproblem (6). Seemingly there must be a trade-off
between the light computation and the number of iterations, which will be
numerically examined in Section 6.

Note also that the above technique can be used for any differentiable
objective function f , by replacing Qwt−1 + q with ∇f(wt−1).

Remark 2. [46] investigated this type of DC decomposition and called the
resulting DCA the projection DC decomposition algorithm. While their con-
cern is in a quadratic optimization, ours derives the soft thresholding with
the help of the ℓ1-norm term of the subproblem (10).

4 DC Formulations and Algorithms for
Rank-constrained Problems

In this section we extend the DC approach developed in the preceding sec-
tions to matrix optimization problems.

Let f : Rm×n → R, and denote by rank(W ) the rank of a matrix W ∈
Rm×n. A rank-constrained minimization of f is then formulated as

minimize
W

f(W )

subject to rank(W ) ≤ K, W ∈ S,
(11)

where K ∈ {1, . . . ,min{m,n}}, and S is a closed convex set of matrices of
size m×n.

Example 5 (Matrix Completion). The matrix completion problem is to
recover a data matrix M ∈ Rm×n from a sampling of its entries and often
formulated as

minimize
W

rank(W )

subject to Wij = Mij , (i, j) ∈ Ω,

where Ω is the index set of known entries of M . Replacing rank(W ) by the
nuclear norm ∥W ∥∗ brings a tight convex relaxation [14]. By using a linear
mapping A from Rm×n to Rp, defined by A(W ) = (A1•W ,A2•W , . . . ,Ap•
W )⊤ with p = |Ω| and b ∈ Rp, it can be described with a general notation

minimize
W

∥W ∥∗
subject to A(W ) = b.

13



With a given parameter µ > 0, the nuclear norm regularized linear least
squares problem

minimize
W

1

2
∥A(W )− b∥22 + µ∥W ∥∗ (12)

is proposed as a variation [48]. Assuming that f(W ) = 1
2∥A(W ) − b∥22,

S = Rm×n, and an integer K ∈ {1, . . . , p}, we will relate (11) to (12) in
Section 4.3.

A connection between the ℓ0-norm on Rn and the rank function for a
matrix is discussed in [40, 22]. On the basis of that, our approach to a
cardinality-constrained problem (2) can be extended to (11).

4.1 DC Formulations and Algorithms for Rank-constrained
Problems

Definition 2. For an integer k ∈ {1, . . . , n}, the Ky Fan k norm of a matrix
W ∈ Rm×n, denoted by |||W |||k, is defined as the sum of k largest singular
values of W . Namely,

|||W |||k :=
k∑

i=1
σi(W ).

Unless confusion occurs, we use the same notation, ||| · |||k, for the Ky Fan
k norm as that for the largest-k norm. 10

We can immediately have equivalent representations of the rank con-
straint via the Ky Fan k norm from Theorem 1.

Corollary 3. For any integers K,h such that 1 ≤ K < h ≤ min{m,n},
and W ∈ Rm×n, the following three conditions are equivalent:

1. rank(W ) ≤ K,

2. |||W |||h − |||W |||K = 0, and

3. ∥W ∥∗ − |||W |||K = 0.

Furthermore, the following three conditions are equivalent:

4. rank(W ) = K,

5. K = min{k : |||W |||h − |||W |||k = 0}, and
10Following [35, 1], the Ky Fan k norm of a matrix W ∈ Rm×n can be computed by

solving the following semidefinite programming (SDP) problem:

|||W |||k = min
W ,Z,c

{
kc+Tr(Z) : Z ⪰

(
O W⊤

W O

)
− cI, Z ⪰ O

}
,

where Z ⪰ Y denotes that Z − Y is positive semi-definite.
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6. K = min{k : ∥W ∥1 − |||W |||k = 0}.

Noting that the rank of a matrix equals the number of nonzero sin-
gular values of the matrix, i.e., rank(W ) = ∥σ(W )∥0, and the nuclear
norm of W is given as the sum of all its singular values, i.e., ∥W ∥∗ =∑min{m,n}

i=1 σi(W ) = |||W |||min{m,n}, all the statements are straightforward
from Theorem 1.

Assuming that f is DC-representable with two convex functions, i.e.,
f = g − h, as in Assumption 1, the subproblem at the t-th iteration of the
DCA for (11) is given as

minimize
W∈S

g(W ) + ρ∥W ∥∗ −Gt−1
W •W , (13)

where Gt−1
W ∈ ∂h(W t−1) + ρ∂|||W t−1|||K . The subdifferential of the Ky Fan

k norm at W t is given in [50] as

∂|||W t|||K :=

{
Udiag(q∗)V ⊤ :

q∗ ∈ argmax
q∈Rd

{
d∑

i=1

σi(W
t)qi : 1

⊤q = K,0 ≤ q ≤ 1

}}
,

where d = min{m,n} and Udiag(σ(W t))V ⊤ is a singular value decomposi-
tion (SVD) ofW t. Note that a component of ∂|||W t|||K is efficiently obtained
by computing the SVD and picking up the SVD vectors corresponding to
the K largest singular values.

4.2 Closed-form Solution via a Soft Thresholding

While (13) results in an SDP, 11 solving SDP at each iteration can be costly.
Therefore, as shown in Section 3.3 for the subproblems (6), let us show a
closed-form solution of (13) for the case of S = Rm×n.

