TECHNICAL REPORTS

Four Types of Learning Curves

Shun-ichi Amari, Naotake Fujita and Shigeru Shinomoto

METR 91 - 04 May 1991

MATHEMATICAL ENGINEERING SECTION

DEPARTMENT OF MATHEMATICAL ENGINEERING AND INSTRUMENTATION PHYSICS

FACULTY OF ENGINEERING, UMIVERSITY OF TOKYD
BUNKYO-KU, TOKYD, JAPAN




Four Types of Learning Curves

Shun-ichi Amari
Naotake Fujita
Department of Mathematical Engineering and Information Physics
Univaersity of Tokyo, Tokyo 113, Japan
Shigeru Shinomoto
Department of Physics
Kyoto University, Kyoto 606, Japan

Abstract

In learning from examples, the generalization error ¢(f) is the average
probability that an incorrect decision is made by a machine trained by ¢ examples.
The generalization error decreases as ! increases, and the curve (¢} is called a
learning curve. The present paper uses the Bayesian approach to show that,
under the random phase approximation (annealed approximation), learning
curves are classified into four asymptotic types depending on situations, When a
machine is deterministic with noiseless teacher signais, 1) ¢ ~ at-1 when the
correct machine parameter is unique in the parameter space, and 2) € ~ at-2 when
the set of the correct parameters has a finite measure. When teacher signals are
noisy, 3} € ~ ai-}2 for a deterministic machine, and 4) ¢ ~ ¢+ai-1 for a stochastic
mgchine,

1. Introduction

A number of approaches have so far been proposed for machine learning., A
classical example is the perceptron algorithm proposed by Rosenblatt [1961], in
which the convergence theorem was given., A general theory of parametrie
learning was proposed by Amari [1967], Rumelhart, Hinton and Williams [1986],
White [1990], ete., based on the stochastic gradient descent algorithm, See, for
example, Amari [1990] for this type of mathematical theories of neurocomputing,

A new framework of PAC learning was proposed by Valiant [1984), where
he took both the computational complexity and stochastic evaluation of
performance into account. The theory is successfully applied to neural networks
by Baurn and Haussler [1989], where the VC dimension of a dichotomy class plays
an important role. However, the framework is too tight, and Haussler,
Littlestone and Warmuth {1988] studied general convergence rate of 2 learning
curve by removing the algorithmic complexity constraint, while Baum [1990]
tried to remove the worst case constraint on the probability distribution.

A different approach is taken by Levin, Tishby and Solla [1990), where the
statistical mechanical approach is unified with the Bayesian approach. See also



Schwartz, Samalkam, Solla and Denker {1990], Here, a generalization error is
defined by the probability, that a machine which has been trained by t examples
misclassify a novel example. The statistical average of the generalization error
¢(t) is formulated under the Bayes formula. This theory can also be appreciated as
a straightforward application of the predictive minimum description length
method proposed by Rissanen [1986). However, it is in general difficult to
calculate the generalization error, and the “annealed approximation” is
suggested (Levin, Tishby and Solla {19901).

In the present paper, we discuss the generalization error along the line of
the latter framework. It is not necessary, however, to use the statistical-
mechanical framework nor to assume the Gibbs type probability distributions,
Under the annealed or the random phase approximation, we obtatined four types
of scaling, showing how &(t) decreases with ¢. The scaling does not depend on a
- specific structure of the target function, nor a specific architecture of the machine.
They are universal in this sense. The scaling of a learning curve depends on
underlying circumstances such as whether learning is noisy or noiseless, the
behavior of a machine is deterministic or stochastic, and the correct machine
parameter is unique or not. '

2. Main Results

The problem is stated as follows. Let us consider a dichotomy of an n-

dimensional Euclidean space Rn,
R“=D+UD_. D+ﬂD_= é.

where x€D ; is called a positive example and x€D. a negative example. A target
signal y accompanies each x, where y=1 for a positive example and y= -1 for a
negative example. Given ¢ randomly chosen examples xi, x2, =, X:
independently drawn from a probability distribution p(x) together with
corresponding target signals y1, ***, y:, a learning machine is required to guess the
underlying dichotomy. A guessed dichotomy is evaluated by the generalization
error probability ¢(¢) that the next example x;+1 produced by the same
probability distribution is misclassified by the guessed dichotomy. We evaluate
the average generalization error under the so-called annealed approximation,
and give universal theorems on the convergence rate of ¢(2) as ¢ tends to infinity.

