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Making Bipartite Graphs DM-irreducible

Satoru Iwata∗ Jun Kato† Yutaro Yamaguchi‡

Abstract

The Dulmage–Mendelsohn decomposition (or the DM-decomposition) gives a unique
partition of the vertex set of a bipartite graph reflecting the structure of all the maximum
matchings therein. A bipartite graph is said to be DM-irreducible if its DM-decomposition
consists of a single component. For connected bipartite graphs, this is equivalent to the
condition that every edge is contained in some perfect matching.

In this paper, we focus on the problem of making a given bipartite graph DM-irreducible
by adding edges. When the input bipartite graph is balanced (i.e., the both sides have the
same number of vertices) and has a perfect matching, this problem is equivalent to making
a directed graph strongly connected by adding edges, for which the minimum number of
additional edges was characterized by Eswaran and Tarjan (1976).

We provide a simple solution to the general case. Specifically, we present a combinatorial
algorithm for finding a minimum number of additional edges to make a given bipartite
graph DM-irreducible, which also leads to a constructive proof for a min-max duality. Our
algorithm requires only O(|V | · |E|) time for bipartite graphs with vertex set V and edge set
E, and just utilizes two fundamental techniques on graphs: the result of Eswaran and Tarjan
on making a directed graph strongly connected, and finding edge-disjoint paths between two
vertices in a directed graph.

We also show that our problem can be formulated as a special case of the bisupermodular
covering problem introduced by Frank and Jordán (1995). This provides an alternative proof
to our min-max characterization.
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1 Introduction

The Dulmage–Mendelsohn decomposition [3, 4] (or the DM-decomposition) of a bipartite graph
gives a unique partition of the vertex set, which reflects the structure of all the maximum
matchings therein (see Section 2.2 for the details). A bipartite graph is said to be DM-irreducible
if its DM-decomposition consists of only one nonempty component.

In this paper, we focus on the following question: how many additional edges are necessary
to make a given bipartite graph G DM-irreducible?

Problem (DMI)

Input: A bipartite graph G = (V +, V −;E).

Goal: Find a minimum-cardinality set F of additional edges such that G+F is DM-irreducible.

Throughout this paper, for an input bipartite graph G = (V +, V −;E), we define n :=
max{|V +|, |V −|} and m := |E|, and denote by opt(G) the optimal value of Problem (DMI),
i.e., the minimum number of additional edges to make G DM-irreducible.

When G is balanced (i.e., |V +| = |V −|) and has a perfect matching, Problem (DMI) is
equivalent to the problem of making a directed graph strongly connected by adding as few
edges as possible (see Section 3.5). For the latter problem, Eswaran and Tarjan [5] gave a
simple solution (Theorem 2.1).

A natural generalization of the strong connectivity augmentation is to find a smallest set
of additional edges that make a given directed graph strongly k-vertex connected. In order to
investigate this problem, Frank and Jordán [7] introduced a general framework of covering a
crossing bisupermodular function by directed edges. They provided a min-max duality theorem
and a polynomial-time algorithm relying on the ellipsoid method. Later, Végh and Benczúr [14]
devised a combinatorial algorithm whose running time bound is pseudopolynomial, depending
polynomially on the function values.

In this paper, we present a simple combinatorial algorithm for Problem (DMI), which runs
in O(nm) time.

Theorem 1.1. For a bipartite graph G = (V +, V −;E) with max{|V +|, |V −|} = n and |E| = m,
one can find in O(nm) time a minimum number of additional edges to make G DM-irreducible.

Specifically, we give an algorithm for the case when G is balanced, and show that the
unbalanced case can be reduced to the balanced case (see Section 3.3). Our algorithm gives a
constructive proof of the following min-max duality on Problem (DMI) for the balanced case.
For a one-side vertex set X in a bipartite graph G, we denote by ΓG(X) the set of vertices
in the other side that are adjacent to some vertex in X. For a set S, a subpartition of S is a
partition of some subset of S (i.e., a family of disjoint nonempty subsets of S). A subpartition
X of S is said to be proper if X ̸= {S}.

Theorem 1.2. Let G = (V +, V −;E) be a bipartite graph with |V +| = |V −| ≥ 2. Then the
minimum number opt(G) of additional edges to make G DM-irreducible is equal to the maximum
value of

τG(X ) :=
∑
X∈X

(|X| − |ΓG(X)|+ 1) , (1)

taken over all proper subpartitions X of V + and of V −.

Through a reduction to the balanced case, we obtain the following form in the unbalanced
case (see Section 3.4).
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Corollary 1.3. Let G = (V +, V −;E) be a bipartite graph with |V +| < |V −|. Then,

opt(G) = max
X+

τG(X+),

where the maximum is taken over all subpartitions X+ of V +.

In addition, we show that Problem (DMI) is a special case of the Frank–Jordán framework.
As a consequence, Theorem 1.2 can also be derived from the min-max duality theorem of Frank
and Jordán [7, Theorem 2.3]. The function values that appear in the reduction are bounded by
O(n), and a direct application of the Végh–Benczúr algorithm runs in polynomial time (roughly
bounded by O(n7)).

The DM-decomposition is known to be a useful tool in numerical linear algebra (see, e.g.,
[2]). A bipartite graph associated with a matrix is naturally defined by its nonzero entries,
and its DM-decomposition gives the finest block-triangularization, which helps us to solve the
system of linear equations efficiently. The finer decomposed, the finer from computational point
of view. Hence the DM-irreducibility is not a desirable property in this context. There are,
however, certain situations in which DM-irreducibility is rather preferable. For example, in game
theory, the uniqueness of the utility profile in a subgame perfect equilibrium in a bargaining
game is characterized by the DM-irreducibility. In control theory, the structural controllability
is characterized in terms of the DM-irreducibility. We explicate these situations and possible
applications of our result in Section 7.

The rest of this paper is organized as follows. In Section 2, we describe necessary definitions
and known results on the DM-decomposition of bipartite graphs and on the strong connectivity
of directed graphs. We then observe basic properties on the DM-irreducibility and our problem
in Section 3. Section 4 is devoted to presenting our algorithm. The correctness of the algorithm
also gives a constructive proof of Theorem 1.2. A key procedure in our algorithm is shown
separately in Section 5. In Section 6, we formulate our problem in terms of the Frank–Jordán
framework and apply their result to provide an alternative proof of Theorem 1.2. Finally, in
Section 7, we discuss possible applications of our result in game theory and in control theory.

2 Preliminaries

2.1 Strong connectivity of directed graphs

Let G = (V,E) be a directed graph. A sequence P = (v0, e1, v1, e2, v2, . . . , el, vl) is called a path
(or, in particular, a v0–vl path) in G if v0, v1, . . . , vl ∈ V are distinct and ei = vi−1vi ∈ E for
each i ∈ {1, 2, . . . , l}. For two vertices u,w ∈ V (possibly u = w), we say that u is reachable to

w (or, equivalently, w is reachable from u) in G and denote by u
G−→ w if there exists a u–w path

in G. A directed graph is said to be strongly connected if every two vertices are reachable to
each other (also from each other). A strongly connected component of G is a maximal induced
subgraph of G that is strongly connected. The strongly connected components of a directed
graph can be found in linear time with the aid of the depth first search [13].

Let S = {V1, V2, . . . , Vk} be the partition of V according to the strongly connected com-

ponents of G, i.e., for any two vertices u,w ∈ V , we have u
G−→ w and w

G−→ u if and only if

{u,w} ⊆ Vi for some i. For Vi, Vj ∈ S, we denote by Vi ⪰G Vj if u
G−→ w for every pair of

u ∈ Vi and w ∈ Vj . Then the binary relation ⪰G is a partial order on S. A strongly connected
component of G is called a source component if its vertex set Vi is maximal with respect to ⪰G

(i.e., there is no Vj ∈ S \ {Vi} with Vj ⪰G Vi), and a sink component if minimal. Note that a
strongly connected component is a source or sink component if and only if no edge enters or
leaves it, respectively. The numbers of source and sink components of G are denoted by s(G)
and t(G), respectively.
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Eswaran and Tarjan [5] characterized the minimum number of additional edges to make
a directed graph strongly connected, and proposed a linear-time algorithm for finding such
additional edges as follows.

Theorem 2.1 (Eswaran–Tarjan [5, Section 2]). Let G = (V,E) be a directed graph that is not
strongly connected. Then the minimum number of additional edges to make G strongly connected
is equal to max{s(G), t(G)}. Moreover, one can find such additional edges in O(|V |+ |E|) time.

2.2 DM-decomposition of bipartite graphs

Let G = (V +, V −;E) be a bipartite graph with the vertex set V partitioned into the left side
V + and the right side V −. Throughout this paper, a bipartite graph is dealt with as a directed
graph in which each edge is directed from left to right, i.e., E ⊆ V +×V −. An edge set M ⊆ E
is called a matching in G if |∂+M | = |∂−M | = |M |, where ∂+M := {u | uw ∈ M } ⊆ V + and
∂−M := {w | uw ∈M } ⊆ V −. A matching M is said to be maximum if |M | is maximum, and
perfect if |M | = min{|V +|, |V −|}. A bipartite graph is said to be perfectly matchable if it has a
perfect matching, and matching covered if every edge is contained in some perfect matching.

The DM-decomposition of a bipartite graph gives a unique partition of the vertex set, which
reflects the structure of all the maximum matchings therein as follows. We define X+ := X∩V +

and X− := X ∩V − for a vertex set X ⊆ V , and [k] := {1, 2, . . . , k} for a nonnegative integer k.