Suppose that f(W ) is twice differentiable and there exists λ̄ which makes

the function λ̄
2∥W ∥2F − f(W ) convex. Then f(W ) can be expressed as the

difference of two convex functions as

f(W ) =
λ̄

2
∥W ∥2F −

(
λ̄

2
∥W ∥2F − f(W )

)
.

11Problem (13) can be recast as the following problem:

minimize
W ,Z1,Z2

g(W ) +
ρ

2
(Tr(Z1) + Tr(Z2))−Gt−1

W •W

subject to W ∈ S,

(
Z1 W

W⊤ Z2

)
⪰ O.

If g is a linear function and S is given by a system of linear functions on Rm×n, the above
problem can be solved by a standard (linear) SDP solver.
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The DCA subproblem (13) then becomes

minimize
W

λ̄

2
∥W ∥2F + ρ∥W ∥∗ −Gt−1

W •W ,

where Gt−1
W ∈ {λ̄W t−1 −∇f(W t−1)}+ ρ∂|||W t−1|||K . It is equivalent to

minimize
W

1

2

∥∥∥∥W − 1

λ̄
Gt−1

W

∥∥∥∥2
F

+
ρ

λ̄
∥W ∥∗. (14)

An optimal solution of (14) is then given by the proximal mapping:

prox(ρ/λ̄)∥·∥∗

(
Gt−1

W

λ̄

)
:= argmin

W

1

2

∥∥∥∥W − 1

λ̄
Gt−1

W

∥∥∥∥2
F

+
ρ

λ̄
∥W ∥∗

= Pdiag(σ̂1, . . . , σ̂n)Q
⊤,

where the SVD of Gt−1
W /λ̄ is supposed to be given as Pdiag(σ1, . . . , σn)Q

⊤

and

σ̂i =

{
σi − ρ/λ̄, (σi ≥ ρ/λ̄),
0, (0 ≤ σi ≤ ρ/λ̄).

4.3 Application to Matrix Completion Problem

For the matrix completion problem in Example 5, we consider a rank-
constraint formulation, which is equivalently recast as a DC-constrained
problem:

minimize
W

1
2∥A(W )− b∥22

subject to ∥W ∥∗ − |||W |||K = 0.
(15)

Theorem 3. Suppose that K satisfies

K(m+ n−K) < R := max {r : any r × r principal minor of
p∑

i=1

vec(Ai)vec(Ai)
⊤ is positive definite

}
,

where vec(A) denotes the mn × 1 column vector obtained by stacking each
column of A on the top of another. The DC-constrained problem (15) is
equivalent to the DC-penalty problem

minimize
W

1
2∥A(W )− b∥22 + ρ(∥W ∥∗ − |||W |||K), (16)

if

ρ >

p∑
i=1

∥Ai∥2
(
C∥Ai∥F +

C

2
∥Ai∥2 + |bi|

)
,
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where C =
∑p

i=1 |bi|∥Ai∥F/λ̂R and

λ̂R = min
I:|I|=R

λmin([

p∑
i=1

vec(Ai)vec(Ai)
⊤]I).

Note that K(m+n−K) is the degree of freedom of an m×n matrix of
rank K [14]. See Appendix A.3 for the proof of Theorem 3.

As in the vector-case, the difference between the DCA subproblem (16)
and (12) is noteworthy. Identifying the parameters ρ and µ, the difference of
(16) from (12) is in the concave term, −ρ|||W |||K , and we may regard (16) as
a non-convex modification of the penalty in (12). A numerical comparison
of the two methods will be reported in Section 6.2.

The DCA subproblem (14) for the matrix completion problem amounts
to

min
W

λ̄

2

∥∥∥∥W −
(
W t−1 − 1

λ̄
(A∗(A(W t−1)− b)− ρBt−1)

)∥∥∥∥2
F

+ ρ∥W ∥∗,

(17)

where Bt−1 ∈ ∂|||W t−1|||K and A∗ is the adjoint of A. It is solved by the
soft thresholding, while proximal gradient methods solve the nuclear norm
minimization (12) by applying the soft thresholding to

min
W

τ

2

∥∥∥∥W −
(
W t−1 − 1

τ
A∗(A(W t−1)− b)

)∥∥∥∥2
F

+ µ∥W ∥∗, (18)

where τ is a given parameter larger than the spectral norm of the linear
mapping A (i.e.,∥A∥2 := max{∥A(W )∥2 : ∥W ∥F = 1}), as is the case with
λ̄.

5 Extensions

In this section we consider two extensions of the DC reformulation technique
developed so far.

5.1 Cardinality and Rank Minimization Problems

Let us consider the cardinality minimization problem:

minimize
w

∥w∥0,
subject to w ∈ S,

(19)

on the basis of the method developed for the cardinality-constrained prob-
lem.

Problem (19) can be reduced to a decision problem:

17



Find the smallest k ∈ {1, . . . , n} such that the following sys-
tem is feasible:

∥w∥1 − |||w|||k = 0, w ∈ S.

To tackle this, consider to minimize DC objectives for k = 1, . . . , n:

ϕk := min{∥w∥1 − |||w|||k : w ∈ S}. (20)

The smallest k such that ϕk = 0 is the optimal value of (19) and the obtained
solution is that of (19). Since the term ∥w∥1 − |||w|||k is non-increasing in k,
we may employ binary search to find the smallest k.