More specifically, a machine considered here is specified by a set of
continuous parameters w=(w1, ', wn)€Rm and it calculates a function flx, w).
The funetion fix, w) specifies a dichotomy by

D = {x| Ax, w)>0},

D_={x| fix, w}<0},

when the output of a machine is uniquely determined by fix, w). A machine is
said to be deterministic in this case. When the cutput is not deterministic but its



probability is specified by a function of f{x, w), it is said to be stochastic. A neural
network with modifiable synaptic weights gives a typical example of such a set of
functions. For example, a layered feedforward neural network calculates a
dichotomy function f{x, w), where w is a vector summarizing all the modifiable
synaptic connection weights, The target teacher signal y is said to be noiseless
when y is given by the sign of fix, wo), while it is said to be noisy when y is
stochastically produced depending on the value flx, wo), irrespective that the
machine itself is deterministic or stochastic.

The following is the main results on the scaling of learning curves under the
Bayesian framework and the annealed approximation.

Case 1. The average generalization error scalesas
m
&) ~ i
when a machine is deterministic, the teacher signal is noiseless, and the machine

giving correct classification is uniquely specified by the m-dimensional true
parameter wy.

Case 2, The average generalization error scales as
c
) ~ :_2 .
when a machine is deterministic, the teacher signal is noiseless, and the set of
correct classifiers has a finite measure in the parameter space.

Case 3. The average generalization error scales as

¢
c(t)'--v'-t-.

when a machine is deterministic with a unique correct machine, but the teacher
signal is noisy.

Case 4. The average generalization error scales as
4
o~ cD+ T +

when a machine is stochastic.

3. The average generalization error

We review here the Bayesian framework of learning along the line of Levin,
Tishby and Seolla [1990}. However, it is not necessary to use the statistical-
mechanical framework nor to assume the Gibbs type distribution.

Let p(y|x, w) be the probability that a machine specified by w generates
output y when x is input. Itis given by a monotone function
ply=1|x, w)=k[fx, w)], 0S k(H=1
of fin the stochastic case. In the deterministic case,,
plyix, w)=8{yflx, w),
where #(z)=1 when >0 and 0 otherwise, Let g(w) be a prior distribution of



parameter w. Then, the joint probability density that the parameter w is chosen
and ¢ examples of input-output pairs

£0=((x,, ¥, (X 3., (%, 9]
are generated by the machine is

t
P, &M =qw) [] porfx, wipx)).
i=1
By using the Bayes formula, the posterior probability density of w is given by
P(w, &%)

Qwl¢) = e,
zEN [ ptx)

where

4
2@ = J q{w) l_l p(y‘.]xi, w)dw
i=1
is the probability measure of w’s generating (y1, ***, y;) when inputs (x1, -, X/ are
chosen.

In the deterministic case, the probability
B
2= I qw) [ | 8y fix,, widw

i=1
is the measure of such w that are compatible with ¢ examples &8, that is those w
satisfying yflxi;, w)> 0, i=1, -, . Therefore, smaller this is, easier to guess the
true w. In the stochastic case, the probability Z(¢(®) can also be used as a measure
of identifiability of the true w.

The generalization error ¢* based on t examples £® is defined, in the
deterministic case, by the probability that a machine with a randomly chosen w
that classifies : examples &8 correctly fails to classify a new example x;+1. This
is given by
zt'l-l

z.!

This quantity is also considered to show the generalization error in the stochastic
case, because

&§=Probly,,  fx, . w}<0|y, flz, w)>0,i=1, . § = 1~

z

i+1

Z =Pro l:"b'ul T
¢

is the predictive probability of y;+1 given X;4+1 under the condition that ¢
examples £{¢) are observed.

