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DC Algorithm for

Extended Robust Support Vector Machine

Shuhei Fujiwara∗ Akiko Takeda∗ Takafumi Kanamori†

Abstract

Non-convex extensions for Support Vector Machines (SVMs) have
been developed for various purposes. For example, robust SVMs attain
robustness to outliers using a non-convex loss function, while Extended
ν-SVM (Eν-SVM) extends the range of the hyper-parameter introduc-
ing a non-convex constraint. We consider Extended Robust Support
Vector Machine (ER-SVM) which is a robust variant of Eν-SVM. ER-
SVM combines the two non-convex extensions of robust SVMs and
Eν-SVM. Because of two non-convex extensions, the existing algorithm
which is proposed by Takeda, Fujiwara and Kanamori needs to be di-
vided into two parts depending on whether the hyper-parameter value
is in the extended range or not. It also heuristically solves the non-
convex problem in the extended range.

In this paper, we propose a new efficient algorithm for ER-SVM.
The algorithm deals with two types of non-convex extensions all to-
gether never paying more computation cost than that of Eν-SVM
and robust SVMs and finds a generalized Karush-Kuhn-Tucker (KKT)
point of ER-SVM. Furthermore, we show that ER-SVM includes ex-
isting robust SVMs as a special case. Numerical experiments confirm
the effectiveness of integrating the two non-convex extensions.

1 Introduction

Support Vector Machine (SVM) is one of the most successful machine learn-
ing models, and it has many extensions. The original form of SVM, which is
called C-SVM [6], is popular because of its generalization ability and convex-
ity. ν-SVM proposed by [16] is equivalent to C-SVM, and Extended ν-SVM
(Eν-SVM) [10] is a non-convex extension of ν-SVM. Eν-SVM introduces
a non-convex norm constraint instead of regularization term in the objec-
tive function, and the non-convex constraint makes it possible to extend
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the range of the hyper-parameter ν. Eν-SVM includes ν-SVM as a special
case and Eν-SVM empirically outperforms ν-SVM owing to the extension
(see [10]). Furthermore, [21] showed that Eν-SVM minimizes Conditional
Value-at-Risk (CVaR) which is a popular convex and coherent risk measure
in finance. However, CVaR is sensitive to tail-risks, and the same holds
true for Eν-SVM. Unfortunately, it also implies that SVMs might not be
sufficiently robust to outliers.

Various non-convex SVMs have been studied with the goal of ensuring
robustness to outliers. Indeed, there are many models which are called
robust SVM. In this paper, “robust SVMs” means any robust variants of
SVMs. Especially, [5, 25] worked on Ramp-Loss SVM which is a popular
robust SVM. The idea is to truncate the hinge-loss and bound the value
of the loss function by a constant (see Figure 1). Not only hinge-loss, but
also any loss functions can be extended by truncating in the same way of
ramp-loss. The framework of such truncated loss functions has been studied,
for example, in [17, 26]. Xu, Crammer and Schuurmans [25] also proposed
Robust Outlier Detection (ROD) which is derived from Ramp-Loss SVM.
While Ramp-Loss SVM and ROD are robust variants of C-SVM, Extended
Robust SVM (ER-SVM), recently proposed in [20], is a robust variant of
Eν-SVM.

1.1 Non-convex Optimization and DC Programming

The important issue on non-convex extensions is how to solve the difficult
non-convex problems. Difference of Convex functions (DC) programming is
a powerful framework for dealing with non-convex problems. It is known
that various non-convex problems can be formulated as DC programs. For
example, every function whose second partial derivatives are continuous ev-
erywhere has DC decomposition (cf. [8]).

DC Algorithm (DCA) introduced in [22] is one of the most efficient
algorithm for DC programs. The basic idea behind the algorithms is to
linearize the concave part and sequentially solve the convex subproblem.
The local and global optimality conditions, convergence properties, and the
duality of DC programs were well studied using convex analysis [14]. For
general DC program, every limit point of the sequence generated by DCA is
a critical point which is also called generalized Karush-Kuhn-Tucker (KKT)
point. It is remarkable that DCA does not require differentiability in order
to assure its convergence properties. Furthermore, it is known that DCA
converges quite often to a global solution [9, 11].

In the machine learning literature, a similar method which is called
ConCave-Convex Procedure (CCCP) [27] has been studied. The work [18]
proposed constrained CCCP to deal with DC constraints, and [19] studied
the global convergence properties of (constrained) CCCP, proving that the
sequence generated by CCCP converges to a stationary point under condi-
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Table 1: Relation of existing models: the models in right (resp. bottom)
cell include the models in left (resp. top) cell as a special case.

Regularizer
Convex Non-Convex

Convex C-SVM [6], ν-SVM [16] Eν-SVM [10]
Robust Outlier Detection [25]

Loss Non-convex Ramp-Loss SVM [5, 25] ER-SVM [20]

tions such as differentiability and strict convexity. However, since our model
is not differentiable, we will use DCA for our problem and take advantage
of theoretical results of DCA such as convergence properties.

1.2 Contributions

The main contribution of this paper is a new efficient algorithm based on
DCA for ER-SVM. We prove that ER-SVM minimizes the difference of two
CVaRs which are known to be convex risk measures. This result allows us to
apply DCA to ER-SVM and gives an intuitive interpretation for ER-SVM.
The previous algorithm proposed by [20] is heuristics and does not have
a theoretical guarantee. However, our new algorithm finds a critical point
which is also called generalized KKT point. Though ER-SVM enjoys both
of non-convex extensions of Eν-SVM and robust SVMs such as ROD and
Ramp-Loss SVM, our new algorithm is simple and comparable to those of
Eν-SVM and Ramp-Loss SVM. While the existing algorithm for Eν-SVM
[10] needs to use two different procedures depending on the value of the
hyper-parameter ν, our new algorithm works with any value of the hyper-
parameter ν. Besides, our algorithm is similar to Collobert et al.’s algorithm
[5] of Ramp-Loss SVM which was shown to be fast.

Furthermore, we clarify the relation of ER-SVM, Ramp-Loss SVM and
ROD. We show that ER-SVM includes Ramp-Loss SVM and ROD as a
special case in the sense of KKT points. That is, a special case of ER-
SVM (whose range of the hyper-parameter ν is limited), Ramp-Loss SVM
and ROD share all KKT points. Therefore, as in Table 1, ER-SVM can be
regarded not just as a robust variant of Eν-SVM but as a natural extension
of Ramp-Loss SVM and ROD.