Note that if the DCA is applied to (20) with some k and finds a feasible
solution whose objective value is 0, then we can conclude that the true
optimal value of (19) is at most k.

The above approach can also be applied to a rank minimization problem:

minimize
w

rank(W ),

subject to w ∈ S,
(21)

which is equivalent to finding the smallest k ∈ {1, . . . ,min{m,n}} such that

min{∥W ∥∗ − |||W |||k : W ∈ S} = 0.

5.2 Sparse Matrix Norm Problems

We consider the following problem

minimize
W

f(W )

subject to W ∈ S ⊂ Rm×n, ∥W ∥2,0 ≤ K,
(22)

where ∥W ∥2,0 :=
∥∥(∥w1∥22, . . . , ∥wd∥22)⊤

∥∥
0
is called the ℓ2,0-norm of a matrix

W ∈ Rm×n, and wi denotes the i-th row of W . This type of problem is
recently discussed in [13] for a multi-class feature selection problem, where
for input data X ∈ Rm×d (d training data) and response data Y ∈ Rd×n (n
classes), the residual f(W , b) = ∥Y − X⊤W − 1b⊤∥2,1 is minimized over
(W , b) ∈ Rm×n × Rn×1. Here, ∥W ∥2,1 is defined as

∥W ∥2,1 :=

√√√√ m∑
i=1

∥wi∥22 ≡ ∥W ∥F.

Denoting by w(i) the row of W whose ℓ2-norm is the i-th largest among
all the m rows, let

|||W |||2,k :=
√

∥w(1)∥22 + · · ·+ ∥w(k)∥22,
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where k ∈ {1, . . . ,m}. The cardinality constraint ∥W ∥2,0 ≤ K can then
be rewritten as |||W |||22,h − |||W |||22,K = 0 for any 1 ≤ K < h ≤ n, or as

∥W ∥2F − |||W |||22,K = 0. It is straightforward to apply a DCA by noting that

∂|||W t|||2,K =

{
2diag(q∗)W t : q∗ ∈ argmax

q∈Rd

{
d∑

i=1

∥wt
i∥22qi :

1⊤q = K,
0 ≤ q ≤ 1

}}
.

6 Numerical Experiments

This section reports numerical results of the DCA-based approaches, exam-
ining the capability of the framework by focusing on the behavior of them.12

In the first subsection, we solve the cardinality-constrained linear regression
(Example 1) and compare with another exact DC reformulation based on
[37]. In the subsequent subsection, we solve a matrix completion problem
(Example 5) and compare with a convex relaxation formulation which uses
the nuclear norm.

6.1 Subset Selection in Regression

The aim of this section is to compare two different exact DC formulations
of the cardinality-constrained problem.

MIP-based DCA. As mentioned in Introduction, [37] rewrites the car-
dinality constraint by (1), which is further transformed into

1⊤u ≤ K, u ∈ [0, 1]n,u⊤(1− u) ≤ 0, |wi| ≤ Mjuj , j = 1, . . . , n.

Moving the nonconvex constraint u⊤(1−u) ≤ 0 to the objective part brings
an exact penalty formulation as

minimize
w,u

1
2w

⊤Qw + q⊤w + ρ(1⊤u− u⊤u)

subject to −Mjuj ≤ wj ≤ Mjuj , j = 1, . . . , n, 1⊤u ≤ K, 0 ≤ u ≤ 1,
(23)

12All the numerical experiments in this section were performed on an Intel Core i7 2.9
GHz personal computer with 8GB of physical memory using Matlab (R2013a) with IBM
ILOG CPLEX 12.
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where ρ > 0 is a sufficiently large constant.13 Finally, using the fact that an
optimal solution of (23) satisfies 1⊤u = K, we rewrite (23) as

minimize
w,u

1
2w

⊤Qw + q⊤w − ρu⊤u

subject to −Mjuj ≤ wj ≤ Mjuj , j = 1, . . . , n, 1⊤u = K, 0 ≤ u ≤ 1.
(24)

We call the DCA applied to (24) the MIP-based DCA.14

We compare the three DCA algorithms: the MIP-based DCA, the poly-
hedral DCA shown in (8), and the proximal DCA in (10), which are abbre-
viated as MIP-DCA, Poly-DCA, and Prox-DCA, respectively. The diabetes
data set [8] and synthetic data sets are used for the comparison.

Initialization and Termination. All the three algorithms start from (i)
w0 = wOLS (the ordinary least squares (OLS) solution) or (ii) w0 = 0 (plus
u0 = (K/n)1 for the MIP-DCA), and terminate if ∥wt∥0 becomes no greater
than a target cardinality, K∗, and |obj(wt)−obj(wt−1)|/max{1, obj(wt)} <
10−4 is fulfilled.

Behavior for Diabetes Data. Figure 1 shows the behaviors of the three
algorithms for each fixed ρ, K = 5, and w0 = wOLS. It reports the attained
cardinality, the sum of squared residuals (SSR), defined by ∥Aw∗ − b∥22
for an output solution w∗, the numbers of iterations and computation time
in [sec.] for finding a solution w∗. We see from the figure that (a) Poly-
and Prox-DCAs stably attained smaller SSR values than MIP-DCA at large
ρs; (b) attained cardinality was non-increasing with respect to ρ whereas
the SSR was non-decreasing; however, (c) the three methods often overshot
the target cardinality K∗ = 5. Although neither of obtained solutions are
globally optimal, Poly- and Prox-DCAs attained the target cardinality at

13Mj = 4∥q∥2/λ̂R is a sufficiently large constant for any j so that an optimal solution
w⋆ of the cardinality constrained problem satisfies Mj ≥ ∥w⋆∥∞ ≥ |w⋆

j |. In a similar
manner to Theorem 2, we can provide a lower bound of ρ, above which (23) becomes an
exact penalty formulation of the cardinality constraint. It is given as

ρ > max
i

{
8∥q∥2
λ̂R

(
|qi|+

2∥Qei∥2∥q∥2 + ∥q∥2Qii

λ̂R

)}
.