Theorem 2.2 (Dulmage–Mendelsohn [3, 4]). Let G = (V +, V −;E) be a bipartite graph. Then
there exists a partition (V0;V1, V2, . . . , Vk;V∞) of the vertex set V such that

1. either |V +
0 | > |V

−
0 | or V0 = ∅,

2. |V +
i | = |V

−
i | > 0 for each i ∈ [k],

3. either |V +
∞ | < |V −

∞ | or V∞ = ∅,

4. the induced subgraph G[Vi] is matching covered for each i ∈ [k] ∪ {0,∞}, and

5. every maximum matching in G is a union of perfect matchings in G[Vi] (i ∈ [k]∪{0,∞}).

We here define the DM-decomposition (V0;V1, V2, . . . , Vk;V∞) of a bipartite graph G =
(V +, V −;E), which satisfies the conditions in Theorem 2.2 (see also, e.g., [9, 11]). Define a set
function fG : 2V

+ → Z as

fG(X
+) := |ΓG(X

+)| − |X+| (X+ ⊆ V +), (2)

where recall ΓG(X
+) = {w | ∃e = uw ∈ E : u ∈ X+ } ⊆ V −. It is well-known that fG is

submodular, and hence all the minimizers of fG form a distributive lattice L(fG) with respect
to the set union and intersection (see, e.g., [8, Lemma 2.1]). For a maximal chain (inclusion-
wise monotone sequence) X+

0 ⊊ X+
1 ⊊ · · · ⊊ X+

k in L(fG), define Vi := V +
i ∪ V −

i for each
i ∈ [k] ∪ {0,∞} as follows:

V +
0 := X+

0 , V −
0 := ΓG(X

+
0 ),

V +
i := X+

i \X
+
i−1, V −

i := ΓG(X
+
i ) \ ΓG(X

+
i−1) (i ∈ [k]),

V +
∞ := V + \X+

k , V −
∞ := V − \ ΓG(X

+
k ).

It is known that the resulting partition of V with the following partial order ⊑ is unique
(i.e., does not depend on the choice of a maximal chain in L(fG)):

Vi ⊑ Vj ⇐⇒
[
V +
j ⊆ X+ ∈ L(fG) =⇒ V +

i ⊆ X+
]

(i, j ∈ [k] ∪ {0,∞}).
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Moreover, while V + and V − do not seem symmetric in the above definition, it is also known
that essentially the same partially-ordered partition is obtained by interchanging the roles of
V + and of V −, in which, e.g., V0 and V∞ are interchanged and the direction of ⊑ is reversed.

The DM-decomposition is known to be obtained as follows. Take an arbitrary maximum
matching M ⊆ E in G. Construct the auxiliary graph G(M) := G + M with respect to M ,
where M := { ē := wu | e = uw ∈ M } ⊆ V − × V + denotes the set of reverse edges. The
set of vertices reachable from some vertex in V + \ ∂+M in G(M) is V0, and the set of vertices
reachable to some vertex in V − \ ∂−M in G(M) is V∞. The rest V∗ := V \ (V0 ∪ V∞) is
partitioned according to the strongly connected components of G∗ := G(M)[V∗]. The partial
order ⊑ is defined by ⪯G∗ on {Vi | i ∈ [k] } and so that V0 and V∞ are minimum and maximum
elements, respectively. By this computation, one can easily see the following properties.

Observation 2.3. Let (V0;V1, V2, . . . , Vk;V∞) be the DM-decomposition of a bipartite graph
G = (V +, V −;E). Then, for any maximum matching M ⊆ E in G, the auxiliary graph G(M)
satisfies the following conditions.

• No edge leaves V0.

• No edge enters V∞.

• Each source component of G(M)[V0] is a single vertex in V + \ ∂+M , and vice versa.
Hence, s(G(M)[V0]) = |V +| − |M |.
• Each sink component of G(M)[V∞] is a single vertex in V −\∂−M , and vice versa. Hence,

t(G(M)[V∞]) = |V −| − |M |.

3 DM-irreducibility

A bipartite graph G = (V +, V −;E) is said to be DM-irreducible if its DM-decomposition
consists of only one nonempty component. In this section, we show several basic properties on
the DM-irreducibility and Problem (DMI). Throughout this section, we assume |V +| ≤ |V −|
by the symmetry.

3.1 Characterization of DM-irreducibility

We first characterize the DM-irreducibility in terms of the set function fG : 2V
+ → Z defined in

(2), which is useful in the following discussions.

Lemma 3.1. A bipartite graph G = (V +, V −;E) with |V +| ≤ |V −| and |V −| ≥ 2 is DM-
irreducible if and only if fG(X

+) ≥ 1 for every nonempty X+ ⊆ V + with |X+| < |V −|.
Proof. By Conditions 1–3 in Theorem 2.2, the DM-irreducibility of G is equivalent to V∞ = V
when |V +| < |V −|, and to V1 = V when |V +| = |V −|. In the both cases, X+

0 = V +
0 = ∅

minimizes fG, and fG(∅) = 0.
Suppose that |V +| < |V −|. Then, G is DM-irreducible if and only if X+

0 = ∅ is a unique
minimizer of fG; equivalently, fG(X

+) ≥ 1 for every nonempty X+ ⊆ V +, which satisfies
|X+| ≤ |V +| < |V −|.

Suppose that |V +| = |V −| ≥ 2. Then, G is DM-irreducible if and only if fG has exactly two
minimizers X+

0 = ∅ and X+
1 = V +

1 = V +; equivalently, fG(V
+) = 0 and fG(X

+) ≥ 1 for every
nonempty X+ ⊊ V +, which satisfies |X+| < |V +| = |V −|. Note that the former condition is
automatically satisfied by the latter condition as follows. For any nonempty X+ ⊊ V + with
|X+| = |V +| − 1 (such X+ exists because |V +| ≥ 2), the latter condition implies

1 ≤ fG(X
+) = |ΓG(X

+)| − |X+| ≤ |V −| − |X+| = 1.

We then have V − ⊇ ΓG(V
+) ⊇ ΓG(X

+) = V −, and hence ΓG(V
+) = V −, which leads to

f(V +) = |V −| − |V +| = 0.
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3.2 Weak duality

We now show the weak duality part of Theorem 1.2, i.e., opt(G) ≥ maxX τG(X ).

Lemma 3.2. Let G = (V +, V −;E) be a bipartite graph with |V +| = |V −|. Then, for any edge
set F ⊆ (V + × V −) \ E such that G + F is DM-irreducible and any proper subpartition X of
V + or of V −, we have |F | ≥ τG(X ).

Proof. Fix an edge set F ⊆ (V +×V −)\E such that G+F is DM-irreducible and a proper sub-
partition X of V +. By Lemma 3.1, the DM-irreducibility of G+F implies that |ΓG+F (X

+)| ≥
|X+|+ 1 for every X+ ∈ X . Hence,

|F (X+, V − \ ΓG(X
+))| ≥ |ΓG+F (X

+)| − |ΓG(X
+)| ≥ |X+| − |ΓG(X

+)|+ 1,

where F (Y +, Y −) := F ∩ (Y +×Y −) denotes the restriction of F to Y +×Y − for Y + ⊆ V + and
Y − ⊆ V −. For every distinct X+

1 , X+
2 ∈ X , since X

+
1 ∩X

+
2 = ∅ implies F (X+

1 , V − \ΓG(X
+
1 ))∩

F (X+
2 , V − \ ΓG(X

+
2 )) = ∅, we see

|F | ≥
∑

X+∈X

|F (X+, V − \ ΓG(X
+))| ≥

∑
X+∈X

(
|X+| − |ΓG(X

+)|+ 1
)
= τG(X ).

We can handle the proper subpartitions of V − in the same way by considering the inter-
changed bipartite graph (V −, V +;E) and the set F of reverse edges, and thus we have done.

We prove the strong duality in Section 4.2, together with the correctness of our algorithm.

3.3 Reduction to the balanced case

A bipartite graph G = (V +, V −;E) is said to be balanced if |V +| = |V −|. As remarked in
Introduction, the unbalanced case of Problem (DMI) can be reduced to the balanced case.
The next lemma gives such a reduction. That is, making an unbalanced bipartite graph G
DM-irreducible by adding edges is equivalent to doing so the corresponding balanced bipartite
graph G′ defined in Lemma 3.3, where the set of usable additional edges is not changed.

Lemma 3.3. For a bipartite graph G = (V +, V −;E) with |V +| < |V −|, define a balanced
bipartite graph G′ = (V + ∪ Z+, V −;E′) as follows: let Z+ be a set of new vertices with |Z+| =
|V −| − |V +| and E′ := E ∪ (Z+ × V −). Then, G is DM-irreducible if and only if so is G′.

Proof. When |V −| ≤ 1, both G and G′ are DM-irreducible. Assume |V −| ≥ 2 in what follows.
Consider the set functions fG : 2V

+ → Z and fG′ : 2V
+∪Z+ → Z defined in (2). By

Lemma 3.1, G is DM-irreducible if and only if fG(X
+) ≥ 1 for every nonempty X+ ⊆ V +,

and so is G′ if and only if fG′(X+) ≥ 1 for every nonempty X+ ⊊ V + ∪ Z+. By the definition
of E′, for every X+ ⊆ V + ∪ Z+ with X+ ∩ Z+ ̸= ∅, we have ΓG′(X+) = V −, which implies
fG′(X+) = |V −| − |X+| = |V + ∪ Z+| − |X+|. Hence, fG′(X+) ≥ 1 for every X+ ⊊ V + ∪ Z+

with X+ ∩ Z+ ̸= ∅. Since fG(X
+) = fG′(X+) for every X+ ⊆ V +, the above two conditions

for the DM-irreducibility of G and of G′ are equivalent.