1.3 Outline of the Paper

This paper is organized as follows: Section 2 is preliminary. In Section
2.1 and 2.2, we introduce existing SVMs and their extensions. Section 2.3
briefly describes definitions and properties of some popular financial risk
measures such as CVaR and VaR. Section 3 describes some important prop-
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erties of ER-SVM. Section 3.1 gives a DC decomposition of ER-SVM using
CVaRs which is a key property for our algorithm. Section 3.2 shows the
relation of Ramp-Loss SVM, ROD, and ER-SVM. Section 4 describes our
new algorithm after a short introduction of DC programming and DCA. The
non-convex extension for regression and its algorithm are briefly discussed
in Section 5. Finally, numerical result is presented in Section 6.

2 Preliminary

Here, let us address the binary classification of supervised learning. Suppose
we have a set of training samples {(xi, yi)}i∈I where xi ∈ Rn, yi ∈ {−1, 1}
and I is the index set of the training samples. I± is the index set such
that yi = ±1 and we suppose |I±| > 0. SVM learns the decision function
h(x) = ⟨w,x⟩+ b and predicts the label of x as ŷ = sign(h(x)). We define

ri(w, b) := −yi(⟨w,xi⟩+ b),

wherein the absolute value of ri(w, b) is proportional to the distance from
the hyperplane ⟨w,x⟩ + b = 0 to the sample xi. ri(w, b) becomes negative
if the sample xi is classified correctly and positive otherwise.

Though our algorithm can be extended to nonlinear models using kernel
method, we consider linear models for simplicity. Instead, we mention kernel
method in Section 3.4.

2.1 Support Vector Machines

2.1.1 Convex SVMs

C-SVM [6] is the most standard form of SVMs, which minimizes the hinge-
loss and regularizer:

min
w,b

1

2
∥w∥2 + C

∑
i∈I

[1 + ri(w, b)]
+,

where [x]+ := max{0, x} and C > 0 is a hyper-parameter. ν-SVM [16] is
formulated as

min
w,b,ρ

1

2
∥w∥2 − νρ+ 1

|I|
∑
i∈I

[ρ+ ri(w, b)]
+

s.t. ρ ≥ 0,

(1)

which is equivalent to C-SVM if ν and C are set appropriately. The hyper-
parameter ν ∈ (0, 1] has an upper threshold

ν := 2min {|I+|, |I−|} /|I|

and a lower threshold ν. The optimal solution is trivial (w = 0) if ν ≤ ν,
and the optimal value is unbounded if ν > ν (see [4]). Therefore, we define
the range of ν for ν-SVM as (ν, ν].

4



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−yi(w⊤ xi +b)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Lo
ss

hinge loss
ramp loss

Figure 1: Loss functions

2.1.2 Non-Convex SVMs

Here, we introduce two types of non-convex extensions for SVMs. The first
is Extended ν-SVM (Eν-SVM) [10] which is an extended model of ν-SVM.
Eν-SVM introducing a non-convex constraint is formulated as

min
ρ,w,b

−νρ+ 1

|I|
∑
i∈I

[ρ+ ri(w, b)]
+

s.t. ∥w∥2 = 1.

(2)

Eν-SVM has the same set of optimal solutions to ν-SVM if ν > ν, and
obtains non-trivial solutions (w ̸= 0) even if ν ≤ ν owing to the constraint
∥w∥2 = 1. Therefore, we define the range of ν for Eν-SVM as (0, ν]. Eν-
SVM removes the lower threshold ν of ν-SVM and extends the admissible
range of the hyper-parameter ν. It was empirically shown that Eν-SVM
sometimes achieves high accuracy in the extended range of ν. We will men-
tion other concrete advantages of Eν-SVM over ν-SVM in Section 3.3.

The second is Ramp-Loss SVM which is a robust variant of C-SVM. The
resulting classifier is robust to outliers at the expense of the convexity of the
hinge-loss function. The idea behind ramp-loss is to clip large losses with a
hyper-parameter s ≥ 0.

min
w,b

1

2
∥w∥2 + C

∑
i∈I

min{[1 + ri(w, b)]
+, s}. (3)

C ∈ (0,∞) is also a hyper-parameter. Ramp-loss can be described as a differ-
ence of hinge-loss functions: therefore ConCave-Convex Procedure (CCCP),
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Table 2: If ν is greater than lower threshold (Case C), the non-convex
constraint of Eν-SVM and ER-SVM can be relaxed to a convex constraint
without changing their optimal solutions. Case C of Eν-SVM is equivalent
to ν-SVM.

Case N Case C

Range of ν ν ≤ ν ν < ν ≤ ν ν < ν
ν-SVM Opt. Val. 0 negative unbounded

Opt. Sol. w = 0 admissible –

Range of ν ν ≤ ν ν < ν ≤ ν ν < ν
Opt. Val. non-negative negative unbounded

Eν-SVM Opt. Sol. admissible admissible –
Constraint ∥w∥2 = 1 ∥w∥2 ≤ 1

Range of ν ν ≤ νµ νµ < ν ≤ νµ νµ < ν

Opt. Val. non-negative negative unbounded
ER-SVM Opt. Sol. admissible admissible –

Constraint ∥w∥2 = 1 ∥w∥2 ≤ 1

which is an effective algorithm for DC programming, can be applied to the
problem (see [5] for details). On the other hand, [25] gave another represen-
tation of Ramp-Loss SVM using η-hinge-loss:

min
w,b,η

1

2
∥w∥2 + C

∑
i∈I
{ηi[1 + ri(w, b)]

+ + s(1− ηi)}

s.t. 0 ≤ ηi ≤ 1,

(4)

and applied semidefinite programming relaxation to (4). They also proposed
Robust Outlier Detection (ROD):

min
w,b,η

1

2
∥w∥2 + C

∑
i∈I

ηi[1 + ri(w, b)]
+

s.t. 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|,
(5)

which is derived from Ramp-Loss SVM (4). C ∈ (0,∞) and µ ∈ [0, 1) are
hyper-parameters. In the original formulation [25], ROD is defined with an
inequality constraint

∑
i∈I(1− ηi) ≤ µ|I| but it is replaced by the equality

variant since it does not change the optimal value.
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2.2 Extended Robust Support Vector Machine

Recently, [20] proposed Extended Robust SVM (ER-SVM):

min
w,b,ρ,η

−ρ+ 1

(ν − µ)|I|
∑
i∈I

ηi[ρ+ ri(w, b)]
+

s.t. 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|, ∥w∥2 = 1,
(6)

where ν ∈ (µ, 1] and µ ∈ [0, 1) are hyper-parameters.
Note that we relax the 0-1 integer constraints ηi ∈ {0, 1} of the original

formulation in [20] and replace
∑

i∈I(1−ηi) ≤ µ|I| of the original one by the
equality variant. The relaxation does not change the problem if µ|I| ∈ N.
More precisely, if µ|I| ∈ N, ER-SVM (6) has an optimal solution such that
η∗ ∈ {0, 1}|I|. In this case, ER-SVM (6) removes µ|I| samples and applies
Eν-SVM (2) using the rest, as intended in [20]. Hence, in this paper, we use
the formulation (6) and call it ER-SVM.