Note that the lower bound of ρ for (23) is 8∥q∥2/λ̂R times as large as that for (4). See
Appendix A.4 for the lower bound of ρ.

14DCA for (24) repeats the following procedure:

(gt−1
w ,vt−1

u ) = (−q, 2ρu),

(wt,ut) ∈ argmin
w,u

{1

2
w⊤Qw −w⊤gt−1

w − u⊤vt−1
u :

−Mjuj ≤ wj ≤ Mjuj , j = 1, . . . , n, 1⊤u = K, 0 ≤ u ≤ 1
}
.
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Figure 1: Comparison of algorithms with fixed K = 5 and ρ starting from
the least-squares initial solution for diabetes data set

smaller ρs, which seems consistent with the discussion of the footnote 13
saying that the lower bound of ρ for our formulation is smaller than that for
MIP-DCA.

For the diabetes data set (m = 442, n = 10), the theoretical lower bounds
of the exact penalty are ρtheo = 3.92 × 103 for Poly- and Prox-DCAs and
ρtheo = 4.42× 106 for MIP-DCA.15 We see from the figure that ρ can be set
to a smaller value than ρtheo in practice.

Figure 2 reports the attained cardinality, SSR, and the accumulated com-
putational time as functions of iteration for the case where the algorithms
started fromw0 = 0 orwOLS and ρ is fixed at ρ = ρtheo/100. The cardinality
parameter K was updated in each iteration by Kt = max{⌊0.9Kt−1⌋,K∗}
from K0 = n to the target cardinality K∗ set to n/2. Note that the update
rule aims at finding a sparse solution satisfying the target, i.e., ∥w∥0 = n/2,
and Prox- and Poly-DCAs succeeded in finding such sparse solutions having
smaller SSR.

Behavior for Synthetic Data. To see results with larger-scale data, the
three algorithms were compared over synthetic data. Each column ai of
the matrix A⊤ = (a1, . . . ,am) was drawn independently from the normal
distribution N(0,Σ), where Σ = (σij) = (0.5|i−j|), and each column of A

15These values are computed by replacing λ̂R with λmin(Q).
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Figure 2: Iterative performance of algorithms with fixed K = 5 and ρ =
ρtheo/100 for diabetes data set. The upper panel shows the results for the
zero initial solution and the lower one shows the results for the least-squares
initial solution.

was then standardized, i.e, ∥ai∥2 = 1; b was generated by b = Ax̄+ϵ, where
x̄i ∼ U(0, 1) and ϵi ∼ N(0, 1).

Average performance among 10 runs are reported in Tables 1 and 2
where w0 = 0 and w0 = wOLS were used, respectively. The penalties ρ
of all the algorithms are fixed to ρtheo/100 and K is updated by Kt =
max{⌊0.9Kt−1⌋,K∗} from K0 = n or n/2 until K∗ = n/10.

All the three algorithms found solutions satisfying the target cardinality
∥w∥0 = n/10 by using the penalty of ρ = ρtheo/100. For each data set,
Poly-DCA and Prox-DCA achieved smaller residuals than MIP-DCA and
Prox-DCA ran quite faster than the others. We see that all the algorithms
run faster and tend to have larger residuals by starting with smaller rank
requirement K0 = n/2. It seems to be reasonable to consider that choosing
the smaller K0 restricts the search for better solutions at an early stage of
the algorithm.

We also compared two different initial solutions for DCA algorithms in
these two tables. Our approaches, Poly- and Prox-DCAs, tend to have better
performance in terms of computational time and residual by starting from

22



Table 1: Performance among 10 runs using the zero solution as an initial
solution. The numbers in parenthesis are the standard deviations.
n m K0 method iter. time card. residual
100 1000 n MIP-DCA 22.0 0.719 (0.045) 10 8.304e-01 (2.807e-02)

Poly-DCA 21.0 0.509 (0.025) 10 6.827e-01 (1.802e-02)
Prox-DCA 26.6 0.024 (0.002) 10 6.986e-01 (2.263e-02)

500 1000 n MIP-DCA 24.1 31.310 (3.109) 50 7.950e-01 (1.031e-01)
Poly-DCA 24.0 23.604 (1.939) 50 5.282e-01 (1.358e-02)
Prox-DCA 32.9 0.139 (0.024) 50 5.374e-01 (1.333e-02)

500 5000 n MIP-DCA 24.5 32.125 (1.511) 50 9.137e-01 (1.881e-02)
Poly-DCA 24.0 21.410 (0.755) 50 6.794e-01 (8.984e-03)
Prox-DCA 28.4 0.118 (0.016) 50 6.874e-01 (1.169e-02)