This reduction increases the size of the input graph. In particular, G′ may have an essentially
larger number of edges thanG, i.e., |E′| ̸= O(m). While our algorithm for Problem (DMI) shown
in Section 4 only handles the balanced case, it runs in O(nm) time in terms of the original input
size also for the unbalanced case through this reduction. See Section 4.3 for the details. The
following observation is utilized in the analysis.

Observation 3.4. For a bipartite graph G = (V +, V −;E) with |V +| < |V −|, let G′ =
(V + ∪ Z+, V −;E′) be the balanced bipartite graph defined in Lemma 3.3, M ′ ⊆ E′ a maximum
matching in G′, and (V0;V1, V2, . . . , Vk;V∞) the DM-decomposition of G′. Then the following
conditions hold.
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• M ′ consists of a maximum matching in G and a perfect matching in G′[Z+ ∪ V −].

• Z+ is included in a single strongly connected component of G′(M ′) = G′+M ′, which is a
unique source component, and hence s(G′(M ′)) = 1.

• If V∞ ̸= ∅, then Z+ ⊆ V +
∞ , and hence G′ − V∞ = G− V∞. In particular, G′[V0] = G[V0].

3.4 Duality in the unbalanced case

In this section, we derive the min-max duality theorem for the unbalanced case (Corollary 1.3)
from that for the balanced case (Theorem 1.2) through the reduction in Section 3.3. First, we
see the following weak duality as a corollary of Lemma 3.2 via Lemma 3.3.

Corollary 3.5. Let G = (V +, V −;E) be a bipartite graph with |V +| < |V −|. Then, for any
edge set F ⊆ (V + × V −) \ E such that G + F is DM-irreducible and any subpartition X+ of
V +, we have |F | ≥ τG(X+).

We now start to prove Corollary 1.3. Let G = (V +, V −;E) be a bipartite graph with |V +| <
|V −|. By Corollary 3.5, it suffices to construct a subpartition X+ of V + with τG(X+) = opt(G).
If |V −| = 1, then G itself is DM-irreducible, and X+ := ∅ is indeed a subpartition of V + with
τG(X+) = 0 = opt(G). In what follows, we assume |V −| ≥ 2.

Let G′ = (V + ∪ Z+, V −;E′) be the balanced bipartite graph defined in Lemma 3.3. By
Theorem 1.2, there exists a proper subpartition Y of V + ∪ Z+ or of V − such that τG′(Y) =
opt(G′) = opt(G). Suppose that Y is a proper subpartition of V + ∪ Z+. Since every vertex in
Z+ is adjacent to all the vertices in V −, for each X+ ⊆ V + ∪ Z+ with X+ ∩ Z+ ̸= ∅, we have
|X+|− |ΓG′(X+)|+1 = |X+|− |V −|+1 ≤ 0. By the maximality of τG′(Y), we may assume that
Y contains no such X+, i.e., Y is a subpartition of V +. We then obtain a desired subpartition
X+ := Y of V + with τG(X+) = τG′(Y) = opt(G).

Otherwise, Y is a nonempty proper subpartition of V −. Suppose that Y contains two distinct
elements X−, Y − ∈ Y. By the definition of E′, we have ∅ ̸= Z+ ⊆ ΓG′(X−) ∩ ΓG′(Y −), which
implies |ΓG′(X− ∪ Y −)| = |ΓG′(X−) ∪ ΓG′(Y −)| ≤ |ΓG′(X−)|+ |ΓG′(Y −)| − 1. Hence,(

|X−| − |ΓG′(X−)|+ 1
)
+
(
|Y −| − |ΓG′(Y −)|+ 1

)
≤ |X− ∪ Y −| − |ΓG′(X− ∪ Y −)|+ 1.

This enables us to replace X− and Y − with X− ∪ Y − without reducing the value of τG′(Y).
Thus, by the maximality of τG′(Y), we may assume Y = {Y −} for some nonempty Y − ⊊ V −. If
ΓG′(Y −) = V +∪Z+, then τG′(Y) = |Y −|−|V +∪Z+|+1 = |Y −|−|V −|+1 ≤ 0, and hence X+ :=
∅ is a desired subpartition of V +. Otherwise, letX+ := V +\ΓG(Y

−) = (V +∪Z+)\ΓG′(Y −) ̸= ∅
and X+ := {X+}. We then see that

τG(X+) = |X+| − |ΓG(X
+)|+ 1

=
(
|V + ∪ Z+| − |ΓG′(Y −)|

)
− |ΓG′(X+)|+ 1

=
(
|V −| − |ΓG′(X+)|

)
− |ΓG′(Y −)|+ 1

≥ |Y −| − |ΓG′(Y −)|+ 1 = τG′(Y),

which concludes that X+ is a desired subpartition of V +.

3.5 Equivalence to strong connectivity under perfect matchability

From the computation of the DM-decomposition (see Section 2.2), we see the equivalence be-
tween the DM-irreducibility of a perfectly-matchable balanced bipartite graph and the strong
connectivity of a directed graph as follows.

A balanced bipartite graph G with a perfect matching M is DM-irreducible if and only if the
auxiliary directed graph G(M) = G +M is strongly connected. In addition, a directed graph
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G = (V,E) is strongly connected if and only if the balanced bipartite graph G̃ = (Ṽ +, Ṽ −; Ẽ)
defined as follows is DM-irreducible:

Ṽ + := { v+ | v ∈ V }, Ṽ − := { v− | v ∈ V },

Ẽ := {u+w− | uw ∈ E } ∪ { v+v− | v ∈ V }.

Note that G̃ has a perfect matching M̃ := { v+v− | v ∈ V } ⊆ Ẽ, and the DM-irreducibility
of G̃ is equivalent to the strong connectivity of G̃(M̃), in which the two vertices v+ ∈ Ṽ + and
v− ∈ Ṽ − derived from each vertex v ∈ V must be contained in a single strongly connected
component.

Hence, Problem (DMI) with the input bipartite graph balanced and perfectly matchable
is equivalent to making a directed graph strongly connected by adding a minimum number of
edges, which was solved by Eswaran and Tarjan [5] (cf. Theorem 2.1). Note that every strongly
connected component of the auxiliary directed graph intersects both V + and V − in this case,
and one can choose, freely in each strongly connected component, the heads and the tails of
additional edges to make a directed graph strongly connected. The strong duality (Theorem 1.2)
under the perfectly-matchable assumption is confirmed as follows.

Lemma 3.6. For a perfectly-matchable bipartite graph G = (V +, V −;E) with |V +| = |V −| ≥ 2,
there exists a proper subpartition X of V + or of V − such that τG(X ) = opt(G).

Proof. Let M ⊆ E be a perfect matching in G, and F ⊆ (V + × V −) \ E an optimal solution
to G, i.e., a minimum-cardinality edge set such that G(M) + F strongly connected. If G(M)
itself is strongly connected, then X := ∅ is a desired proper subpartition of V + (and of V −),
i.e., τG(X ) = 0 = |F |.

Otherwise, |F | = max{s(G(M)), t(G(M))} by Theorem 2.1. Define two subpartitions X−

of V − and X+ of V + as follows (see also Fig. 1):

X− := {X− | G(M)[X] is a source component of G(M) },

X+ := {X+ | G(M)[X] is a sink component of G(M) },

where recall that X+ := X ∩ V + and X− := X ∩ V − for X ⊆ V . Since G(M) is not strongly
connected, we have X− ̸= {V −} and X+ ̸= {V +}. We show that one of X− and X+ is a desired
proper subpartition by confirming τG(X−) = s(G(M)) and τG(X+) = t(G(M)).

Since any edge in M ∪M is contained in some strongly connected component of G(M),
distinct strongly connected components are connected only by edges in E \M ⊆ V + × V −.
Hence, for each source component G(M)[X] of G(M), since no edge can enter X in G(M),
we have ΓG(X

−) = X+, which implies |ΓG(X
−)| = |X+| = |X−|. Similarly, for each sink

component G(M)[X] of G(M), we have |ΓG(X
+)| = |X−| = |X+|. Thus we see

τG(X−) =
∑

X−∈X−

1 = |X−| = s(G(M)) and τG(X+) =
∑

X+∈X+

1 = |X+| = t(G(M)).

4 Algorithm

In this section, we present an algorithm for Problem (DMI) that requires O(nm) time, where
the input bipartite graph G = (V +, V −;E) is assumed to be balanced (cf. Section 3.3) with
|V +| = |V −| = n and |E| = m. We first describe our algorithm in Section 4.1. Next, in
Section 4.2, we show the optimality of the output, which also gives a constructive proof of
the strong duality (Theorem 1.2). Finally, we analyze the running time of our algorithm in
Section 4.3, where we also discuss the unbalanced case through the reduction in Section 3.3.
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Figure 1: Proper subpartitions X− (white squares) of V − and X+ (gray squares) of V + with
τG(X−) = s(G(M)) and τG(X+) = t(G(M)) when G has a perfect matching M .

4.1 Algorithm description

Let (V0;V1, V2, . . . , Vk;V∞) be the DM-decomposition of G. If V0 = V∞ = ∅, then G has a
perfect matching M ⊆ E. In this case, it suffices to find a minimum number of additional edges
to make the auxiliary graph G(M) = G +M strongly connected, which can be done in linear
time by Theorem 2.1. Recall that the strong duality is already seen in Lemma 3.6.

