問題1. $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ が距離関数であるためには、$\forall x, y, z \in \mathbb{R}$ に対して次の三つの条件が成り立たなければならない。

(a) $d(x, y) \geq 0$ かつ $d(x, y) = 0 \iff x = y$
(b) $d(x, y) = d(y, x)$
(c) $d(x, z) \leq d(x, y) + d(y, z)$

(1) $d(x, y) = |x^2 - y^2|$ の場合，$x = -y$ でも $d(x, y) = 0$ となってしまうので，上記の条件のうち (a) が満たされない。したがって，距離関数ではない。
(2) $d(x, y) = |x^3 - y^3|$ の場合，$d(x, y) \geq 0, d(x, y) = d(y, x), d(x, z) \leq d(x, y) + d(y, z)$ が成り立つことは容易に示せる。$d(x, y) = 0 \iff x = y$ については，

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2) = (x - y)\left((x + \frac{1}{2}y)^2 + \frac{3}{4}y^2\right)$$

と，$x, y \in \mathbb{R}$ より成り立つことがわかる。したがって，距離関数である。

問題2. $A \subset X$ が (X,d) の開集合であることを必要十分条件は次のようになることができる。

$$\forall x \in A, \exists \epsilon > 0 : N(X,d,x,\epsilon) = \{\xi \in X : d(x,\xi) < \epsilon\} \subset A$$

この ϵ に対して $\epsilon' = \frac{1}{2}\epsilon$ として，(X,d') における x の ϵ' 近傍

$$N(X,d',x,\epsilon') = \{\xi \in X : d'(x,\xi) < \epsilon'\}$$

を考える。このとき，

$$d(x,\xi) \leq a \cdot d'(x,\xi) < a \cdot \epsilon' = \epsilon$$

が成り立つので，$y \in N(X,d',x,\epsilon')$ ならば $y \in N(X,d,x,\epsilon)$ すなわち

$$N(X,d',x,\epsilon') \subset N(X,d,x,\epsilon) \subset A$$

が成り立つ。したがって，(X,d) の開集合は (X,d') の開集合である。
問題3. 「写像 \(f : (X, T_X) \to (Y, T_Y) \) が連続写像である」ことは、「\(Y \) の任意の開集合 \(O \) の逆像 \(f^{-1}(O) \) が \(X \) の開集合である」ことと同値である。いまの場合,

\[
\begin{align*}
 f^{-1}(\emptyset) &= \emptyset, \\
 f^{-1}\{\{b\}\} &= \{2\}, \\
 f^{-1}\{\{a, b\}\} &= \{1, 2, 3\}, \\
 f^{-1}\{\{b, c\}\} &= \{2, 4\}, \\
 f^{-1}(Y) &= X
\end{align*}
\]

である。ここで, \(f^{-1}(\{b, c\}) = \{2, 4\} \not\in T_X \) であるので, \(f \) は連続写像ではない。

問題4. 逆像の定義より, 次のような関係式が得られる。

\[
(f|_A)^{-1}(O) = \{x \in A : f(x) \in O\} \\
= \{x \in X : f(x) \in O\} \cap A \\
= f^{-1}(O) \cap A
\]

\(f : X \to Y \) は連続であるので, \(Y \) の開集合 \(O \) に対して \(f^{-1}(O) \) は \(X \) の開集合である。したがって, \((f|_A)^{-1}(O) = f^{-1}(O) \cap A \) は \(A \) の開集合であるので, \(f|_A : A \to Y \) は連続写像である。

問題5. \(S^1 \approx I \) と仮定する。このとき, 位相同型写像 \(f : S^1 \to I \) が存在する。\(f(p) = 0 \) となる点 \(p \in S^1 \) をとると

\[
f(S^1 \setminus \{p\}) = [-1, 0) \cup (0, 1]
\]

が成り立つ。このとき, \(S^1 \setminus \{p\} \) は連結であるが, \([-1, 0) \cup (0, 1] \) は連結でない。このことは, \(f \) が位相同型写像であることに矛盾する。よって \(S^1 \not\approx I \) である。

問題6. 道の積の定義より

\[
(\tilde{p} \cdot \ell)(t) = \begin{cases}
\tilde{p}(2t) = p & (0 \leq t \leq \frac{1}{2}) \\
\ell(2t - 1) & (\frac{1}{2} \leq t \leq 1)
\end{cases}
\]