It can be easily seen that for fixed µ, the optimal value of (6) is de-
creasing with respect to ν. Moreover, it is shown in [20, Lemma 1] that
the non-convex constraint ∥w∥2 = 1 can be relaxed to ∥w∥2 ≤ 1 without
changing the optimal solution as long as the optimal value is negative; just
like Eν-SVM, ER-SVM (6) has a threshold (we denote it by νµ) of the
hyper-parameter ν where the optimal value equals zero and the non-convex
constraint ∥w∥2 = 1 is essential for ER-SVM with ν ≤ νµ. The non-convex
constraint ∥w∥2 = 1 removes the lower threshold of ν and extends the ad-
missible range of ν in the same way of Eν-SVM (see Table 2.2). We will
show in Section 3.2 that a special case (case C in Table 2.2) of ER-SVM is
equivalent to ROD (5) and Ramp-Loss SVM (4) in the way where a special
case (case C) of Eν-SVM is equivalent to ν-SVM. Hence, ER-SVM can be
seen as a natural extension of Robust SVMs such as ROD and Ramp-Loss
SVM. ER-SVM (6) also has an upper threshold νµ which makes the problem
bounded similar to Eν-SVM and ν-SVM.

2.3 Financial Risk Measures

We define financial risk measures as in [15]. Let us consider the distribution
of ri(w, b) :

Ψ(w, b, ζ) :=P (ri(w, b) ≤ ζ)

=
1

|I|
|{i ∈ I : ri(w, b) ≤ ζ}|.

For ν ∈ (0, 1], let ζ1−ν(w, b) be the 100(1− ν)-percentile of the distribution,
known as the Value-at-Risk (VaR) in finance. More precisely, (1 − ν)-VaR
is defined as

ζ1−ν(w, b) := min{ζ : Ψ(w, b, ζ) ≥ 1− ν},
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(a) (b)

Figure 2: Difference between VaR and VaR+: VaR+ corresponds to VaR
if equation Ψ(w, b, ζ) = 1− ν has no solution (Figure 2(a)).

and (1− ν)-VaR+ which we call (1− ν)-upper-VaR is defined as

ζ+1−ν(w, b) := inf{ζ : Ψ(w, b, ζ) > 1− ν}.

The difference between VaR and VaR+ is illustrated in Figure 2.
Conditional Value-at-Risk (CVaR) is also a popular risk measure in fi-

nance because of its coherency and computational properties. Formally,
(1− ν)-CVaR is defined as

φ1−ν(w, b) := mean of the (1− ν)-tail distribution of ri(w, b),

where the (1− ν)-tail distribution is defined by

Ψ1−ν(w, b, ζ) :=

0 for ζ < ζ1−ν(w, b)
Ψ(w, b, ζ)− (1− ν)

ν
for ζ ≥ ζ1−ν(w, b).

The computational advantage of CVaR over VaR is shown by the following
theorem.

Theorem 1 (Rockafellar and Uryasev [15]). One has

φ1−ν(w, b) = min
ζ
F1−ν(w, b, ζ), (7)

where

F1−ν(w, b, ζ) := ζ +
1

ν|I|
∑
i∈I

[ri(w, b)− ζ]+.
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Figure 3: Distribution of ri(w, b): ER-SVM minimizes the mean of ri, i ∈ I,
in the gray area.

Moreover

ζ1−ν(w, b) = lower endpoint of argmin
ζ

F1−ν(w, b, ζ)

ζ+1−ν(w, b) = upper endpoint of argmin
ζ

F1−ν(w, b, ζ)

hold.

Using the property that CVaR is a polyhedral convex function (i.e.,
piecewise linear and convex function), CVaR can be described as a maximum
of linear functions as follows:

φ1−µ(w, b) = max
η

{
1

µ|I|
∑
i∈I

(1− ηi)ri(w, b) : 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|

}
.

(8)

We will use the above different representations of CVaR (7) and (8) in the
proof of Proposition 1.

3 Properties of Extended Robust SVM

3.1 Decomposition using Conditional Value-at-Risks

Here, we will give an intuitive interpretation to ER-SVM (6) using two
CVaRs. Eν-SVM has been shown to minimize (1− ν)-CVaR φ1−ν(w, b) in
[21]. On the other hand, ER-SVM (6) ignores the fraction µ of the samples
and solves Eν-SVM using the rest: that is, ER-SVM (6) minimizes CVaR
using the rest of the samples. Hence, ER-SVM can be regarded as the one
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that minimizes the mean of the distribution of the gray area in Figure 3.
The mean of the gray area in Figure 3 can be described using two CVaRs
as in [24]:

Proposition 1. ER-SVM (6) is described as a problem minimizing the dif-
ference of two convex functions using the two CVaRs:

min
w,b

1

ν − µ
{νφ1−ν(w, b)− µφ1−µ(w, b)}

s.t. ∥w∥2 = 1.

(9)

The proof of Proposition 1 is shown in Appendix A.
Since CVaR is convex, this decomposition allows us to apply the existing

techniques for DC program to ER-SVM. A similar model which relaxes the
non-convex constraint ∥w∥2 = 1 of (9) by ∥w∥2 ≤ 1 was recently proposed
in [23]. As in Table 2.2, Tsyurmasto, Uryasev and Gotoh’s model [23] is a
special case (Case C) of ER-SVM, and their model is essentially equivalent
to Ramp-Loss SVM and ROD.

3.2 Relationship with Existing Models

Here, we discuss the relation of ER-SVM, ROD, and Ramp-Loss SVM using
the KKT conditions shown in Appendix B. Let us begin with showing the
equivalence of Ramp-Loss SVM and ROD. Though the formulation of ROD
is derived from Ramp-Loss, their equivalence is not particularly discussed
in the original paper [25].

Lemma 1 (Relation between ROD and Ramp-Loss SVM). Ramp-Loss SVM
(4) and ROD (5) share all KKT points in the following sense.

1. Let (w∗, b∗,η∗) be a KKT point of Ramp-Loss SVM (4). Then it is
also a KKT point of ROD (5) with µ = 1

|I|
∑

i∈I(1− η∗i ).

2. A KKT point of ROD (5) having the Lagrange multiplier τ∗ for
∑

i∈I(1−
ηi) = µ|I| is also a KKT point of Ramp-Loss SVM (4) with s = τ∗

C .

The proof of Lemma 1 is shown in Appendix B.1.
Theorem 2 shows the equivalence of ROD and the special case (Case C

in Table 2.2) of ER-SVM.

Theorem 2 (Relation between ER-SVM and ROD). Case C of ER-SVM (in
Table 2.2), that is (26), and ROD (5) share all KKT points in the following
sense.