Otherwise, since |V +| = |V −|, both V0 and V∞ are nonempty, and hence G has no perfect
matching. A possible strategy is to make G perfectly matchable by adding a perfect matching
N ⊆ (V +\∂+M)×(V −\∂−M) ⊆ (V +×V −)\E between the vertices exposed by some maximum
matching M ⊆ E in G. The resulting graph G̃ := G+N has a perfect matching M̃ := M ∪N ,
and hence a minimum number of further additional edges to make G̃ DM-irreducible can be
found in linear time. Thus we obtain a feasible solution, which may fail to be optimal.

We adopt a maximum matching M ⊆ E in G whose restrictions to G[V0] and to G[V∞] are
both eligible perfect matchings defined as follows. This modification enables us to guarantee
the optimality of the output with the aid of Lemma 3.2.

Definition 4.1. Let H = (U+, U−;E) be a DM-irreducible unbalanced bipartite graph, and
M ⊆ E a perfect matching in H. When |U+| < |U−|, we say that M is eligible if there exists a
subpartition X− of U− such that τH(X−) = |U−| − |U+| + s(H(M)). Similarly, when |U+| >
|U−|, we say so if there is a subpartition X+ of U+ such that τH(X+) = |U+|−|U−|+t(H(M)).

Note that this definition is symmetric, i.e., the eligibility of M when |U+| > |U−| is equiv-
alent to the eligibility of M in the interchanged bipartite graph (U−, U+;E).

Procedure EPM for finding an eligible perfect matching will be described in Section 5.1. A
formal description of the entire algorithm is now given as follows.

Algorithm DMI(G)

Input: A bipartite graph G = (V +, V −;E) with |V +| = |V −| = n.

Output: An edge set F ⊆ (V +×V −)\E with |F | = opt(G) such that G+F is DM-irreducible.

Step 0. Compute the DM-decomposition (V0;V1, V2, . . . , Vk;V∞) of G.

Step 1. If V0 = V∞ = ∅, then set N ← ∅ and go to Step 4.

Step 2. Otherwise (i.e., if V0 ̸= ∅ ̸= V∞), find eligible perfect matchings M0 ⊆ E ∩ (V +
0 × V −

0 )
in G[V0] and M∞ ⊆ E ∩ (V +

∞ × V −
∞) in G[V∞] by Procedure EPM.

Step 3. Take an arbitrary perfect matching N ⊆ (V +
0 \ ∂+M0)× (V −

∞ \ ∂−M∞).

Step 4. Let G̃ := G + N , which has a perfect matching M̃ ⊆ E ∪ N . Find an edge set
F̃ ⊆ (V + × V −) \ (E ∪N) with |F̃ | = opt(G̃) such that G̃(M̃) + F̃ is strongly connected,
and return F ← N ∪ F̃ .
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4.2 Optimality

In this section, we show that the output F of Algorithm DMI(G) is an optimal solution to
Problem (DMI). Since the feasibility is obvious from Step 4 (G+F = G̃+ F̃ is DM-irreducible),
it suffices to confirm |F | = opt(G). To see this, we construct a proper subpartition X of V +

or of V − such that τG(X ) = |F |. Since the weak duality is already shown in Lemma 3.2, this
gives the optimality of F as well as a constructive proof of Theorem 1.2. Recall that the case
when V0 = V∞ = ∅ is already seen in Section 3.5. In what follows, we discuss the case when
V0 ̸= ∅ ̸= V∞.

In this case, our algorithm finds a maximum matching M ⊆ E in G whose restrictions M0

to G[V0] and M∞ to G[V∞] are both eligible perfect matchings in Steps 0 and 2 (cf. Condition
5 in Theorem 2.2 and the computation of the DM-decomposition in Section 2.2), adds to G a
perfect matching N ⊆ (V + \ ∂+M)× (V − \ ∂−M) between the exposed vertices in Step 3, and
finds an optimal solution F̃ ⊆ (V + × V −) \ (E ∪N) to G̃ = G+N in Step 4.

If n = 1, then E = ∅, N = V + × V −, and F̃ = ∅. Then the output F = V + × V − is a
unique feasible solution, and hence optimal. In what follows, we assume n ≥ 2. Then, as done
in Section 3.5, it suffices to construct two proper subpartitions X− of V − and X+ of V + such
that max{τG(X−), τG(X+)} = |F | = |N |+ |F̃ |.

Note that |N | = n − |M | = |V +
0 | − |V

−
0 | = |V −

∞ | − |V +
∞ |. The following claim implies

|F̃ | = max{s(G̃(M̃)), t(G̃(M̃))} by Theorem 2.1, and hence

|F | = max{|V −
∞ | − |V +

∞ |+ s(G̃(M̃)), |V +
0 | − |V

−
0 |+ t(G̃(M̃))}, (3)

where M̃ := M ∪N is a perfect matching in G̃.

Claim 4.2. G̃(M̃) is not strongly connected.

Proof. By Observation 2.3, each exposed vertex u ∈ V + \ ∂+M forms a source component of
G(M) which is reachable only to some vertices in V0, and each w ∈ V − \ ∂−M forms a sink
component of G(M) which is reachable only from some vertices in V∞. Since each edge uw ∈ N
connects such source and sink components one by one, the two end vertices u ∈ V + and w ∈ V −

form a new strongly connected component in G̃(M̃) = G(M) + (N ∪ N), which is reachable
only to some vertices in V0 and only from some in V∞. Recall that |V +| = |V −| = n ≥ 2, and
hence G̃(M̃) has at least two distinct strongly connected components.

In what follows, we shall construct a subpartition X− of V − such that τG(X−) = |V −
∞ | −

|V +
∞ |+s(G̃(M̃)). By the symmetry, one can obtain a subpartition X+ of V + such that τG(X+) =
|V +

0 |−|V
−
0 |+t(G̃(M̃)) in the same way (consider the interchanged bipartite graph (V −, V +;E)).

By (3), unless X− = {V −} or X+ = {V +}, these two subpartitions are desired ones.
Since no edge enters V∞ in G as well as in G(M) (see Observation 2.3) and M∞ is an

eligible perfect matching in G∞ := G[V∞], there exists a subpartition X−
∞ of V −

∞ such that
τG(X−

∞) = τG∞(X−
∞) = |V −

∞ | − |V +
∞ |+ s(G∞(M∞)). Define

X−
∗ := {X− | G(M)[X] is a source component of G(M) and X ∩ (V0 ∪ V∞) = ∅ },

and X− := X−
∞ ∪ X−

∗ . When X− ̸= {V −}, the following claim completes the proof.

Claim 4.3. τG(X−) = |V −
∞ | − |V +

∞ |+ s(G̃(M̃)).

Proof. We first see τG(X−) = |V −
∞ | − |V +

∞ |+ s(G(M)− V0). Since no edge enters V∞ in G(M),
the source components of G(M)− V0 are partitioned into those of G(M)[V∞] = G∞(M∞) and
those of G(M) disjoint from V0 ∪ V∞. Similarly to Section 3.5, we see τG(X−

∗ ) = |X−
∗ |, and

hence τG(X−) = τG(X−
∞) + τG(X−

∗ ) = |V −
∞ | − |V +

∞ |+ s(G(M)− V0).
Thus it suffices to show s(G̃(M̃)) = s(G(M) − V0). Since no edge leaves V0 in G(M)

and each source component of G(M)[V0] is a single exposed vertex u ∈ V +
0 \ ∂+M with no
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entering edge, the source components of G(M) are partitioned into those of G(M) − V0 and
of G(M)[V0]. Hence, we have s(G(M) − V0) = s(G(M)) − s(G(M)[V0]). Each exposed vertex
u ∈ V +

0 \ ∂+M is connected to some exposed vertex w ∈ V −
∞ \ ∂−M by two edges in N ∪ N .

As seen in the proof of Claim 4.2, these two vertices u and w form a new strongly connected
component in G̃(M̃), which is no longer a source component unless w is isolated in G(M), i.e,
the sink component G∞(M∞)[{w}] is also a source component of G(M)− V0. Hence, whether
some exposed vertices w ∈ V −

∞ \ ∂−M are isolated or not, by adding N ∪ N to G(M), the
number of source components decreases exactly by s(G(M)[V0]). Thus, s(G̃(M̃)) = s(G(M))−
s(G(M)[V0]) = s(G(M)− V0).

Finally, we consider the case of X− = {V −}. Since τ(X−
∞) = |V −

∞ |−|V +
∞ |+s(G∞(M∞)) > 0,

we have X−
∞ = {V −} and X−

∗ = ∅. In this case, V −
∞ = V − and V −

0 = ∅. Hence, each vertex u ∈
V +
0 is isolated in G(M), and is contained in a new sink component of G̃(M̃) = G(M)+(N ∪N)

consisting of two vertices. Since the DM-decomposition of G has no balanced component in
this case, we have t(G̃(M̃)) = |V +

0 | = n− |M | ≥ 1, which leads to

|V +
0 | − |V

−
0 |+ t(G̃(M̃)) = 2(n− |M |) ≥ n− |M |+ 1 ≥ |V −| − |ΓG(V

−)|+ 1 = τG(X−
∞).

Then the maximum in (3) is attained by the latter term, which is equal to 2|V +
0 |. Thus, for a

subpartition X+ := { {u} | u ∈ V +
0 } ̸= {V +} of V +, we have τG(X+) = |F |.

4.3 Running time analysis

In this section, we show that Algorithm DMI(G) runs in O(nm) time, where recall m := |E|.
In Step 0, we find a maximum matching M in G and compute the strongly connected

components of the auxiliary graph G(M) (see Section 2.2). The former can be done in O(nm)
time even by a näıve augmenting-path algorithm (see, e.g., [12, Section 16.3]), and the latter in
O(n+m) time with the aid of the depth first search. As shown in Section 5.3, it takes O(nm)
time to find an eligible perfect matching, which is performed twice in Step 2. Step 3 requires
O(n) time, and one can perform Step 4 in O(n+m) time by Theorem 2.1 (note that a perfect
matching M̃ in G̃ is obtained by combining the perfect matching N ∪M0 ∪M∞ in G[V0 ∪ V∞]
with a perfect matching M∗ in G− (V0 ∪ V∞), which is included in the maximum matching M
in G found in Step 0). Thus the entire running time is bounded by O(nm).