The average generalization error «(t) is the average of * over all the
possible examles ¢4 and a new pair (y;+1, X¢4-1)

L]
(= <g >= 1~ <ZH_1IZ‘>

< > denoting the expectation with respect to £§¢+D=¢@ , (y; 11, X¢+1). This
quantity is closely related to the stochastic complexity ¢ introduced by Rissanen
[1986],

€= = <[n(l—¢)]> = <InZ > - <InZ, >



The actual evaluation of the quantity such as <Z;+1/Z;> and <InZ.> is
generally a very hard problem and has been obtained only for a few model
systems (see for instance, Hansel and Sompolinsky [1990], Sompolinsky, Seung
and Tishby {1990]. We show some examples later). In order fo obtain a rough

estimate of (2} or ¢,£, we introduce such approzimations as,

cszz‘:» —-<Z‘+1>1<Z‘>,and <1nz=:» ~1n{Z‘>,

called the “annealed average” (Levin, Tishby and Soila [1990], see also Schwartz,
Samalam, Solla and Denker [1990)). The approximations are valid if Z; does not
depend sensitively on most probable (xy, -, Xp). For this reason, we call it the
random phase approximation. Validity of the approximation is still open. We
will return this point in the final section. It is easy to show that the average
generalization error «(t) and the stochastic complexity ;¢ are closely related in
the asymptotic limit ¢ — , and under the approximation,
elt) ~ e': :

provided e(t)—0. Thus the remaining work is based on the evaluation of the
average phase volume <Z;>.

4. Case 1: A unique correct deterministic machine with noiseless teacher

The expectation <Z;> is calculated for a deterministic machine as follows.
Let s(w) be the probability that a machine with w classifies a randomly chosen x
as the true classifier with wq does,
s(w) = Prob{fx, w)- flx, w0)>0}.

Then, since y; is the signum of Ax;, wg),
<Z>= Pmb{yif(xi, w)>0, i=1,, 4

= J q(w)Pmb{y'.ﬂxi, w)>0, i=1,, t| widw

= f qiw)s(w)idw,

because Ax;, w)fAx; wo)>0, i=1, -, ¢, are conditionally independent when w is
fized.

When w is slightly deviated from the true wg in a unit direction e, |e|=1,
w=w, +re,
the regions D+ (w) and D_(w) are slightly deviated from the true D +(wq) and D.
(wg). The classifier with w misclassifies those examples that belong to AD,
which is the difference between D4 (w) and D4 (wg) or equivalently between D.
(w) and D.(wg). Therefore, we have

swi=1- f pixidx.
aAD

We assume that the directional derivative



1
ale)=lim — J pixidx
=07 S AD
exists and is strictly positive for any direction e. This holds when the probability

of x belonging to AD caused by a small change Aw in w isin proportion to {Aw].

We use a method similar to the saddle point approxiamtion to calculate
<Zy>,

<Z>= J g(wi{stw)} dw

1
= Jexp{t[logs(w) + ?log glwilldw.

By expanding
log stw) = —ale)r+0(-.
and neglecting smaller order terms when g(w) is regular, when ¢ is large,
<Z>= [ exp {~ta(e)ridw.
Since the volume element dw is written as
dw = r™ldrdQ,
where d(2 ig angular volume element,

<Z >= [ exp{- ta(e)rr™ = drds

_ C
=
where
1
C={m-=1)} J aa
{ale))™
is a constant. From this, we have
Z
t+1 i m
£ = 1=-<x Z = I_,

proving

Theorem 1. When wg is unique, under a noiseless teacher and the
annealed approximation, the generalization error rate of a deterministic machine
decreases according to the universal formula

mn
t)y= e
where m is the dimension number of w.
Remark : We have assumed in deriving the above result that the existence of non-
zero directional drivative a(e) and a regular prior distribution g{w) as regularity

conditions. They hold in usual situations. However, it is possible to extend our
resuilt in more general cases.



When the set {w} of the correct classifiers forms an k-dimensional

submanifold, we have
{z‘:, « t-(m-i},
so that
m—k
elf) ~ -
In the case where the probability distribution p(x) is densely concentrated or
sparsely distributed in the neighborhood of the boundary of D+ and D., we have
the following expansion
sw)~1—~ale)r" a>0.

The result in this case is

() ~ ':_:a

so that the 1/t law still holds.

5. Case 2 : Deterministic case with noiseless teacher, where a finite measure of
correct classifiers exist.

In this case, s(w)=1 for w€ 8y, where S is the set of correct classifiers. We
assume as a regularity condition that Sg is a connected region having piecewise
smooth boundary, Moreover, we assume that, when

wSw + re .
where w,, is the value of w at position « on 85y and e,, is the unit normal vector at
w, s{w) can be expanded as

1, w€Sp
s{w) = ’
1-alwir+ 002, w=w_+re,.
The calculation of <Z;> proceeds in this case as
<Z> = f giwstw)'dw

= J glw)dw+ I Jq(w) exp {—talw)ridrdw
8
0

c
=P0+ -f-'

where Py is the measure of Sg and

C= J q(w}de.
s, ol

From this follows
c (o4
i) =1 —(P0+ m}f (P0+ -")



where

Theorem 2. When Sg has a finite measure, Pg > 0, the convergence rate
(1) of a deterministic machine scales as

B
e(t) ~ ;'2',
where B is a constant depending on Pg and the function fix, w).