1. Let (w∗, b∗) satisfy the KKT conditions of ROD (5) and suppose w∗ ̸=
0. 1

∥w∗∥(w
∗, b∗) satisfies the KKT conditions of Case C of ER-SVM

with a corresponding hyper-parameter value.
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2. Let (w∗, b∗, ρ∗) satisfy the KKT conditions of Case C of ER-SVM.
Suppose ρ∗ ̸= 0 and the objective value is non-zero. 1

ρ∗ (w
∗, b∗) satisfies

the KKT conditions of ROD with a corresponding hyper-parameter
value.

See Appendix B.2 for the proof of Theorem 2.
From Lemma 1 and Theorem 2, Ramp-Loss SVM and ROD are regarded

as a special case (Case C in Table 2.2) of ER-SVM. As we showed in Section
3.1, Tsyurmasto, Uryasev and Gotoh’s model [23] is also equivalent to Case
C (in Table 2.2) of ER-SVM. Theorem 2 is similar to the relation between
C-SVM and ν-SVM (which is a special case of Eν-SVM). It was shown
that the sets of global solutions of C-SVM and ν-SVM correspond to each
other when the hyper-parameters are set properly [4, 16]. We used KKT
conditions to show the relation of non-convex models.

3.3 Motivation for Non-Convex Regularizer

The motivation of the non-convex constraint in Eν-SVM is somewhat not
intuitive while that of the robust extension for loss function is easy to un-
derstand. Here, we show the motivation of the extension.

As Table 2.2 shows, the non-convex constraint removes the lower thresh-
old of the hyper-parameter ν. The extension of the admissible range of ν
has some important advantages. Empirically, [10] showed examples where
Eν-SVM outperforms ν-SVM owing to the extended range of ν. They also
pointed that small ν achieves sparse solutions since ν controls the number
of support vectors.

Here, we show the case where the admissible range of ν for ν-SVM is
empty. Theorem 3 gives an explicit condition where C-SVM and ν-SVM
obtain a trivial classifier for any hyper-parameter value of C and ν. The
conditions also apply to robust SVMs after removing all outliers with η∗i = 0.

Rifkin, Pontil and Verri [13] studied the condition where C-SVM ob-
tains a trivial solution. We directly connect their statements to ν-SVM and
strengthen them as in Theorem 3 by adding a geometric interpretation for
ν-SVM in the case where the admissible range of ν is empty for ν-SVM.

Theorem 3. Suppose 0 < |I−| ≤ |I+| without loss of generality. Let us
define Reduced Convex Hull (RCH) [7]:

RCH±(ν) =

∑
i∈I±

λixi :
∑
i∈I±

λi = 1, 0 ≤ λi ≤
2

ν|I|
for all i

 . (10)

C-SVM and ν-SVM lead to the trivial classifier (w = 0) for any hyper-
parameter values C ∈ (0,∞) and ν ∈ (ν, ν] if and only if a training set
{xi, yi}i∈I satisfies

∑
i∈I−

1
|I−|xi ∈ RCH+(ν). When |I−| > |I+|, the above

statement is modified by
∑

i∈I+
1

|I+|xi ∈ RCH−(ν).
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The proof is shown in Appendix C.

3.4 Kernelization

Learning methods using linear models can be extended to more powerful
learning algorithms by using kernel methods. Here, let us briefly introduce
the kernel variant of ER-SVM (6). In kernel methods, the input sample x is
mapped into ϕ(x) in a high (even infinite) dimensional inner product space
H, and the classifier of the form h(x) = ⟨w, ϕ(x)⟩H + b is learned from the
training samples, where ⟨a, b⟩H is the inner product of a and b in H. The
kernel function k(x,x′) is defined as k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H.

We show how the equality constraint ∥w∥2 = 1 in ER-SVM (6) is dealt
with in the kernel method. Let S be the subspace in H spanned by ϕ(xi), i ∈
I, and S⊥ be the orthogonal subspace of S. Then the weight vector w is
decomposed into w = v + v⊥, where v ∈ S and v⊥ ∈ S⊥. The vector v⊥

does not affect the value of ri(w, b) = −yi(⟨w, ϕ(xi)⟩H + b). The vector v
is expressed as the linear combination of ϕ(xi) such as v =

∑
i∈I αiϕ(xi).

If S = H holds, w = v should hold and the constraint ⟨w,w⟩H = 1 is
equivalent with

∑
i,j∈I αiαjk(xi,xj) = 1. On the other hand, when S ̸= H,

i.e., the dimension of S⊥ is not zero, one can prove that the constraint
⟨w,w⟩H = 1 is replaced with the convex constraint

∑
i,j∈I αiαjk(xi,xj) ≤

1, where the fact that the gram matrix (k(xi,xj))i,j is non-negative definite
is used. Indeed, since the objective function depends on w through the
component v, the constraint on w can be replaced with its projection onto
the subspace S. Thus the above convex constraint is obtained unless S = H.
In such case, the kernel variant of ER-SVM is given as

min
α,b,ρ,η

−ρ+ 1

(ν − µ)|I|
∑
i∈I

ηi[ρ+ rki (α, b)]
+

s.t. 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|,∑
i,j∈I

αiαjk(xi,xj) ≤ 1,

(11)

where rki (α, b) = −yi(
∑

j∈I k(xi,xj)αj + b). When S = H holds, the in-
equality constraint of α should be replaced with the equality constraint.

4 Algorithm

Let us begin with a brief introduction of Difference of Convex functions
(DC) program and DC Algorithm (DCA). DC program is formulated by
using lower semicontinuous proper convex functions u and v as

min
z
{f(z) := u(z)− v(z) : z ∈ Rn}. (12)
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DC Algorithm (DCA) is an efficient algorithm for (12) and theoretically well-
studied in e.g., [11]. We shall use simplified DCA, which is the standard form
of DCA. Simplified DCA sequentially linearizes the concave part in (12) and
solves convex subproblems as follows:

zk+1 ∈ argmin
z
{u(z)− (v(zk) + ⟨z − zk, gk⟩)}, (13)

where gk ∈ ∂v(zk) is a subgradient of v at zk. The sequence {zk} generated
by Simplified DCA has the following good convergence properties:

• the objective value is decreasing (i.e., f(zk+1) ≤ f(zk)),

• DCA has linear convergence,

• every limit point of the sequence {zk} is a critical point of u−v, which
is also called generalized KKT point.

z∗ is said to be a critical point of u − v if ∂u(z∗) ∩ ∂v(z∗) ̸= ∅. It implies
that a critical point z∗ has gu ∈ ∂u(z∗) and gv ∈ ∂v(z∗) such that gu −
gv = 0 which is a necessary condition for local minima. When (12) has a
convex constraint z ∈ Z, we can define the critical point by replacing u with
u(z) + δ(z | Z), where δ(z | Z) is an indicator function equal to 0 if z ∈ Z
and +∞ otherwise.