We here discuss the case when the original input bipartite graph G = (V +, V −;E) is un-
balanced, where we assume that |V +| < |V −| = n and |E| = m. In this case, we construct
a balanced bipartite graph G′ = (V + ∪ Z+, V −;E′) as in Lemma 3.3, and obtain an optimal
solution to G by Algorithm DMI(G′). According to the above analysis, it runs in O(n|E′|) time,
where |E′| is not necessarily bounded by O(m). We however can bound the running time by
O(nm) as follows.

By Observation 3.4, a maximum matching M ′ ⊆ E in G′ consists of a maximum matching
in G and a perfect matching in G′[Z+ ∪ V −]. Hence, we can find a maximum matching in G′

in O(nm) time just by doing so in G and adding an arbitrary perfect matching between the
exposed vertices in G′[Z+∪V −]. In addition, since Z+ is included in a single strongly connected
component of G′(M ′), we can regard Z+ as a single vertex in computing the strongly connected
component of G′(M ′). This makes it possible to obtain the strongly connected components of
G′(M ′) in O(n+m) time, which concludes that Step 0 can be done in O(nm) time.

Since Step 4 is also done in O(n+m) time by the same argument, it suffices to bound the
running time of Step 2 by O(nm). If V∞ = ∅, then we do not reach Step 2. Otherwise, by
Observation 3.4, we see Z+ ⊆ V +

∞ and G′[V0] = G[V0]. Hence, one can find an eligible perfect
matching in G′[V0] in O(nm) time by Procedure EPM. In addition, since no edge enters V∞ in
G′(M ′) by Observation 2.3, the strongly connected component including Z+ is a unique source
component also in G′(M ′)[V∞], and hence s(G′(M ′)[V∞]) = 1. This condition does not depend
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on the choice of M ′, which means that all the perfect matchings in G′[V∞] is eligible. Hence,
we do not need to use Procedure EPM for finding an eligible perfect matching in G′[V∞], which
concludes that Step 2 can be done in O(nm) time.

5 Finding Eligible Perfect Matchings

In this section, we show a procedure for finding an eligible perfect matching in a DM-irreducible
unbalanced bipartite graph H = (U+, U−;E), which plays a key role in Algorithm DMI. Since
the definition of eligibility is symmetric (see Definition 4.1), we assume |U+| < |U−| in this
section. We describe an algorithm for finding an eligible perfect matching in Section 5.1.
Sections 5.2 and 5.3 are devoted to its correctness proof and complexity analysis.

5.1 Algorithm description

To describe the procedure, we introduce an augmented auxiliary graph.

Definition 5.1. For a perfect matching M ⊆ E in a DM-irreducible bipartite graph H =
(U+, U−;E) with |U+| < |U−|, an augmented auxiliary graph Ĥ(M) is constructed from
H(M) = H+M as follows (see also Fig. 2). Let S− ⊆ U− be a vertex set obtained by collecting
one vertex in U− from each source component of H(M), and hence, |S−| = s(H(M)). Add to
H(M) a new vertex r and an edge rv for each v ∈ S−. That is, Ĥ(M) = (U ∪{r}, E∪M ∪Er),
where Er := {r} × S−.

Note that, since there may be several possible choices of S−, an augmented auxiliary graph
Ĥ(M) is not uniquely determined in general.

The procedure for finding an eligible perfect matching is now given as follows.

Procedure EPM(H)

Input: A DM-irreducible bipartite graph H = (U+, U−;E) with |U+| < |U−|.
Output: An eligible perfect matching M ⊆ E in H.

Step 0. Take an arbitrary perfect matching M ⊆ E in H, and set W ← U− \ ∂−M .

Step 1. Construct an augmented auxiliary graph Ĥ(M) = (U ∪ {r}, E ∪M ∪ Er), and set
Ĥ = (Û , Ê)← Ĥ(M).

Step 2. While W ̸= ∅, do the followings.

Step 2.1. Take an exposed vertex w ∈W , and update W ←W \ {w}.

Step 2.2. Find two edge-disjoint r–w paths in Ĥ, or certify the nonexistence of such paths.

Step 2.3. If Ĥ has two edge-disjoint r–w paths, then let P be one of those r–w paths, and
update M ← (M ∪ E(P )) \M(P ) and Ê ← (Ê ∪ E(P )) \ (M(P ) ∪ {e1}) (see Fig. 3),
where we denote by E(P ) ⊆ E the set of edges that appear in P , by M(P ) ⊆ M the
set of edges whose reverse edges appear in P , and by e1 ∈ Er the first edge of P .

Step 3. Return the current perfect matching M .

The following lemma gives an important observation on Procedure EPM, whose proof is left
to Section 5.2

Lemma 5.2. At the beginning of each iteration of Step 2, Ĥ = (Û , Ê) is an augmented auxiliary
graph Ĥ(M), which does not have two edge-disjoint r–w paths for any w ∈ (U− \ ∂−M) \W .
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Figure 2: An augmented auxiliary graph Ĥ(M), where the gray vertices are exposed by M .

5.2 Correctness of EPM

Proof of Lemma 5.2

We first see that Ĥ is an augmented auxiliary graph with respect to M .

Claim 5.3. After Step 1, Ĥ = (Û , Ê) is always an augmented auxiliary graph Ĥ(M).

Proof. By Step 1, Ĥ is initialized as Ĥ(M). We show that, if the current perfect matching M
and an augmented auxiliary graph Ĥ = Ĥ(M) = (U ∪ {r}, E ∪M ∪ Er) are updated to M ′

and Ĥ ′, respectively, in Step 2.3, then Ĥ ′ is an augmented auxiliary graph Ĥ(M ′).
Let v ∈ U− \ ∂−M ′ be the new exposed vertex, and then e1 = rv ∈ Er. Since H(M ′) =

H +M ′ is obtained from H(M) = H +M by adding the edges in E(P ) and removing those in
M(P ), it suffices to show that the source components of H(M ′) coincide with those of H(M)
except for that containing v.

Let X ⊆ U be the vertex set of a source component of H(M) with v ̸∈ X. Then, since no
edge enters X in Ĥ except for one in Er \ {e1}, the r–w path P starting e1 is disjoint from X.
Hence, H(M ′)[X] = H(M)[X] remains a source component in H(M ′) as it is in H(M).

Suppose to the contrary that H(M ′) has another source component H(M ′)[Y ]. If P is
disjoint from Y , then H(M)[Y ] = H(M ′)[Y ] is a source component of H(M), and hence v ∈ Y ,
which however contradicts that P is disjoint from Y . Since r ̸∈ Y , the r–w path P must enter
Y at least once. If P leaves Y using an edge e ∈ E ∪M , then the reverse edge ē enters Y
in H(M ′), which contradicts that H(M ′)[Y ] is a source component. Thus P enters Y exactly
once, and Y must contain the end w of P .

Since Ĥ has two edge-disjoint r–w paths, Y has an entering edge e in Ĥ that does not appear
in P . If e ∈ E∪M , then e remains in H(M ′) as an edge entering Y , a contradiction. Otherwise,
e ∈ Er \ {e1}. This however contradicts that Y is disjoint from any source component of H(M)
that does not contain v.

When the procedure reaches Step 2 for the first time, we have W = U− \ ∂−M , and hence
there is no choice of w ∈ (U−\∂−M)\W = ∅. We inductively show that, at the beginning of each
iteration of Step 2, Ĥ does not have two edge-disjoint r–w paths for any w ∈ (U− \ ∂−M) \W .
That is, we prove that, if this property holds at the beginning of some iteration of Step 2, then
so does it at the end of the iteration (equivalently, at the beginning of the next iteration).

12



Figure 3: How Ĥ is updated in Step 2.3 of Procedure EPM along the bold r–w path P .

Let w∗ ∈W be the exposed vertex chosen in Step 2.1, and W ′ := W \ {w∗}. If Ĥ does not
have two edge-disjoint r–w∗ paths, then M and Ĥ are not updated. In this case, combining
with the induction hypothesis, we see that Ĥ does not have two edge-disjoint r–w paths for any
w ∈ ((U− \ ∂−M) \W ) ∪ {w∗} = (U− \ ∂−M) \W ′.

Suppose that Ĥ = (Û , Ê) has two edge-disjoint r–w∗ paths, and M and Ĥ are updated to
M ′ and Ĥ ′, respectively, in Step 2.3. Let v∗ ∈ U− \ ∂−M ′ be the new exposed vertex, i.e.,
e1 = rv∗ ∈ Er. We then see (U− \ ∂−M ′) \W ′ = ((U− \ ∂−M) \W ) ∪ {v∗}, and show that Ĥ ′

does not have two edge-disjoint r–w paths, separately for w = v∗ and for w ∈ (U− \∂−M) \W .

Claim 5.4. Ĥ ′ does not have two edge-disjoint r–v∗ paths.

Proof. Since v∗ is in a source component of H(M) that does not contain w∗, its vertex set
X ⊆ U satisfies that v∗ ∈ X, w∗ ̸∈ X, and X has no entering edge in H(M). Hence, the r–w∗

path P leaves X exactly once through an edge e ∈ E ∪M . If e ∈ M , then the reverse edge
ē ∈M ⊆ E enters X in H(M), a contradiction. Otherwise, e ∈ E, which implies that X has a
unique entering edge ē ∈ M ′ in Ĥ ′. Then, v∗ is not reachable from r in Ĥ ′ − ē, and hence Ĥ ′

cannot have two edge-disjoint r–v∗ paths.