となる。ホモトピー \(F : [0, 1] \times [0, 1] \to X \) は次の条件を満足する連続写像である。

(a) \(F(t, 0) = (\tilde{p} \cdot \ell)(t), F(t, 1) = \ell(t) \quad (\forall t \in [0, 1]) \)

(b) \(F(0, s) = p, F(1, s) = p \quad (\forall s \in [0, 1]) \)

このような条件を満足するホモトピーの与え方は一通りではないが, たとえば次のように与えることができる。
また、$s = \frac{1}{2}$ のときは,

$$
F(t, \frac{1}{2}) = \begin{cases}
 p & (0 \leq t \leq \frac{1}{4}) \\
 \ell \left(\frac{4t-1}{3} \right) & (\frac{1}{4} \leq t \leq 1)
\end{cases}
$$

となるので、これは $t = \frac{1}{4}$ まで基点 p にとどまり、$t = \frac{1}{4}$ から $t = 1$ までループ ℓ を 1 周する軌跡に対応している。

問題 7. 単体の定義より 2 単体は次のように与えられる。

$$
\Delta^2 = |p_0p_1p_2| = \{ x \in \mathbb{R}^n : x = \lambda_0 p_0 + \lambda_1 p_1 + \lambda_2 p_2, \; \lambda_0 + \lambda_1 + \lambda_2 = 1, \; \lambda_i \geq 0 (\forall i) \}
$$

まず、$\lambda_2 = 1$ の場合は、$\lambda_0 = \lambda_1 = 0$ であるので、$x = p_2$ である。つぎに、$\lambda_2 \neq 1$ の場合は、$x = \lambda_0 p_0 + \lambda_1 p_1 + \lambda_2 p_2$ を次のように変形できる。

$$
x = (1-\lambda_2) \left(\frac{\lambda_0}{1-\lambda_2} p_0 + \frac{\lambda_1}{1-\lambda_2} p_1 \right) + \lambda_2 p_2
$$

したがって、x は辺分 $p'p_2$ の内分点である。また,
より，p'は線分\(p_0p_1\)の内分点である．したがって，\(\Delta^2 = |p_0p_1p_2|\)は，p'が線分\(p_0p_1\)上を動くときの，線分p'rが描き出す軌跡，すなわち3点p_0，p_1，p_2を頂点とする3角形に対応する．

問題8. (1) 0次元鎖群\(C_0(K)\)は

\[
C_0(K) = \{ \alpha_0 \langle p_0 \rangle + \alpha_1 \langle p_1 \rangle : \alpha_0, \alpha_1 \in \mathbb{Z} \}
\]

で与えられる．定義より\(\partial_0 \langle p_0 \rangle = \partial_0 \langle p_1 \rangle = 0\)であるので，

\[
Z_0(K) = \text{Ker}(\partial_0) = C_0(K)
\]

(2) 1次元鎖\(c \in C_1(K)\)に対する境界準同型\(\partial_1(c)\)は

\[
\partial_1(c) = \partial_1(\alpha_0 \langle p_0p_1 \rangle) = \alpha(\langle p_1 \rangle - \langle p_0 \rangle)
\]

で与えられるので，

\[
B_0(K) = \text{Im}(\partial_1) = \{ \alpha(\langle p_1 \rangle - \langle p_0 \rangle) : \alpha \in \mathbb{Z} \}
\]

となる．また，\(\forall c \in Z_0(K) = C_0(K)\)に対して，

\[
c = \alpha_0 \langle p_0 \rangle + \alpha_1 \langle p_1 \rangle
\]

\[
\in B_0(K)
\]

\[
= \alpha_1(\langle p_1 \rangle - \langle p_0 \rangle) + (\alpha_0 + \alpha_1)\langle p_0 \rangle
\]

が成り立つので，

\[
H_0(K) = Z_0(K)/B_0(K) = \{ B_0(K) + m \langle p_0 \rangle : m \in \mathbb{Z} \}
\]

のように表せる．

(3) \(\varphi(B_0(K) + m \langle p_0 \rangle) = m\)とすると，\(\varphi : H_0(K) \rightarrow \mathbb{Z}\)は同型写像であるので

\(H_0(K) \cong \mathbb{Z}\)となる．

問題9. (1)

\[
\begin{align*}
e'_1 &= e_1 \\
e'_2 &= \frac{1}{\sqrt{2}}(e_1 + e_2)
\end{align*}
\]

\[
\downarrow
\]

\[
A = (A_{ij}) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & \sqrt{2} \end{pmatrix}
\]