4.1 DCA for Extended Robust SVM

As shown in Section 3.1, ER-SVM (6) can be described as a difference of
CVaRs (9). Moreover, (9) can be reformulated into a problem of minimizing
the DC objective upon a convex constraint using a sufficiently large constant
t:

min
w,b

νφ1−ν(w, b)− µφ1−µ(w, b)− t∥w∥2

s.t. ∥w∥2 ≤ 1.
(14)

This reformulation is a special case of the exact penalty approach (see [11,
12]). There exists to such that (9) and (14) have the same set of optimal
solutions for all t > to. We can estimate an upper bound of to in our case
by invoking the following lemma.

Lemma 2. If t ≥ 0 in (14) is sufficiently large such that the optimal value
of (14) is negative, (9) and (14) have the same set of optimal solutions.

The key point in the proof of Lemma 2 is that CVaR has a positive
homogeneity (i.e., φ(aw, ab) = aφ(w, b) for all a such that a ∈ R, a > 0).
This is a well-known property of coherent risk measures such as CVaR (e.g.,
[1]).
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Proof of Lemma 2. Let (w∗, b∗) be an optimal solution of (14) and suppose
to the contrary that ∥w∗∥ < 1. ( w∗

∥w∗∥ ,
b∗

∥w∗∥) achieves a smaller objective

value than (w∗, b∗) since

νφ1−ν(
w∗

∥w∗∥
,
b∗

∥w∗∥
)− µφ1−µ(

w∗

∥w∗∥
,
b∗

∥w∗∥
)− t∥w

∗∥2

∥w∗∥2

=
1

∥w∗∥
{νφ1−ν(w

∗, b∗)− µφ1−µ(w
∗, b∗)− t∥w∗∥}

≤ 1

∥w∗∥
{νφ1−ν(w

∗, b∗)− µφ1−µ(w
∗, b∗)− t∥w∗∥2}︸ ︷︷ ︸

negative

< νφ1−ν(w
∗, b∗)− µφ1−µ(w

∗, b∗)− t∥w∗∥2.

However, this contradicts the optimality of (w∗, b∗). Therefore, the optimal
solution of (14) satisfies ∥w∥ = 1, which implies that it is also optimal to
(9).

Therefore, (14) is represented as the following DC program:

min
w,b
{u(w, b)− v(w, b)} (15)

where

u(w, b) = δ(w |W ) + νφ1−ν(w, b)

v(w, b) = µφ1−µ(w, b) + t∥w∥2

W = {w | ∥w∥2 ≤ 1}.

Here, we apply simplified DCA to the problem (15). At kth iteration of
simplified DCA, we solve a subproblem as in (13) linearizing the concave
part. Let (wk, bk) be the solution obtained in the previous iteration k−1 of
simplified DCA. The subproblem of simplified DCA for (15) is described as

min
w,b

νφ1−ν(w, b)− µ⟨gk
w,w⟩ − µgkb b− 2t⟨wk,w⟩

s.t. ∥w∥2 ≤ 1,
(16)

where (gk
w, g

k
b ) ∈ ∂φ1−µ(w

k, bk). ∂φ1−µ is the subdifferential of φ1−µ and
(gk

w, g
k
b ) is a subgradient of φ1−µ at (wk, bk). The optimal solution of (16)

is denoted by (wk+1, bk+1). We will show how to calculate a subgradient
(gk

w, g
k
b ) and how to choose a sufficiently large constant t.

Subdifferential of CVaR Here, we show how to calculate the subdif-
ferential of CVaR (8). The following technique is described in [24]. The
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subdifferential of CVaR at (wk, bk) is

∂wφ1−µ(w
k, bk) = co

{
− 1

µ|I|
∑
i∈I

(1− ηki )yixi : η
k ∈ H(wk, bk)

}
,

∂bφ1−µ(w
k, bk) = co

{
− 1

µ|I|
∑
i∈I

(1− ηki )yi : ηk ∈ H(wk, bk)

}
,

where coX is the convex hull of the set X and

H(wk, bk) = argmax
η

{∑
i∈I

(1− ηi)ri(wk, bk) :
∑
i∈I

(1− ηi) = µ|I|, 0 ≤ ηi ≤ 1

}
.

(17)

We can easily find an optimal solution ηk ∈ H(wk, bk) by assigning 0 to ηki
in descending order of ri(w

k, bk) for all i.

Efficient Update of t The update of the large constant t in each iteration
makes our algorithm more efficient. We propose to use, in the kth iteration,
tk such that

tk > νφ1−ν(w
k, bk)− µφ1−µ(w

k, bk). (18)

The condition (18) ensures the optimal value of (14) being negative, since the
solution (wk, bk) in the previous iteration has achieved a negative objective
value. With such tk, Lemma 2 holds.

Explicit Form of Subproblem We are ready to describe the subproblem
(16) explicitly. Using the above results and substituting (7) for φ1−ν(w, b),
(16) results in

min
w,b,ρ,ξ

−νρ+ 1

|I|
∑
i∈I

ξi −
1

|I|
∑
i∈I

(1− ηki )ri(w, b)− 2tk⟨wk,w⟩

s.t. ξi ≥ ρ+ ri(w, b), ξi ≥ 0, ∥w∥2 ≤ 1.

(19)

Hence, we summarize our algorithm as Algorithm 1.

5 Regression

Some parts of our analysis and algorithm can be applied to regression. Re-
gression models seek to estimate a linear function f(x) = ⟨w,x⟩ + b based
on data (xi, yi) ∈ Rn ×R, i ∈ I. ν-Support Vector Regression (ν-SVR) [16]
is formulated as

min
w,b,ϵ

1

2C
∥w∥2 + νϵ+

1

|I|
∑
i∈I

[|⟨w,xi⟩+ b− yi| − ϵ]+, (20)
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Algorithm 1 DCA for Difference of CVaRs

Input: µ ∈ [0, 1), ν ∈ (µ, νµ], (w
0, b0) such that ∥w0∥2 = 1 and a small

value ϵ1, ϵ2 > 0.
1: k = 0.
2: repeat
3: Select ηk ∈ H(wk, bk) arbitrarily.
4: Update tk as

tk ← max

{
0,
νφ1−ν(w

k, bk)− µφ1−µ(w
k, bk)

1− ϵ2

}
.

5:

6: (wk+1, bk+1) = a solution of subproblem (19).
7: k ← k + 1.
8: until f(wk, bk) − f(wk+1, bk+1) < ϵ1 where f(w, b) = νφ1−ν(w, b) −
µφ1−µ(w, b).

where C ≥ 0 and ν ∈ [0, 1) are hyper-parameters. Following the case of
classification, we formulate robust ν-SVR as

min
w,b,ϵ,η

1

2C
∥w∥2 + (ν − µ)ϵ+ 1

|I|

m∑
i=1

ηi[|w⊤xi + b− yi| − ϵ]+

s.t. 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|,
(21)

where C ≥ 0, ν ∈ (µ, 1] and µ ∈ [0, 1) are hyper-parameters. Let us consider
the distribution of

rregi (w, b) := |⟨w,xi⟩ − yi|.