1000 5000 n MIP-DCA 24.6 297.556 (19.745) 100 8.615e-01 (4.740e-02)
Poly-DCA 24.0 233.123 (12.390) 100 6.332e-01 (7.270e-03)
Prox-DCA 30.3 0.502 (0.026) 100 6.386e-01 (7.842e-03)

100 1000 n/2 MIP-DCA 15.8 0.394 (0.021) 10 8.059e-01 (4.684e-02)
Poly-DCA 15.0 0.279 (0.006) 10 7.426e-01 (1.415e-02)
Prox-DCA 21.7 0.017 (0.001) 10 7.482e-01 (1.671e-02)

500 1000 n/2 MIP-DCA 17.4 21.388 (1.274) 50 8.640e-01 (1.285e-02)
Poly-DCA 17.0 15.842 (0.425) 50 5.780e-01 (1.984e-02)
Prox-DCA 28.6 0.119 (0.019) 50 5.909e-01 (1.924e-02)

500 5000 n/2 MIP-DCA 17.9 20.455 (0.801) 50 8.445e-01 (1.581e-02)
Poly-DCA 17.0 15.085 (0.499) 50 7.424e-01 (1.044e-02)
Prox-DCA 23.3 0.100 (0.010) 50 7.492e-01 (9.009e-03)

1000 5000 n/2 MIP-DCA 17.7 193.367 (7.910) 100 8.296e-01 (1.391e-02)
Poly-DCA 17.0 162.284 (1.436) 100 7.040e-01 (1.311e-02)
Prox-DCA 24.7 0.431 (0.009) 100 7.109e-01 (1.244e-02)

w0 = wOLS.

6.2 Matrix Completion Problem

The main aim of this subsection is to compare the DC penalty formulation
(16) with the nuclear norm penalty formulation (12). To that aim, we solve
the matrix completion problem, which is described in Example 5.

Data Generation. Data sets are generated by following [48, 14]. Let r
be the rank of a target matrix M . We generated M as M = MLM

⊤
R ,

where each element of ML ∈ Rm×r and MR ∈ Rn×r were drawn i.i.d. from
N(0, 1). Note that an m× n matrix whose rank is r has dr = r(m+ n− r)
degrees of freedom. In this experiment, we change p/dr which determines
the number of p, i.e., the number of the observed entries.

Parameter Updating. Following [48], the initial solution W 0 is set to
the zero matrix, τ = λ̄ = ∥A∥2 = 1 is used, and the µ (ρ in our model) is
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Table 2: Performance among 10 runs using the least-squares solution as an
initial solution. The numbers in parenthesis are the standard deviations.
n m K0 method iter. time card. residual
100 1000 n MIP-DCA 22.0 0.536 (0.016) 10 8.304e-01 (2.807e-02)

Poly-DCA 21.0 0.379 (0.015) 10 6.827e-01 (1.802e-02)
Prox-DCA 26.4 0.018 (0.002) 10 7.016e-01 (1.976e-02)

500 1000 n MIP-DCA 24.1 29.605 (1.419) 50 7.950e-01 (1.031e-01)
Poly-DCA 24.0 21.766 (0.752) 50 5.282e-01 (1.358e-02)
Prox-DCA 30.2 0.116 (0.012) 50 5.438e-01 (1.846e-02)

500 5000 n MIP-DCA 24.1 29.605 (1.419) 50 7.950e-01 (1.031e-01)
Poly-DCA 24.0 21.766 (0.752) 50 5.282e-01 (1.358e-02)
Prox-DCA 30.2 0.116 (0.012) 50 5.438e-01 (1.846e-02)

1000 5000 n MIP-DCA 24.6 310.133 (26.087) 100 8.615e-01 (4.740e-02)
Poly-DCA 24.0 244.985 (19.279) 100 6.332e-01 (7.270e-03)
Prox-DCA 29.9 0.514 (0.029) 100 6.426e-01 (6.032e-03)

100 1000 n/2 MIP-DCA 15.8 0.380 (0.014) 10 8.059e-01 (4.684e-02)
Poly-DCA 15.0 0.270 (0.015) 10 6.838e-01 (1.943e-02)
Prox-DCA 20.5 0.016 (0.002) 10 6.937e-01 (1.903e-02)

500 1000 n/2 MIP-DCA 17.4 21.549 (1.494) 50 8.640e-01 (1.285e-02)
Poly-DCA 17.0 15.047 (0.459) 50 5.288e-01 (1.544e-02)
Prox-DCA 25.3 0.106 (0.015) 50 5.424e-01 (1.617e-02)

500 5000 n/2 MIP-DCA 17.9 21.084 (1.348) 50 8.445e-01 (1.581e-02)
Poly-DCA 17.0 14.823 (0.241) 50 6.812e-01 (8.670e-03)
Prox-DCA 22.1 0.098 (0.009) 50 6.908e-01 (9.320e-03)

1000 5000 n/2 MIP-DCA 17.7 212.709 (18.116) 100 8.296e-01 (1.391e-02)
Poly-DCA 17.0 173.532 (9.518) 100 6.340e-01 (5.971e-03)
Prox-DCA 23.3 0.447 (0.024) 100 6.435e-01 (3.236e-03)

updated from µ0 = ∥A∗(b)∥2 by the formula

µt = max{0.9µt−1, 10−4∥A∗(b)∥2},

implying that it would gradually decrease from ∥A∗(b)∥2 to 10−4∥A∗(b)∥216.
The update rule for K from a designated K0 is given by

Kt = max{round(0.8Kt−1), 1} (25)

when the number of positive singular values of W t is no greater than Kt−1+
1, and otherwise, Kt = Kt−1. The termination criterion is either of the
maximum iteration number 500 or

|obj(W t)− obj(obj(W t−1))|/max{1, obj(W t)} < 10−6.