(2) $\overrightarrow{OP} = 2e_1 + e_2 = 2e'_1 + (-e'_1 + \sqrt{2}e'_2) = e'_1 + \sqrt{2}e'_2$ より，\overrightarrow{OP} の Σ' における成分は $(1, \sqrt{2})$ である。

(3) $x_1 e_1 + x_2 e_2 = x'_1 e'_1 + x'_2 e'_2$ より，

$$
\begin{align*}
 x_1 &= x'_1 + \frac{1}{\sqrt{2}}x'_2 \\
 x_2 &= \frac{1}{\sqrt{2}}x'_2
\end{align*}
$$

を得る。したがって，

$$
\begin{pmatrix}
 \frac{\partial f}{\partial x_1} \\
 \frac{\partial f}{\partial x_2}
\end{pmatrix}
= \begin{pmatrix}
 \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_1} \\
 \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial x_2} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_2}
\end{pmatrix}
= \begin{pmatrix}
 \frac{\partial x_1}{\partial x'_1} & \frac{\partial x_2}{\partial x'_1} \\
 \frac{\partial x_1}{\partial x'_2} & \frac{\partial x_2}{\partial x'_2}
\end{pmatrix}
\begin{pmatrix}
 \frac{\partial f}{\partial x_1} \\
 \frac{\partial f}{\partial x_2}
\end{pmatrix}
= \begin{pmatrix}
 1 & 0 \\
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix}
 2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 2 \\
 3 \sqrt{2}
\end{pmatrix}
$$

問題 10. 基底ベクトルの一次独立性に注意する。まず，

$$a_1 e_1 + a_2 e_2 + a_3 e_3 = 0$$

とする。基底の関係を代入し，e_κ' の 1 次独立性に注意すると，以下のような関係式が得られる。

$$a_1 A'_1 e_\kappa' + a_2 A'_2 e_\kappa' + a_3 A'_3 e_\kappa' = 0$$

従って，e_κ' の 1 次独立性

$$
\begin{pmatrix}
 A'_1 \\
 A'_2 \\
 A'_3
\end{pmatrix}
\begin{pmatrix}
 a_1 \\
 a_2 \\
 a_3
\end{pmatrix}
= 0
$$

もし，行列 A が正則でなければ，$a = 0$ となる a が存在するが，これは e_κ が 1 次独立であることに矛盾する。したがって，行列 A は正則である。

問題 11. (1) 不変である。（直線を表す方程式として，$x^\kappa = \alpha^\kappa + \beta^\kappa t$ $(\kappa = 1, 2, 3, t$：媒介変数)を考えること。

(2) 一般には不変ではない。（2 点 $(x^1, x^2, x^3), (y^1, y^2, y^3)$ の距離 $\left(\sum_{\kappa=1}^{3} (x^\kappa - y^\kappa)^2\right)^{1/2}$
と 2 点 $(x'^1, x'^2, x'^3), (y'^1, y'^2, y'^3)$ の距離 $\left(\sum_{\kappa=1}^{3} (x'^\kappa - y'^\kappa)^2\right)^{1/2}$ を比較する。）
(3) 不変である。

問題12. 基底の変換を次のように表す。

\[e_\kappa = A^\kappa e'_\kappa, \quad e'_\kappa = A^{-1}_\kappa e_\kappa \]

ここで,

\[
(A^\kappa) = \begin{pmatrix}
1 & 0 & 3 \\
2 & 3 & 4 \\
2 & 2 & 4
\end{pmatrix}, \quad (A^\kappa)^{-1} = \begin{pmatrix}
-2 & -3 & \frac{9}{2} \\
0 & 1 & -1 \\
1 & 1 & -\frac{3}{2}
\end{pmatrix}
\]

したがって，各成分は以下のように与えられる。

\[
v^{\kappa'} = A^\kappa v^\kappa \Rightarrow \begin{pmatrix}
v^1' \\
v^2' \\
v^3'
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 3 \\
2 & 3 & 4 \\
2 & 2 & 4
\end{pmatrix} \begin{pmatrix}
2 \\
1 \\
2
\end{pmatrix} = \begin{pmatrix}
8 \\
15 \\
14
\end{pmatrix}
\]

\[
w^{\kappa'} = A^\kappa w_\kappa \Rightarrow (w_1', w_2', w_3') = (2, 1, 2) \begin{pmatrix}
-2 & -3 & \frac{9}{2} \\
0 & 1 & -1 \\
1 & 1 & -\frac{3}{2}
\end{pmatrix} = (-2, -3, 5)
\]