φreg
1−ν(w, b) (resp. φ

reg
1−µ(w, b)) denotes (1−ν)-CVaR (resp. (1−µ)-CVaR) of

the distribution. Robust ν-SVR (21) can be decomposed by the two CVaRs
as

min
w,b

1

2C
∥w∥2 + νφreg

1−ν(w, b)− µφ
reg
1−µ(w, b). (22)

Since (22) is decomposed to the convex part and concave part, we can use
simplified DCA for robust ν-SVR.

6 Numerical Results

We compared ER-SVM with ramp-loss SVM by CCCP [5] and Eν-SVM
[10]. The hyper-parameter s of the ramp-loss function was fixed to 1, and
µ in ER-SVM was fixed to 0.05.
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6.1 Synthetic Datasets

We used synthetic data generated by following the procedure in [25]. We
generated two-dimensional samples with labels +1 and −1 from two normal
distributions with different mean vectors and the same covariance matrix.
The optimal hyperplane for the noiseless dataset is h(x) = x1 − x2 = 0
with w = 1√

2
(1,−1) and b = 0. We added outliers only to the training

set with the label −1 by drawing samples uniformly from a half-ring with
center 0, inner-radius R = 75 and outer-radius R + 1 in the space x of
h(x) > 0. The training set contains 50 samples from each class (i.e., 100
in total) including outliers. The ratio of outliers in the training set was
set to a value from 0 to 5%. The test set has 1000 samples from each
class (i.e., 2000 in total). We repeated the experiments 100 times, drawing
training and test sets every repetition. We found the best parameter setting
from 9 candidates, ν = 0.1, 0.2, . . . , 0.9 and C = 10−4, 10−3, . . . , 104. Figure
4(a) shows the outlier ratio and the test error of each models. ER-SVM
(µ = 0.05) achieved good accuracy especially when the outlier ratio was
large.

6.2 Real Datasets
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Figure 4: (a) shows the average errors for synthetic dataset. (b) is an
example where ER-SVM achieved the minimum test error with ν ≤ νµ in the
extended parameter range. (c) shows the computational time of Algorithm
1. (d) shows the example where ER-SVM obtains a non-trivial classifier,
though C-SVM, ν-SVM and ramp-loss SVM obtain trivial classifiers w =
0. (e) implies that our update rule of tk as in (18) achieves much faster
convergence. (f) shows how many times ER-SVM achieves smaller objective
values than the heuristic algorithm in 300 trials.
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We used the datasets of the UCI repository [2] and LIBSVM [3]. We
scaled all attributes of the original dataset from −1.0 to 1.0. We generated
outliers x̂ uniformly from a ring with center 0 and radius R and assigned
the wrong label ŷ to x̂ by using the optimal classifiers of Eν-SVM. The
radius R of generating outliers was set properly so that the outliers would
have an impact on the test errors. The best parameter was chosen from 9
candidates, ν ∈ (0, ν] with equal intervals and C = 5−4, 5−3, . . . , 54. These
parameters are decided using 10-fold cross validation and the error is the
average of 10 trials. Table 3 shows the results for real datasets. ER-SVM
often achieved smaller test errors than ramp-loss SVM and Eν-SVM, and
the prediction performance of ER-SVM were very stable to increasing the
outlier ratio. ’N’ in Table 3 implies that ER-SVM (or Eν-SVM) achieved
the best accuracy with ν ≤ νµ (or ν ≤ ν) and ’C’ implies that the best
accuracy was achieved with νµ < ν (or ν < ν).

6.3 Effectiveness of the Extension

Let us show an example where the extension of parameter range works. We
used 30% of the liver dataset for training and 70% for the test. We tried the
hyper-parameter ν from 0.1 to the νµ with the interval 0.01 and µ is fixed
to 0.03. The computational time is the average of 100 trials. Figure 4(b)
and (c) show the test error and the computational time. The vertical line is
an estimated value of νµ. The extension for parameter range corresponds to
the left side of the vertical line where the non-convex constraint ∥w∥2 = 1
worked. ER-SVM with ν < νµ can find classifiers which ROD or ramp-loss
SVM can not find. In Figure 4(b), ER-SVM achieved the minimum test
error with ν ≤ νµ. In Figure 4(c) it seems that the computational time does
not change so much though the non-convex constraint works in the left side
of the vertical line. Note that the computational time becomes large around
ν = 0.3. The optimal margin variable ρ is zero around ν = 0.3. It might
make the problem difficult and numerically unstable.

Figure 4(d) shows an example of the effectiveness of the non-convex
constraint ∥w∥2 = 1. When the number of the samples in each class is
imbalanced or the samples in two classes are largely overlapped as in Figure
4(d), C-SVM, ν-SVM, and ramp-loss SVM obtain trivial classifiers (w = 0)
while ER-SVM obtains a non-trivial classifier. That is, this figure implies
the effectiveness of the non-convex constraint ∥w∥2 = 1.

6.4 Efficient Update of tk

We show the effectiveness of the auto update rule of the constant tk as in
(18). We used the liver dataset. Figure 4(e) implies that our auto update
rule achieves much faster convergence than the fixed constant t = 0.1 or 0.5.
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6.5 Comparison of DCA and Heuristics

We compared the performance of the heuristic algorithm [20] for ER-SVM
and our new algorithm based on DCA. We ran the two algorithm on liver-
disorder data set and computed the difference of the objective values. Initial
values are selected from uniform random distribution on unit sphere and
the experiments were repeated 300 times. Since the hyper-parameter µ is
automatically selected in the heuristic algorithm, we set corresponding µ for
DCA. To compare the quality of the solutions obtained by each algorithm,
we counted how many times our algorithm (DCA) achieved smaller objective
values than the heuristics. We counted ‘win’, ‘lose’, ‘draw’ cases in 300 trials.
However it is difficult to judge whether a small difference in objective values
is caused by numerical error or the difference of local solutions. Hence, we
call ‘win’ (or ‘lose’) for the case where DCA achieves a smaller (or larger)
objective value than the heuristic algorithm by more than 3% difference.
Figure 4(f) shows the result. Our algorithm (DCA) tends to achieve ‘win’
or ‘draw’ in many cases. Some papers (e.g., [9, 11]) state that DCA tends
to converge to a global solution. This result may support the discussion.

7 Conclusions

We gave theoretical analysis to ER-SVM: we proved that ER-SVM is a
natural extension of ROD and discuss the condition under which such the
extension works. Furthermore, we proposed a new efficient algorithm which
has theoretically good properties. Numerical experiments showed that our
algorithm worked efficiently.