Here obj(W ) is given as the objective function of (18) for the nuclear norm
minimization, and that of (17) for the DCA.

16In the original program code of [48], the coefficient was not 0.9, but 0.7. We slowed
down the speed of decrease of µ because the proximal gradient (PG) without acceleration
techniques needs much more iterations than the original code.

24



0 50 100 150 200
0

20

40

60

80

100

120

Iteration

R
an

k

 

 

PG

DCA (K= 10)

DCA (K= 30)

DCA (K= 50)

0 50 100 150 200

10
−5

10
0

10
5

Iteration

S
um

 o
f S

qu
ar

ed
 R

es
id

ua
ls

 

 

PG
DCA (K= 10)
DCA (K= 30)
DCA (K= 50)

Figure 3: Comparison of PG and DCA with fixed K for a synthetic data set
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Figure 4: Comparison of PG and DCA with updated K starting from K0

for a synthetic data set

We compare the performance of Prox-DCA (DCA in short) and the prox-
imal gradient method for (12) (PG in short), i.e., iterative soft-thresholding
for (18) in terms of error := ∥W ∗ −M∥F /∥M∥F , the rank of the obtained
matrix W ∗, the squared residual (SSR) ∥A(W ∗) − b∥22 and accumulated
computational time. Figure 3 shows the rank and SSR for the PG and DCAs
with fixed K for a synthetic data set generated with m = n = 500, r = 30,
p = 116322 by setting p/dr = 4. The error is 2.497×10−4 (PG), 1.725×10−4

(DCA with K = 10), 2.360×10−7 (DCA with K = 30), 2.441×10−2 (DCA
with K = 50). This implies that the parameter K is sensitive to the perfor-
mance of DCA.

The PG in Figure 4 is the same to the one in Figure 3 and the parameter
K of DCAs is updated by (25) fromK0. Figure 4 indicates that the updating
rule of K works and the performance of DCA is not so sensitive to the value
of K0. Indeed, the errors of DCA are also stable for any K0: 1.811×10−4

(DCA with K0 = 10), 1.346×10−4 (DCA with K0 = 30), 9.477×10−5 (DCA
with K0 = 50).
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Table 3: PG and DCA starting from K0 = n/10
n = m p r p/dr method iter. time rank residual error
100 1192.8 1 6 PG 500.0 1.775 28.7 1.053e-02 4.934e-01

DCA 440.1 1.540 30.8 1.064e-02 4.617e-01
100 3895.4 5 4 PG 500.0 1.949 44.4 3.978e-02 5.702e-02

DCA 500.0 1.970 16.0 2.373e-02 1.831e-02
100 5717.6 10 3 PG 498.7 1.831 16.5 4.542e-02 9.794e-03

DCA 186.1 0.795 11.3 2.878e-02 1.038e-03

500 59364.3 10 6 PG 500.0 55.894 165.0 2.351e-01 3.396e-02
DCA 153.7 21.896 14.2 6.069e-02 1.122e-03

500 116392.9 30 4 PG 106.2 12.934 33.6 3.026e-01 5.021e-04
DCA 90.3 10.925 30.0 1.328e-01 9.570e-05

500 142475.7 50 3 PG 107.7 13.280 54.7 4.695e-01 2.822e-04
DCA 92.2 11.990 50.0 3.116e-01 1.589e-04

1000 237656.3 20 6 PG 500.0 474.140 317.5 6.576e-01 1.796e-02
DCA 105.0 83.977 22.6 1.656e-01 5.330e-04

1000 465617.4 60 4 PG 95.3 71.957 60.5 8.691e-01 2.075e-04
DCA 90.0 69.254 60.0 3.938e-01 9.840e-05

1000 569897.3 100 3 PG 97.1 91.993 101.2 1.337e+00 2.353e-04
DCA 92.0 85.198 100.0 8.448e-01 1.509e-04

In Table 3, the average numerical results of PG and DCA with K0 =
n/10 are shown among 10 runs. PG hardly converged for data sets with
small rank r and terminated with the maximum iteration 500. The DCA
tends to find solutions with smaller rank, residual and error with smaller
computation time than PG.

Finally, let us mention the Nesterov’s acceleration technique [32] which
FISTA [3] is also adopted. The technique accelerates the PG drastically17

Indeed, Figure 5 implies that the performance of the accelerated PG (APG
in short) drastically improved for the same synthetic data to Figures 3 and
4. The error also becomes smaller to 1.626×10−4. There is no theoretical
guarantee for the acceleration technique for nonconvex optimization prob-
lems but the DCA with the acceleration technique (ADCA in short) achieved
the smallest error, 5.921×10−5, among these four methods.

7 Conclusion

In this paper we propose an exact DC representation of the cardinality con-
straint by employing the largest-k norm, and rewrite the optimization prob-
lem as a DC optimization problem. We extend the reformulation technique
to related optimization problems such as those with the rank constraint, the

17For the convex objective function f(w), the rate of convergence to the optimal solution
w∗ changes from f(wt)− f(w∗) = O(1/t) to O(1/t2).
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Figure 5: Accelerated PG and DCA for a synthetic data set

ℓ0-objective, and some matrix norm constraint. For the penalized reformu-
lation of the problem expression, we apply the DCA. An advantage of the
use of the largest-k norm is that in each iteration of DCA, the subgradient
computation is efficiently carried out.