In what follows, we show that Ĥ ′ does not have two edge-disjoint r–w paths for any w ∈
(U− \ ∂−M) \W . Fix w ∈ (U− \ ∂−M) \W . Then, by the induction hypothesis and Menger’s
theorem [10], there exists an edge ew ∈ Ê such that w is not reachable from r in Ĥ − ew. One
can choose such an edge so that ew ∈ Ê \ E = M ∪ Er as follows.

Claim 5.5. Choose an edge ew ∈ Ê so that the set Yw of vertices that are not reachable from
r in Ĥ − ew contains w and is maximal. Then, ew ̸∈ E.

Proof. By the definition, only ew enters Yw in Ĥ. Suppose to the contrary that ew = uv ∈ E
for some u ∈ U+ \ Y +

w and v ∈ Y −
w . Since M is a perfect matching in H, there exists an edge

e′ = v′u ∈M as well as uv′ ∈M for some v′ ∈ U−. If v′ ̸= v, then v′ ∈ U− \ Y −
w . Since only e′

enters u ∈ U+ in Ĥ, we can expand Yw to Yw ∪ {u} by rechoosing ew as e′, which contradicts
the maximality of Yw. Otherwise, ew = uv ∈M . Since only e′ = ēw enters u ∈ U+ in Ĥ, every
r–u path in Ĥ must intersect v, and hence any r–v path Q in Ĥ cannot traverse ew. Such a
path Q exists (since every vertex is reachable from r in Ĥ by the definition of an augmented
auxiliary graph) and enters Yw through an edge except for ew in Ĥ, a contradiction.
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Figure 4: The subpartition of U induced by Yw (w ∈ U− \ ∂−M).

If P is disjoint from Yw, then w ∈ Yw is not reachable from r also in Ĥ ′− ew, and hence Ĥ ′

cannot have two edge-disjoint r–w paths. Otherwise, P enters Yw through the edge ew ∈M∪Er,
and leaves Yw at most once through an edge e. Then, ew is no longer in Ĥ ′, and Yw has at most
one new entering edge ē. This also concludes that Ĥ ′ cannot have two edge-disjoint r–w paths.

Eligibility of output

We here show that the output of Procedure EPM(H) is indeed an eligible perfect matching.
Suppose that EPM(H) returns a perfect matching M ⊆ E in H, and let Ĥ = (Û , Ê) be the
augmented auxiliary graph Ĥ(M) when EPM(H) halts, where Û = U∪{r} and Ê = E∪M∪Er.
Then, by Lemma 5.2 and Menger’s theorem [10], for any w ∈ U− \ ∂−M , there exists an edge
ew ∈ Ê such that w is not reachable from r in Ĥ− ew. Choose such an edge ew as in Claim 5.5,
i.e., so that the set Yw of vertices that are not reachable from r in Ĥ − ew is maximal. We then
see the following property.

Claim 5.6. For any exposed vertices w1, w2 ∈ U− \ ∂−M , either Yw1 = Yw2 or Yw1 ∩ Yw2 = ∅.

Proof. Let w1, w2 ∈ U− \∂−M be distinct vertices, and suppose to the contrary that Yw1 ̸= Yw2

and Yw1 ∩ Yw2 ̸= ∅. We then have ew1 ̸= ew2 . If Yw1 ⊊ Yw2 or Yw2 ⊊ Yw1 , then we can expand
the included one to the including one by rechoosing ew1 or ew2 as the other one, respectively,
which contradicts the maximality of Yw1 and Yw2 . Thus, Yw1 \ Yw2 ̸= ∅ ̸= Yw2 \ Yw1 .

Suppose that no edge enters Yw1 ∩ Yw2 ̸= ∅ in Ĥ. Then, Ĥ[Yw1 ∩ Yw2 ] has some source
component of Ĥ[U ] = H(M), which contradicts that Er contains an edge from r ̸∈ Yw1 ∩ Yw2

to each source component of H(M).
Thus, Ĥ has an edge e entering Yw1 ∩ Yw2 , which must be ew1 or ew2 . If e enters Yw1 ∪ Yw2 ,

then ew1 = e = ew2 , a contradiction. Otherwise, assume that e = ew1 leaves Yw2 \ Yw1 without

loss of generality. In this case, since r
Ĥ−→ w2 ∈ Yw1 ∪ Yw2 , the other edge ew2 must enter

Yw1 ∪ Yw2 . This implies Yw2 ⊇ Yw1 ∪ Yw2 , which contradicts Yw1 \ Yw2 ̸= ∅.

By Claim 5.6, {Yw | w ∈ U− \ ∂−M } is a subpartition of U (see Fig. 4). Let Y :=
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∪
w∈U−\∂−M Yw, and define X− := Y− ∪ Z− as follows:

Y− := {Y −
w | w ∈ U− \ ∂−M },

Z− := {Z− | H(M)[Z] is a source component of H(M) and Z ∩ Y = ∅ },

where recall thatX+ := X∩U+ andX− := X∩U− forX ⊆ U . This X− is indeed a subpartition
of V −, and we prove that X− is a desired one, i.e., τH(X−) = |U−| − |U+|+ s(H(M)).

By the definition (1), we see τH(X−) = τH(Y−) + τH(Z−). We first calculate τH(Y−) by
evaluating |Y −

w | − |ΓH(Y −
w )|+ 1 for each exposed vertex w ∈ U− \ ∂−M . Fix w ∈ U− \ ∂−M ,

and let T−
w := Yw ∩ (U− \∂−M). Then, by Claim 5.6, we have Yw′ = Yw for every w′ ∈ T−

w , and
{T−

w | w ∈ U− \ ∂−M } is a partition of U− \ ∂−M . By Claim 5.5, we consider the following
two cases separately: when ew ∈ Er and when ew ∈M .

Claim 5.7. If ew ∈ Er, then |Y −
w | − |ΓH(Y −

w )|+ 1 = |T−
w |+ 1.

Proof. In this case, no edge enters Yw in H(M). Hence, each strongly connected component
of H(M)[Yw] is also one of H(M). Since each sink component of H(M) is a single vertex in
U−\∂−M (Observation 2.3) and any other strongly connected component of H(M) is balanced,
we see |Y −

w | = |Y +
w | + |T−

w |. Since only the edge ew ∈ Er enters Yw in Ĥ and every vertex in
Yw is reachable in Ĥ − ew to some vertex in T−

w ⊆ Y −
w , we see ΓH(Y −

w ) = Y +
w , and hence

|Y −
w | − |ΓH(Y −

w )|+ 1 = |T−
w |+ 1.

Claim 5.8. If ew ∈M , then |Y −
w | − |ΓH(Y −

w )|+ 1 = |T−
w |.

Proof. In this case, ew = vu ∈ M for some v ∈ U− \ Y −
w and u ∈ Y +

w . Since only the edge ew
enters Yw in Ĥ and M is a perfect matching in H, any u′ ∈ Y +

w \{u} ⊆ U+ is matched with some
v′ ∈ Y −

w \T−
w by M , and vice versa. Hence, |Y −

w | = |Y +
w |− 1+ |T−

w |. We observe ΓH(Y −
w ) = Y +

w

in the same way as the previous proof, and hence |Y −
w | − |ΓH(Y −

w )|+ 1 = |T−
w |.

Let α :=
∣∣{Yw | w ∈ U− \ ∂−M with ew ∈ Er }

∣∣. Then, by Claims 5.7 and 5.8, we see

τH(Y−) =
∑

Y −
w ∈Y−

|T−
w |+ α = |U− \ ∂−M |+ α = |U−| − |U+|+ α.

Since the corresponding source component H(M)[Z] is balanced for each Z− ∈ Z− (which is
disjoint from Y ⊇ U− \ ∂−M), we see τH(Z−) = |Z−| (cf. Section 3.5). Hence, the following
claim leads to α+ τH(Z−) = s(H(M)), which completes the proof.

Claim 5.9. α =
∣∣{Z | H(M)[Z] is a source component of H(M) and Z ∩ Y ̸= ∅ }

∣∣.
Proof. We show that, for each w ∈ U−\∂−M , exactly one source component ofH(M) intersects
Yw if ew ∈ Er, and so does no source component if ew ∈ M . Since any strongly connected
component of H(M)[Yw] is also one of H(M) when ew ∈ Er, a unique source component
intersecting Yw is included in H(M)[Yw], and hence this is sufficient for the claim. Fix w ∈
U− \ ∂−M .

Suppose that ew = rv ∈ Er for some v ∈ S− ∩ Y −
w . By the definition of S−, the vertex v

is in a source component of H(M). Suppose to the contrary that there exists another source
component of H(M) intersecting Yw. Then, such a source component must be included in
H(M)[Yw], and hence there exists another edge rv′ ∈ Er with v′ ∈ Y −

w . This contradicts that
only ew enters Y −

w in Ĥ.
Suppose that ew = vu ∈ M for some v ∈ U− \ Y −

w and u ∈ Y +
w , and to the contrary that

there exists a source component H(M)[Z] of H(M) with Z ∩ Yw ̸= ∅. Then, by the definition
of S−, there exists a vertex v′ ∈ S− ∩ Z with e′ = rv′ ∈ Er. If v′ ∈ Yw, then e′ enters Yw
in Ĥ, which contradicts that only ew ̸= e′ enters Yw. Otherwise, since H(M)[Z] is strongly
connected, for any vertex z ∈ Z ∩ Yw ̸= ∅, there exists a v′–z path in H(M)[Z]. Such a path
must traverse ew = vu (since only ew enters Yw), and hence {u, v} ⊆ Z. In this case, we can
expand Yw to Yw ∪Z ⊋ Yw by rechoosing ew as e′, which contradicts the maximality of Yw.
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5.3 Running time analysis

In this section, we see that Procedure EPM(H) runs in O(nm) time, where n := |U−| and
m := |E| (note that |U | = O(n) since |U+| < |U−|). Since the isolated vertices in H can be
ignored in the procedure (which are added to W in Step 0 and just discarded in Step 2.1), we
may assume n = O(m).