We might be able to speed up the proposed algorithm by solving the dual
of subproblems (19). The problem has the similar structure with the dual
SVM and Sequential Minimal Optimization (SMO) might be applicable to
the dual of subproblems.
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A Proof of Proposition 1

The objective function of ER-SVM (6) under the constraints can be equiv-
alently rewritten as

ζ +
1

(ν − µ)|I|
∑
i∈I

ηi[ri(w, b)− ζ]+

=
1

ν − µ

{
(ν − µ)ζ + 1

|I|
∑
i∈I

ηi[ri(w, b)− ζ]+
}

=
1

ν − µ

{
(ν − µ)ζ + 1

|I|
∑
i∈I

[ri(w, b)− ζ]+ −
1

|I|
∑
i∈I

(1− ηi)[ri(w, b)− ζ]+
}

=
1

ν − µ

{
νζ +

1

|I|
∑
i∈I

[ri(w, b)− ζ]+ −
1

|I|
∑
i∈I

(1− ηi){[ri(w, b)− ζ]+ + ζ}

}
.

The last equality is obtained by using a constraint,
∑

i∈I(1− ηi) = µ|I|, of
ER-SVM (6).

Now we show that the term in the last equation

1

|I|
∑
i∈I

(1− ηi){[ri(w, b)− ζ]+ + ζ}

can be written as 1
|I|

∑
i∈I(1−ηi)ri(w, b) by showing that ri(w

∗, b∗)−ζ∗ ≥ 0

holds for any i whenever 1 − η∗i > 0 at the optimal solution (w∗, b∗, ζ∗,η∗)
of (6). Here we assume that ri(w

∗, b∗), ∀i, are sorted into descending order;
r1(w

∗, b∗) ≥ r2(w∗, b∗) ≥ . . .. Then η∗ should be

η∗1 = . . . = η∗⌊µ|I|⌋ = 0, η∗⌊µ|I|⌋+1 > 0, η∗⌊µ|I|⌋+2 = . . . 1.

Note that ζ∗ must be an optimal solution of the problem:

min
ζ

ζ +
1

(ν − µ)|I|

|I|∑
i=⌊µ|I|⌋+1

η∗i [ri(w
∗, b∗)− ζ]+

s.t. ∥w∥2 = 1.

The problem is regarded as minimizing (1 − α)-CVaR, where α := ν−µ
1−µ

(> 0), for the truncated distribution with ⌊µ|I|⌋ samples removed. Theorem
1 ensures that

r⌊µ|I|⌋+1(w
∗, b∗) ≥ ζ+1−α(w

∗, b∗) ≥ ζ∗,

which implies that ri(w
∗, b∗)− ζ∗ ≥ 0 holds for the indices having ηi < 1.

Therefore, we can rewrite the objective function of ER-SVM (6) by

1

ν − µ

{
νζ +

1

|I|
∑
i∈I

[ri(w, b)− ζ]+ −
1

|I|
∑
i∈I

(1− ηi)ri(w, b)

}
. (23)
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By using (7) for the first two terms of (23) and using (8) for the last term,
we further rewrite (23) as

1

ν − µ
{νφ1−ν(w, b)− µφ1−µ(w, b)},

which is the objective function of (9). This implies that ER-SVM (6) is
described as the form of (9).

B KKT Conditions for ER-SVM, ROD, and Ramp-
Loss SVM

To define the KKT conditions, we show differentiable formulations of Case
C of ER-SVM (6), ROD (5), and Ramp-Loss SVM (4).
Continuous Ramp-Loss SVM:

min
w,b,η,ξ

1

2
∥w∥2 + C

∑
i∈I
{ηiξi + s(1− ηi)}

s.t. 0 ≤ ηi ≤ 1,
ξi ≥ 1 + ri(w, b), ξi ≥ 0

(24)

Continuous ROD:

min
w,b,η,ξ

1

2
∥w∥2 + C

∑
i∈I

ηiξi

s.t. 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|,

ξi ≥ 1 + ri(w, b), ξi ≥ 0

(25)

Continuous ER-SVM (limited to Case C in Table 2.2):

min
w,b,ρ,η,ξ

−ρ+ 1

(ν − µ)|I|
∑
i∈I

ηiξi

s.t. 0 ≤ ηi ≤ 1,
∑
i∈I

(1− ηi) = µ|I|

ξi ≥ ρ+ ri(w, b), ξi ≥ 0, ∥w∥2 ≤ 1

(26)

The KKT conditions of the above problems are defined as follows.
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KKT Conditions of (24) using (w, b,η, ξ;λ,α,β,γ):∑
i∈I

λiyi = 0, (27a)

γiξi = 0, (27b)

αi(ηi − 1) = 0, (27c)

βiηi = 0, (27d)

λi, αi, βi, γi,≥ 0, (27e)

0 ≤ ηi ≤ 1, (27f)

ξi ≥ 0, (27g)

λi{1− ξi + ri(w, b)} = 0, (28a)

−ri(w, b) ≥ 1− ξi, (28b)

w =
∑
i∈I

λiyixi, (28c)

Cηi − λi − γi = 0, (28d)

and

Cξi − Cs+ αi − βi = 0 (29)

KKT Conditions of (25) using (w, b,η, ξ;λ,α,β,γ, τ):
(27), (28),

Cξi − τ + αi − βi = 0, (30)

and ∑
i∈I

(1− ηi) = µ|I| (31)

KKT Conditions of (26) using (w, b, ρ,η, ξ;λ,α,β,γ, τ, δ):
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(27), (31), and

λi{ρ− ξi + ri(w, b)} = 0, (32a)

−ri(w, b) ≥ ρ− ξi, (32b)

2δw =
∑
i∈I

λiyixi, (32c)

ηi
|I|
− λi − γi = 0, (32d)

1

|I|
ξi − τ + αi − βi = 0, (32e)∑

i∈I
λi = ν − µ, (32f)

δ(∥w∥2 − 1) = 0, (32g)

δ ≥ 0 (32h)

B.1 Proof of Lemma 1

The difference between the KKT conditions of Ramp-Loss SVM (24) and
ROD (25) is only (29), (30), and (31).

Note that a KKT point (w∗, b∗,η∗) of Ramp-Loss SVM (24) satisfies the
KKT conditions of ROD (25) with µ = 1

|I|
∑

i∈I(1−η∗i ). On the other hand,

a KKT point of (25) whose Lagrange multiplier for
∑

i∈I(1 − ηi) = µ|I| is
τ∗ satisfies the KKT conditions of Ramp-Loss SVM (24) with s = τ∗

C .

B.2 Proof of Theorem 2

We will show the first statement. Let (w∗, b∗,η∗, ξ∗) be a KKT point of
(25) with hyper-parameter C and Lagrange multipliers (λ∗,α∗,β∗,γ∗, τ∗).