While our reformulation is also advantageous over the existing exact
reformulation in that we obtain smaller lower bounds above which the ex-
act penalty is achieved, the numerical experiment supports its advantage,
showing more stability.

Furthermore, since the penalty term contains the ℓ1-norm in addition to
the largest-k norm, a proximal method is constructed and each subproblems
of DCA can be solved efficiently.

In general, the performance of first-order methods, which are practical
and popular, can be tuned by incorporating various small improvements
in program codes. Such a tuning so as to make the proposed algorithms
truly practical is left for the future research. Also, the so-called acceleration
techniques seem to be worth developing.

Acknowledgment. The research of the first author is supported by JSPS KAKENHI

Grant Number 15K01204, 22510138, and 26242027.

A Proofs of Propositions

A.1 Proof of Lemma 1

Let f1(w) := 1
2w

⊤Qw+q⊤w+ρ(∥w∥1−|||w|||K). We assume that ∥w⋆∥1−
|||w⋆|||K > 0. We consider a feasible solution w̃ := w⋆ −w⋆

jej , where j is the

index of the (K + 1)-st largest element of (|w⋆
1|, . . . , |w⋆

n|)⊤. Then, from the
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Cauchy-Schwarz inequality, we have

f1(w
⋆)− f1(w̃)

=
1

2
(w⋆)⊤Qw⋆ + q⊤w⋆ − 1

2
(w⋆ − w⋆

jej)
⊤Q(w⋆ − w⋆

jej)

− q⊤(w⋆ − w⋆
jej) + ρ|w⋆

j |

= w⋆
je

⊤
j Qw⋆ − 1

2
w⋆
j
2Qjj + w⋆

j qj + ρ|w⋆
j |

≥ −|w⋆
j |∥Qej∥2∥w⋆∥2 −

1

2
|w⋆

j |∥w⋆∥2|Qjj |

− |qj ||w⋆
j |+ ρ|w⋆

j | (∵ |w⋆
j | ≤ ∥w⋆∥2)

≥ |w⋆
j | (ρ− C∥Qej∥2 − C|Qjj |/2− |qj |) > 0,

which contradicts the optimality of w⋆. (End of Proof of Lemma 1)

A.2 Proof of Theorem 2

Let f2(w) := 1
2w

⊤Qw+q⊤w+ρ(∥w∥1−|||w|||K) and w⋆ an optimal solution

of (4). Assume by contradiction that ∥w⋆∥2 > 2∥q∥2/λ̂R. We have

f2(w
⋆) =

1

2
(w⋆)⊤Qw⋆ + q⊤w⋆ + ρ(∥w⋆∥1 − |||w⋆|||K)

≥ 1

2
λ̂R∥[w⋆]I∗∥22 − ∥q∥2∥w⋆∥2,

where I∗ = argmin
I:|I|=R

λmin([Q]I). Since I∗ is a maximal index set such that

[Q]I is positive definite, we can assign 0 to w⋆
j for every j /∈ I∗, without loss

of generality. Then we have

f2(w
⋆) ≥ 1

2
λ̂R∥w⋆∥22 − ∥q∥2∥w⋆∥2 > 0.

On the other hand, since f2(0) = 0, the optimal value of (4) must be non-
positive. Hence it suffices to consider the case ∥w⋆∥2 ≤ 2∥q∥2/λ̂R. Applying
C = λ̂R to Lemma 1, we have the desired result. (End of Proof of Theorem 2)
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A.3 Proof of Theorem 3

Proof. Suppose that an optimal solution W ⋆ of (16) satisfies ∥W ⋆∥F > C.
We have

f3(W
⋆) :=

1

2
∥A(W ⋆)− b∥22 + ρ(∥W ⋆∥∗ − |||W ⋆|||K)

≥
p∑

i=1

(
1

2
(Ai •W ⋆)2 − bi(Ai •W ⋆)

)
+

1

2
b⊤b

≥ 1

2
vec(W ⋆)⊤

p∑
i=1

(vec(Ai)vec(Ai)
⊤)vec(W ⋆)

−
p∑

i=1

(|bi|∥Ai∥F)∥W ⋆∥F +
1

2
b⊤b

≥ λ̂R∥[W ⋆]I∗∥2F −
p∑

i=1

(|bi|∥Ai∥F)∥W ⋆∥F +
1

2
b⊤b,

where I∗ = argmin
I:|I|=R

λmin([
∑p

i=1 vec(Ai)vec(Ai)
⊤]I). Since I

∗ is maximal, we

can assign 0 to [vec(W ⋆)]j for every j /∈ I∗, without loss of generality. Then
we have

f3(W
⋆) ≥ λ̂R∥W ⋆∥2F −

p∑
i=1

(|bi|∥Ai∥F)∥W ⋆∥F +
1

2
b⊤b >

1

2
b⊤b.

On the other hand, since f3(O) = b⊤b/2, it suffices to consider the case
∥W ⋆∥ ≤ C.