In Step 0, a perfect matching M ⊆ E in H can be found in O(nm) time even by a näıve
augmenting-path algorithm (in fact, before calling this procedure, one has been obtained in
the course of computing the DM-decomposition). In Step 1, since the strongly connected
components of the auxiliary graph H(M) are obtained in linear time, an augmented auxiliary
graph Ĥ(M) is constructed in O(m) time. Since W is monotonically reduced in Step 2.1, the
number of iterations of Step 2 is |W | = O(n). Step 2.2 can be done by performing the breadth
first search twice (i.e., by a näıve augmenting-path algorithm originated by Ford and Fulkerson
[6]), which requires O(m) time. The update of M an Ĥ along an r–w path P in Step 2.3
requires O(n) time. Thus we conclude that the total computational time is bounded by O(nm).

6 As Bisupermodular Covering

6.1 Definition and min-max duality

Let V + and V − be finite sets. Two ordered pairs (X+, X−), (Y +, Y −) ∈ 2V
+ × 2V

−
are said to

be dependent if both X+∩Y + and X−∩Y − are nonempty, and independent otherwise. A family
F ⊆ 2V

+×2V −
is called crossing if, for every two dependent members (X+, X−), (Y +, Y −) ∈ F ,

both (X+ ∩Y +, X− ∪Y −) and (X+ ∪Y +, X− ∩Y −) are also in F . A function g : F → Z≥0 on

a crossing family F ⊆ 2V
+ × 2V

−
is said to be crossing bisupermodular if

g(X+ ∩ Y +, X− ∪ Y −) + g(X+ ∪ Y +, X− ∩ Y −) ≥ g(X+, X−) + g(Y +, Y −),

for every dependent pairs (X+, X−), (Y +, Y −) ∈ F with g(X+, X−) > 0 and g(Y +, Y −) > 0.
We say that a multiset F of directed edges in V + × V − covers a crossing bisupermodular

function g : F → Z≥0 if |F (X+, X−)| ≥ g(X+, X−) for every (X+, X−) ∈ F , where F (X+, X−)
denotes the multiset obtained by restricting F into X+ ×X−.

Problem (FJ)

Input: A crossing bisupermodular function g : F → Z≥0 on a crossing family F ⊆ 2V
+ × 2V

−
.

Goal: Find a minimum-cardinality multiset F of directed edges inV +×V − such that F covers
g.

Frank and Jordán [7] showed a min-max duality on this problem as follows.

Theorem 6.1 (Frank–Jordán [7, Theorem 2.3]). The minimum cardinality of a multiset F of
directed edges in V + × V − such that F covers a crossing bisupermodular function g : F → Z≥0

is equal to the maximum value of ∑
(X+,X−)∈S

g(X+, X−), (4)

taken over all subfamilies S ⊆ F such that every two distinct pairs in S are independent.

16



6.2 Formulation of Problem (DMI) as Problem (FJ)

We shall show that Problem (DMI) reduces to Problem (FJ). LetG = (V +, V −;E) be a bipartite
graph with |V +| = |V −| = n ≥ 2 (recall that the unbalanced case reduces to the balanced case
in Section 3.3). Define a family F ⊆ 2V

+ × 2V
−
and a function g : F → Z≥0 by

F := { (X+, X−) | ∅ ̸= X+ ⊆ V +, ∅ ̸= X− ⊆ V −, E(X+, X−) = ∅ },

g(X+, X−) := max{0, |X+|+ |X−| − n+ 1}. (5)

Then, F is crossing because E(X+ ∪Y +, X− ∩Y −) and E(X+ ∩Y +, X− ∪Y −) are included in
E(X+, X−) ∪ E(Y +, Y −) for every X+, Y + ⊆ V + and every X−, Y − ⊆ V −, and g is crossing
bisupermodular because the second part in the maximum is modular.

Claim 6.2. An edge set F ⊆ V + × V − covers g if and only if G+ F is DM-irreducible.

Proof. [“Only if” part] Suppose that F ⊆ V + × V − covers g. By Lemma 3.1, to see the
DM-irreducibility of G+F , it suffices to show that |ΓG+F (X

+)| ≥ |X+|+1 for every nonempty
X+ ⊊ V +. Fix such X+, and let X− := V − \ ΓG+F (X

+) ⊆ V − \ ΓG(X
+). If X− = ∅,

then ΓG+F (X
+) = V −, which implies |ΓG+F (X

+)| = |V −| = |V +| ≥ |X+| + 1. Otherwise,
∅ ̸= X− ⊆ V − \ ΓG(X

+), and hence (X+, X−) ∈ F . Since F covers g and F (X+, X−) = ∅, we
have 0 ≥ g(X+, X−) = max{0, |X+|+ |X−| − n+ 1}. This means 0 ≥ |X+|+ |X−| − n+ 1 =
|X+| − |ΓG+F (X

+)|+ 1, and hence |ΓG+F (X
+)| ≥ |X+|+ 1.

[“If” part] Suppose that G + F is DM-irreducible for F ⊆ V + × V −. Then, by Lemma 3.1,
we have |ΓG+F (X

+)| ≥ |X+|+ 1 for every nonempty X+ ⊊ V +. For any (X+, X−) ∈ F , since
ΓG(X

+) ∩ X− = ∅, we have |F (X+, X−)| ≥ |ΓG+F (X
+) ∩ X−|. It is easy to observe that

|ΓG+F (X
+) ∩ X−| ≥ |ΓG+F (X

+)| − |V − \ X−| ≥ |X+| + 1 + |X−| − n, which coincides with
g(X+, X−) when g(X+, X−) > 0. Thus F covers g.

Since parallel edges make no effect on the DM-decomposition, which is defined only by the
adjacency relation (cf. the definition (2) of fG), the minimum of |F | for covering a crossing
bisupermodular function g defined by (5) is attained by an edge “set” F ⊆ V + × V −. Thus,
Problem (DMI) reduces to Problem (FJ). Since the values of g are bounded by n + 1, this
problem is solved in polynomial time by the pseudopolynomial-time algorithm of Végh and
Benczúr [14]. In addition, we can derive Theorem 1.2 from Theorem 6.1 as shown in the next
section.

6.3 Proof of Theorem 1.2 via Theorem 6.1

We first show that the maximum value of (1) is at most the maximum value of (4). Fix a
proper subpartition X of V +, and define X− := V − \ ΓG(X

+) for each X+ ∈ X . Then,
(X+, X−) ∈ F (X+ ∈ X ) are pairwise independent (since X is a subpartition of V +), and
g(X+, X−) = max{0, |X+| − |ΓG(X

+)|+ 1} by (5). Hence,

τG(X ) =
∑

X+∈X

(
|X+| − |ΓG(X

+)|+ 1
)
≤

∑
X+∈X

g(X+, X−).

We can handle the proper subpartitions of V − in the same way, and hence max (1) ≤ max (4).
In order to prove the equality, it suffices to show that, for any pairwise-independent subfamily

S ⊆ F , there exists a proper subpartition Y of V + or V − such that

τG(Y) =
∑
Y ∈Y

(|Y | − |ΓG(Y )|+ 1) ≥
∑

(X+,X−)∈S

g(X+, X−). (6)
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Since any pair (X+, X−) ∈ F with g(X+, X−) = 0 does not contribute to the right-hand side
of (6), we assume that g(X+, X−) > 0 for every (X+, X−) ∈ S by removing redundant pairs if
necessary. We then have g(X+, X−) = |X+| + |X−| − n + 1 ≤ |X+| − |ΓG(X

+)| + 1 for every
(X+, X−) ∈ S. Let S∗ := {X∗ | (X+, X−) ∈ S } for ∗ = + and −.

Case 1. When S∗ is a subpartition of V ∗ for ∗ = + or −.

By the symmetry, suppose that S+ is a subpartition of V +. If V + ̸∈ S+, then Y := S+ is
a desired proper subpartition of V +. Otherwise, we have S+ = {V +}. If S− ̸= {V −}, then
ΓG(X

−) = ∅ and g(V +, X−) = |X−| + 1 for a unique element X− ∈ S−, and hence it suffices
to take Y := S−. Otherwise, S = {(V +, V −)}, and hence E = E(V +, V −) = ∅. Note that
g(V +, V −) = n+1, and recall that we assume n ≥ 2. In this case, if we take a proper partition
Y := { {u} | u ∈ V + } of V +, then (6) is satisfied as follows:∑

Y ∈Y
(|Y | − |ΓG(Y )|+ 1) =

∑
u∈V +

(1− 0 + 1) = 2n ≥ n+ 1 = g(V +, V −).

Case 2. When S∗ is not a subpartition of V ∗ for ∗ = + and −.

Since X+ ∩ Y + = ∅ or X− ∩ Y − = ∅ for every distinct pairs (X+, X−), (Y +, Y −) ∈ S,
we have |S| ≥ 3. We shall show by induction on |S| that this case reduces to Case 1 by an
uncrossing procedure.