問題13. テンソルの成分の変換法則より，以下のように与えられる。

\[
T^\kappa_{\lambda'} = A^\kappa A^\lambda_{\lambda'} T^\kappa_{\lambda} = (A^\kappa T^\lambda_{\lambda'} A^\lambda_{\lambda'}) \begin{pmatrix}
T^1_{\lambda'} & T^2_{\lambda'} & T^3_{\lambda'} \\
T^1_{\lambda} & T^2_{\lambda} & T^3_{\lambda}
\end{pmatrix} \begin{pmatrix}
A^1_{\lambda'} \\
A^2_{\lambda'} \\
A^3_{\lambda'}
\end{pmatrix}
\]

\[
(T^\kappa_{\lambda'}) = \begin{pmatrix}
T^1_{\lambda'} & T^2_{\lambda'} & T^3_{\lambda'} \\
T^1_{\lambda} & T^2_{\lambda} & T^3_{\lambda}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 3 \\
2 & 3 & 4 \\
2 & 2 & 4
\end{pmatrix} \begin{pmatrix}
2 & 0 & 4 \\
0 & 1 & 2 \\
2 & 1 & 2
\end{pmatrix} \begin{pmatrix}
-2 & -3 & \frac{9}{2} \\
0 & 1 & -1 \\
1 & 1 & -\frac{3}{2}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
-6 & -11 & 18 \\
-2 & -7 & 14 \\
-4 & -10 & 18
\end{pmatrix}
\]

問題14. \(\det A = \det(A^\kappa) = \Delta = -2\) であることに注意すると，各成分は以下のように与えられる。

\[
a^{\kappa'} = \frac{1}{|\Delta|^{-1}} A^\kappa a^\kappa \Rightarrow \begin{pmatrix}
a^{1'} \\
a^{2'} \\
a^{3'}
\end{pmatrix} = 2 \begin{pmatrix}
1 & 0 & 3 \\
2 & 3 & 4 \\
2 & 2 & 4
\end{pmatrix} \begin{pmatrix}
2 \\
1 \\
2
\end{pmatrix} = \begin{pmatrix}
16 \\
30 \\
28
\end{pmatrix}
\]
問題15.

\[b_{\kappa'} = \frac{\Delta}{|\Delta|} \frac{1}{|\Delta|} \frac{1}{|\Delta|^2} A_{\kappa'}^\kappa b_\kappa \Rightarrow (b_1', b_2', b_3') = -\frac{1}{4} (2, 1, 2) \begin{pmatrix} -2 & -3 & \frac{9}{2} \\ 0 & 1 & -1 \\ 1 & 1 & -\frac{3}{2} \end{pmatrix} = \left(\frac{1}{2}, \frac{3}{4}, -\frac{5}{4} \right) \]

したがって、縮約積 \(a^\kappa b_\kappa \) は重み1の擬スカラー密度である。また、その成分は \(\Sigma \) に関しては \(a^\kappa b_\kappa = 9 \)，\(\Sigma' \) に関しては \(a^\kappa b_{\kappa'} = -\frac{9}{2} \) である。

問題16. \(e_{\kappa'} = A_{\kappa'}^\kappa e_\kappa \) より

\[
\begin{align*}
e_1' &= -2e_1 + e_3 \\
e_2' &= -3e_1 + e_2 + e_3 \\
e_3' &= \frac{9}{2}e_1 - e_2 - \frac{3}{2}e_3
\end{align*}
\]

である。この関係式と \(e_\kappa \) の正規直交性と \(g_{\kappa'\lambda'} = (e_{\kappa'}, e_{\lambda'}) \) より、計量テンソル \(g_{\kappa'\lambda'} \) の成分は次のように与えられる。

\[
(g_{\kappa'\lambda'}) = \begin{pmatrix} g_{1'1'} & g_{1'2'} & g_{1'3'} \\ g_{2'1'} & g_{2'2'} & g_{2'3'} \\ g_{3'1'} & g_{3'2'} & g_{3'3'} \end{pmatrix} = \begin{pmatrix} 5 & 7 & -\frac{21}{2} \\ 7 & 11 & -16 \\ -\frac{21}{2} & -16 & \frac{47}{2} \end{pmatrix}
\]