Now we show that ∥W ⋆∥∗ − |||W ⋆|||K = 0. Assume by contradiction
that ∥W ⋆∥∗ − |||W ⋆|||K > 0. Consider a feasible solution W̃ := W ⋆ −
W ⋆vK+1v

⊤
K+1, where vK+1 is the (K+1)-st leading eigenvector of W ⋆⊤W ⋆
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with ∥vK+1∥2 = 1. Then we have

f3(W
⋆)− f3(W̃ )

= ρσK+1(W
⋆) +

1

2
∥A(W ⋆)− b∥22 −

1

2
∥A(W ⋆ −W ⋆vK+1v

⊤
K+1)− b∥22

= ρσK+1(W
⋆) +

p∑
i=1

{
Tr(A⊤

i W
⋆vK+1v

⊤
K+1)

·
(
Tr(A⊤

i W
⋆)− 1

2
Tr(A⊤

i W
⋆vK+1v

⊤
K+1)− bi

)}

≥ ρσK+1(W
⋆)− σK+1

p∑
i=1

∥Ai∥2 ·
(
∥Ai∥F∥W ⋆∥F +

1

2
∥Ai∥2∥W ⋆∥2 + |bi|

)

≥ σK+1(W
⋆)

(
ρ−

p∑
i=1

∥Ai∥2
(
C∥Ai∥F +

C

2
∥Ai∥2 + |bi|

))
> 0.

A.4 Exact penalty for the MIP-based formulation

Theorem 4. Problem (23) is equivalent to the cardinality-constrained prob-
lem if

ρ > max
i

{
8∥q∥2
λ̂R

(
|qi|+

2∥Qei∥2∥q∥2 + ∥q∥2Qii

λ̂R

)}
.

Proof. Let f4(w,u) := 1
2w

⊤Qw+q⊤w+ρ(1⊤u−u⊤u). In the same manner
as the proof of Theorem 2, an optimal solution w⋆ of (23) is bounded by
∥w⋆∥2 ≤ 2∥q∥2/λ̂R. As for Mj , we have a naive bound Mj ≥ 2∥q∥2/λ̂R

by Mj ≥ ∥w⋆∥∞, but to derive the concerned bound of ρ, we set Mj =

4∥q∥2/λ̂R.
It suffices to show that 1⊤u⋆ − (u⋆)⊤u⋆ = 0 for any solution (w⋆,u⋆).

Assume by contradiction that 1⊤u⋆ − (u⋆)⊤u⋆ > 0.

• If there exists j such that 0 < u⋆j ≤ 1/2, by constructing a feasible
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solution (w̃, ũ) = (w⋆ − w⋆
jej ,u

⋆ − u⋆jej), we have

f4(w
⋆,u⋆)− f4(w̃, ũ)

=
1

2
(w⋆)⊤Qw⋆ + q⊤w⋆ − 1

2
(w⋆ − w⋆

jbej)
⊤Q(w⋆ − w⋆

jbej)

− q⊤(w⋆ − w⋆
jej) + ρ(u⋆j − (u⋆j )

2)

≥ w⋆
je

⊤
j Qw⋆ − 1

2
w⋆
j
2Qjj + w⋆

j qj +
1

2
ρu⋆j

(∵ x− x2 ≥ x/2 for 0 < x ≤ 1/2)

≥ 1

2
ρu⋆j − |w⋆

j |∥Qej∥2∥w⋆∥2 −
1

2
|w⋆

j |∥w⋆∥2Qjj − |w⋆
j ||qj |

≥ ρ

2Mj
|w⋆

j | −
2|w⋆

j |∥Qej∥2∥q∥2
λ̂R

−
|w⋆

j |∥q∥2Qjj

λ̂R

− |w⋆
j ||qj |

≥
|w⋆

j |
2Mj

[
ρ− 8∥q∥2

λ̂R

(
|qj |+

2∥Qej∥2∥q∥2 + ∥q∥2Qjj

λ̂R

)]
> 0.

• Otherwise, if u⋆j /∈ {0, 1}, then 1/2 < u⋆j < 1.

– Case: 1⊤u⋆ < K. We can take ϵ > 0 such that 1⊤u⋆ + ϵ ≤ K
and u⋆j + ϵ ≤ 1. Then by putting (w̃, ũ) = (w⋆,u⋆ + ϵej), we
have

f4(w
⋆,u⋆)− f4(w̃, ũ)

= ρ[1⊤u⋆ − (u⋆)⊤u⋆ − 1⊤(u⋆ + ϵej) + (u⋆ + ϵej)
⊤(u⋆ + ϵej)]

= ρ(−ϵ+ 2ϵu⋆j + ϵ2) > 0.

– Case: 1⊤u⋆ = K. There exists i ( ̸= j) such that 1/2 < u⋆i < 1.
Assume u⋆i ≥ u⋆j without loss of generality. If we choose ϵ > 0 such
that u⋆i + ϵ ≤ 1 and u⋆j − ϵ ≥ 1/2, a solution (w̃, ũ) = (w⋆,u⋆ +

ϵei−ϵej) is feasible, sinceMj(u
⋆
j−ϵ) ≥ Mj/2 = 2∥q∥2/λ̂R ≥ |w⋆

j |.
Then we have

f4(w
⋆,u⋆)− f4(w̃, ũ)

= ρ(−(u⋆)⊤u⋆ + (u⋆ + ϵei − ϵej)
⊤(u⋆ + ϵei − ϵej))

= ρ(2ϵu⋆i − 2ϵu⋆j + 2ϵ2) > 0.
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