Supposew∗ ̸= 0. Then ( w∗

∥w∗∥ ,
b∗

∥w∗∥ ,η
∗,

ξ∗

∥w∗∥ , ρ
∗ = 1

∥w∗∥) is a KKT point of

(26) with Lagrange multipliers 1
C|I|(λ

∗, α∗

∥w∗∥ ,
β∗

∥w∗∥ ,γ
∗, τ∗

∥w∗∥) and δ =
∥w∗∥
2C|I| .

We will show the second statement. Let (w∗, b∗,η∗, ξ∗, ρ∗) be a KKT
point of (26) with Lagrange multipliers (λ∗,α∗,β∗,γ∗, τ∗, δ∗). Suppose ρ∗ ̸=
0. If δ∗ ̸= 0, (w

∗

ρ∗ ,
b∗

ρ∗ ,η
∗,
ξ∗

ρ∗ ) satisfies the KKT conditions of (25) with La-

grange multipliers 1
2δ∗ (

λ∗

ρ∗ ,α
∗,β∗,

γ∗

ρ∗ , τ
∗) and hyper-parameter C = 1

δ∗ρ∗|I| .

Now, we will prove δ∗ ̸= 0 using the assumption of non-zero optimal value.
Consider the following problem which fixes η of (26) to η∗:

min
w,b,ρ,ξ

−ρ+ 1

(ν − µ)|I|
∑
i∈I

η∗i ξi

s.t. ∥w∥2 ≤ 1,−ri(w, b) ≥ ρ− ξi, ξi ≥ 0.

(33)
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The KKT conditions of (33) are as follows.

2δw =
∑
i∈I

λiyixi,
∑
i∈I

λiyi = 0,
ηi
|I|
− λi − γi = 0,∑
i∈I

λi = ν − µ,

λi{ρ− ξi + ri(w, b)}, γiξi = 0, δ(∥w∥2 − 1) = 0,

δ, λi, γi,≥ 0,

−ri(w, b) ≥ ρ− ξi, ξi ≥ 0.

(w∗, b∗, ξ∗, ρ∗) is also a KKT point of (33) with the same Lagrange multipli-
ers (λ∗,γ∗, δ∗) as (26). Moreover, (w∗, b∗, ξ∗, ρ∗) is not only a KKT point
but also an optimal solution of (33) because (33) is a convex problem. Since
the objective function of the dual problem of (33) is −δ(∥w∥2+1), δ∗ = 0 if
and only if the objective value is zero. Then, we can see that δ∗ ̸= 0 under
the assumption of non-zero objective value.

C Proof of Theorem 3

Consider the dual problems of ν-SVM and C-SVM:

min
λ

1

2

∥∥∥∥∥∑
i∈I

λiyixi

∥∥∥∥∥
2

s.t. 0 ≤ λi ≤
1

|I|
,
∑
i∈I

yiλi = 0,
∑
i∈I

λi = ν,

(Dν)

min
λ

1

2

∥∥∥∥∥∑
i∈I

λiyixi

∥∥∥∥∥
2

−
∑
i∈I

λi

s.t. 0 ≤ λi ≤
1

|I|
,
∑
i∈I

yiλi = 0.

(D′
C)

Let us describe the optimal λ of (Dν) and (D′
C) as λ

(ν) and λ(C) respectively.

Note that the optimal w of (Dν) and (D′
C) are represented as

∑
i∈I λ

(ν)
i yixi

and
∑

i∈I λ
(C)
i yixi, respectively, with the use of the KKT conditions of ν-

SVM and C-SVM. Then w = 0 if and only if
∑

i∈I λiyixi = 0 for the
optimal solutions of (Dν) and (D′

C).
When 0 < |I−| ≤ |I+|, ν = 2|I−|/|I|. Then RCH−(ν) =

∑
i∈I−

1
|I−|xi

holds. Here, we will show the following statements for a training set are
equivalent.

(c1) a training set {xi, yi}i∈I satisfies RCH−(ν) ∈ RCH+(ν),

(c2) (Dν) has an optimal solution such that
∑

i∈I λiyixi = 0 for all ν ∈
(ν, ν],
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(c3) (D′
C) has an optimal solution such that

∑
i∈I λiyixi = 0 for all C ∈

(0,∞)

(c2) and (c3) imply that ν-SVM and C-SVM obtain a trivial solution such
that w =

∑
i∈I λiyixi = 0 for any hyper-parameter value.

The equivalence of (c1) and (c2) is shown by the geometric interpretation
of ν-SVM. From the result of [7], (Dν) is described as

min
x+∈RCH+(ν), x−∈RCH−(ν)

∥x+ − x−∥2. (34)

By appropriate scaling: λ̃i = 2λi/ν, (Dν) and (34) has the same set of
optimal solutions. We denote the optimal solution of (34) as x∗

+ and x∗
−. x

∗
±

is represented, using the optimal λ̃∗, as x∗
± =

∑
i∈I± λ̃

∗
ixi. Then x∗

+ = x∗
−

if and only if
∑

i∈I λ̃
∗
i yixi = 0.

(c1)⇒ (c2): If a training set {xi, yi}i∈I satisfiesRCH−(ν) ∈ RCH+(ν),
then RCH+(ν) ∩RCH−(ν) ̸= ∅ for all ν ∈ (ν, ν]. Therefore, (c2) holds.

(c2)⇒ (c1): If (Dν) has an optimal solution λ(ν) such that
∑

i∈I λ
(ν)
i yixi =

0 for all ν ∈ (ν, ν], then x∗
+−x∗

− = 0 for all ν ∈ (ν, ν]. That is, RCH+(ν)∩
RCH−(ν) ̸= ∅ for all ν ∈ (ν, ν]. Therefore, (c1) holds.

The equivalence of (c2) and (c3) is shown using the result of [4].
(c2) ⇒ (c3): We show it using contraposition. Suppose the optimal

solution λ(C) of (D′
C) satisfy

∑
i∈I λ

(C)
i yixi ̸= 0 with some hyper parameter

C ∈ (0,∞). Then, 0 <
∑

i∈I λ
(C)
i since the optimal value of (Dν) is zero

or negative. From [4, Theorem 3], λ(C) is also an optimal solution of (Dν)

with ν =
∑

i∈I λ
(C)
i .

(c3) ⇒ (c2): We show it using contraposition. Suppose the optimal

solution λ(ν) of (Dν) satisfy
∑

i∈I λ
(ν)
i yixi ̸= 0 with some hyper parameter

ν ∈ (0, 1]. Then the optimal value of (Dν) is positive. From [4, Theorem 4],
(Dν)’s optimal solution set is the same as that of at least one (D′

C) if the
optimal value of (Dν) is positive.
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