We first observe that V + ̸∈ S+ or V − ̸∈ S−. Suppose to the contrary that V + ∈ S+
and V − ∈ S−. We then have (V +, X−), (Y +, V −) ∈ S for some X− ⊆ V − and Y + ⊆ V +.
If X− = V − or Y + = V +, then (V +, V −) ∈ S cannot be independent from any other pair
in S ⊆ F , which contradicts |S| ≥ 3. Otherwise (i.e., if X− ̸= V − and Y + ̸= V +), since
X− ̸= ∅ ̸= Y + by the definition of F , the two pairs (V +, X−), (Y +, V −) ∈ F cannot be
independent, a contradiction. By the symmetry, we assume that V + ̸∈ S+.

The following claim shows a successful uncrossing procedure.

Claim 6.3. If distinct X+, Y + ∈ S+ satisfy X+ ∩ Y + ̸= ∅ and X+ ∪ Y + ̸= V +, then one can
reduce |S| by replacing (X+, X−) and (Y +, Y −) with (X+∩Y +, X−∪Y −) without reducing the
right-hand side of (6).

Proof. We first see that (X+ ∩ Y +, X− ∪ Y −) ∈ F . This follows from X+ ∩ Y + ̸= ∅ and
E(X+ ∩ Y +, X− ∪ Y −) ⊆ E(X+, X−) ∪ E(Y +, Y −) = ∅.

Next, we confirm that (X+∩Y +, X−∪Y −) and each (Z+, Z−) ∈ S \{(X+, X−), (Y +, Y −)}
are independent. Since (Z+, Z−) is independent from both (X+, X−) and (Y +, Y −), at least
one of X+∩Z+, Y +∩Z+, and (X−∪Y −)∩Z− is empty. This implies that (X+∩Y +)∩Z+ = ∅
or (X− ∪ Y −) ∩ Z− = ∅.

Finally, we show that the right-hand side of (6) does not decrease by this replacement.
Recall that X− ∩ Y − = ∅ (since X+ ∩ Y + ̸= ∅), both g(X+, X−) and g(Y +, Y −) are positive,
and X+ ∪ Y + ⊊ V +. Thus we have the following inequalities, which complete the proof:

g(X+ ∩ Y +, X− ∪ Y −)

≥ |X+ ∩ Y +|+ |X− ∪ Y −| − n+ 1

=
(
|X+|+ |Y +| − |X+ ∪ Y +|

)
+
(
|X−|+ |Y −|

)
− n+ 1

=
(
|X+|+ |X−| − n+ 1

)
+

(
|Y +|+ |Y −| − n+ 1

)
+
(
n− 1− |X+ ∪ Y +|

)
≥ g(X+, X−) + g(Y +, Y −).

There must be a pair that can be uncrossed by Claim 6.3 as follows, which completes the
proof.

Claim 6.4. There exist distinct X+, Y + ∈ S+ such that X+ ∩ Y + ̸= ∅ and X+ ∪ Y + ̸= V +.
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Proof. Suppose to the contrary that, for every distinct X+, Y + ∈ S+, we have X+ ∩ Y + = ∅
or X+ ∪ Y + = V +. Take distinct elements X+, Y + ∈ S+ with X+ ∩ Y + ̸= ∅, and distinct
pairs (Z+

1 , Z−
1 ), (Z+

2 , Z−
2 ) ∈ S with Z−

1 ∩ Z−
2 ̸= ∅ (recall the case assumption that S∗ is not a

subpartition of V ∗ for ∗ = + and −). Then, X+ ∪ Y + = V + and Z+
1 ∩Z

+
2 = ∅. We show that,

for each i ∈ {1, 2}, exactly one of the following statements holds:

(a) Z+
i = X+;

(b) Z+
i = Y +;

(c) Z+
i ⊇ X+△Y + := (X+ \ Y +) ∪ (Y + \X+).

Since X+ \ Y + ̸= ∅ ̸= Y + \ X+ (otherwise, X+ = V + or Y + = V +, which contradicts that
V + ̸∈ S+), every possible pair of (a)–(c) leads to Z+

1 ∩ Z+
2 ̸= ∅, a contradiction.

Suppose that Zi ̸= X+ and Zi ̸= Y +, and we derive Condition (c). Since X+ ∪ Y + = V +,
we assume Z+

i ∩ X+ ̸= ∅ without loss of generality. This implies Z+
i ∪ X+ = V +, and hence

Z+
i ⊇ V + \X+ = Y + \X+. Since Y + \X+ ̸= ∅, we also have Z+

i ∩ Y + ̸= ∅. We then similarly
see Z+

i ⊇ X+ \ Y +, which concludes that Z+
i ⊇ X+△Y +.

7 Applications

We show possible applications of Problem (DMI) in game theory and in control theory (see [1]
and [11, Section 6.4], respectively, for the details).

7.1 Bargaining in a two-sided market

Consider bargaining in a two-sided market with the seller set S and the buyer set B in which
the tradable pairs are exogenously given as a bipartite graph G = (S,B;E), where each edge
in E represents a tradable pair. Each seller has an indivisible good and each buyer has money.
The bargaining process is repeated as described in the next paragraph, and the utility received
from a successful trade is defined as follows: for a prescribed constant δ ∈ (0, 1), if the trade
is done at price p at period t ∈ {0, 1, 2, . . .}, then the seller receives δtp and the buyer does
δt(1− p). Note that all the sellers share one utility function, and so do all the buyers.

The bargaining process is as follows (see [1, Section 2.2] for the precise formulation). All
the sellers and all the buyers alternately offer prices in [0, 1] for trade as the proposers. Each
agent in the other side accepts exactly one offered price or rejects all of them as a responder,
where the responders do not care with which specific proposer they trade. For each price p
accepted by some responder, restrict ourselves to the subgraph induced by the agents offering
or accepting the price p, and trade is done at price p according to a maximum matching in the
subgraph. Note that there may be several possible choices of maximum matchings. If there are
multiple possibilities, then one is chosen so that the set of matched agents is lexicographically
minimum in terms of the agent indices given in advance. Note also that we are not concerned
with which specific edges are used in the maximum matching, because the utility of each agent
depends only on the price p and the period t. Remove all the agents who have traded from the
graph, and repeat the above process for the remaining graph until it has no edge.

A subgame perfect equilibrium in such a repeated game is, roughly speaking, a strategy profile
(i.e., in the above bargaining game, the offering prices and the responses to offered prices of all
the agents at all the possible situations) in which every agent has no incentive to change his or
her action at any possible situation. Corominas-Bosch [1] investigated the utility profile in each
subgame perfect equilibrium in the above game, which is denoted by PEP for short (standing
for a subgame Perfect Equilibrium Payoff). She captured a typical utility profile extending
unique PEPs in several small markets, called it the reference solution, and characterized when
the reference solution is indeed a PEP and moreover when it is a unique PEP.
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Theorem 7.1 (Corominas-Bosch [1, Theorem 1]). Consider the above bargaining game on a
bipartite graph G = (S,B;E).

• When G is unbalanced, the reference solution is a PEP if and only if G is DM-irreducible.

• When G is balanced, the reference solution is a PEP if and only if G is perfectly matchable.

Theorem 7.2 (Corominas-Bosch [1, Proposition 6]). Consider the above bargaining game on
a bipartite graph G = (S,B;E), and suppose that the game starts with the sellers’ proposes.
Then, the restriction of any PEP to G0 is the reference solution to G0, where G0 = (S0, B0;E0)
denotes the DM-irreducible component of G with |S0| > |B0|. In particular, if |S| > |B| and G
is DM-irreducible, then there exists a unique PEP, which is the reference solution.

Based on the above characterizations, for the unbalanced case, our result gives a minimum
number of additional tradable pairs to make such a bargaining game admit a unique PEP, which
is the reference solution. On the other hand, for the balanced case, the uniqueness of a PEP is
just guaranteed for the complete bipartite graphs [1, Proposition 5]. She also gave an example
enjoying multiple PEPs, in which the bipartite graph is not DM-irreducible. What role the
DM-decomposition of perfectly-matchable balanced bipartite graphs plays in such bargaining
has been left as an interesting question.

7.2 Structural controllability of a linear system

Consider a linear time-invariant system (K,A,B) in a descriptor form

Kẋ = Ax+Bu

with state variable x and input variable u. Under the genericity assumption that the set of
nonzero entries in K, A, and B are algebraically independent over Q, the system (K,A,B) is
said to be structurally controllable if the matrix pencil A−sK is regular (i.e., det(A−sK) ̸= 0)
and [A− zK | B] is of row-full rank for every z ∈ C.

For a matrix pencil D(s), let G(D(s)) denote the associated bipartite graph. The both-side
vertex sets are the row set and the column set of D(s), respectively, and the edges correspond
to the nonzero entries of D(s).

Theorem 7.3 (Murota [11, Corollary 6.4.8]). Let (K,A,B) be a linear time-invariant sys-
tem in a descriptor form with nonsingular K. Under the genericity assumption, (K,A,B) is
structurally controllable if and only if the following two conditions hold.

• The bipartite graph G([A | B]) has a perfect matching.

• The bipartite graph G([A− sK | B]) is DM-irreducible.

This characterization enables us to check efficiently if a given linear system is structurally
controllable. If it turns out not to be, then a natural question is how to modify the system to
make it structurally controllable. If G([A | B]) admits a perfect matching, our result provides an
answer to this question by identifying the minimum number of additional connections between
the variables and the equations required to make the entire system structurally controllable.

It would be more desirable if one can extend this approach to the case in which G[A | B]
may not have a perfect matching. It is also interesting to deal with the case of singular K.
These problems are left for future investigation.
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