Note that when Sp tends to a point wg, Pp tends to 0. This implies that B
tends to infinity, where the scaling changes as is shown in Theorem 1.

Remark : The above result is obtained from the annealed approximation of
<Z¢+1/ Zi>. The above error probability «(t) is, roughly speaking, based on the
following learning scheme : Given ¢ examples £, choose one machine each time
randomly which classifies the examples correctly. However, the scaling is
exponential,
e{t) ~ exp{—ct},

under the following scheme : Let a machine be randomly chosen such that it
classifies £¥ correctly. Keep it when it classifies the (f+ 1)st example, otherwise
choose one randomly such that it classifies the ¢+ 1 examples £¢*1) correctly.

6.Case3: A deterministic machine with noisy teacher

This section treats the case where the true classifier is unique and is
deterministic machine with parameter wq but teacher signals include stochastic
error. The following is a typical example: The correct answer is 1 when fix,
wo)>0 and - 1 when f{x, wq) <0, but the teacher signal y is 1 with probability
k(f(x, wp)) and is -1 with probabiality 1 - k(f). A typical funcation k is given by

1
T+ expi{-gu}’
where 1/3 is the so-called “temperature”.

klu) =

In this case, we cannot usually find any w consistent with f examples £
when tis large. We use instead a stochastic estimation W; from ¢ examples.

It is well known that the covariance matriz of the maximum likelihood
estimator W, is asymptotically given by
1 __
E‘[(w‘-wo)(w‘—wu)'h?(? 1

where G is the Fisher information matrix., The Fisher information matrix is



explicitly given by
_ a2 PR AL N
G=3 Jk(l B)—(—p{x)dx,

where k= k(f), f=flx, w) (see Amari[1991]).

The expectation of the error probability is then given by
=1 — <s(w)>

SE

where

D= [a(e}(eG'le')dﬂ.

Theorem 3. When teacher signals include errors, the error rate (¢} is
asymptotically given by '

{£) D
ey hy ot

Here, the error probability is evaluated under the noiseless performance.
When the temperature 5-1 tends to 0, the teacher becomes noiseless. It should be
noted that the Fisher information G tends to infinity in proportion to 82. Hence,
D tends to 0 in this limit, and the scaling changes ag is in Theorem 1.

7.Case4: Stochasticmachine

In the case of a stochastic machine, teacher signals are also stochastic, The
error probability (z) never tends to 0 in this case, but converges to o> 0.

We have

1
<Z>= J atwiplewip(ew ) dwae'®

[1e

= I exp {tlog s(w)} dw,
where
swi= J pUlx, wiplylx, wipGx)dxdy.
Since s(w) is smooth, we have the following expansior‘l at its maximum wy',
sw)~c—(w— w'D)K(w-— w'a)
with a constant c and a positive definite matrix X. Hence,

hiid
<z> ~ct I,



s0 that

<zt+lb _

<z2,> ‘o
Therem4. The generalization error scales as

a
+ =
t

a
= (3] gt ;
for a stochastic machine.
8. Discussions

We have thus obtained four typical asymptotic scaling laws of the
generalizaiton error ¢(t) under the random phase approximation. In order to see
the validity of the approximation, we calculate the exact ¢(t} of the following
simple example : Predicting a half space of R2, where signals x=(xi, x9) are
normally distributed with mean 0 and the identity covariance matrix, wis a
scalar having a uniform prior ¢(w) and

fix, w}:zl cosw +x, sirw,

It is not difficult to obtain the exact «(t}, and it scales asymptotically as
£(t)~2/3t, while the random phase approximation gives e(t}~1/t. This shows that
the approximation gives the same scaling order but a different factor. It is
interesting to see how the difference depends on the number m of parameters w.

Looking from the point of view of statistical inference, the deterministic
case and stochastic case are quite different. The estimator W, from ¢ examples is
usually subject to a normal distribution with a covariance matrix of order 1/t in
the stochastic cage. However, in the deterministic case, W; is usually not subject
to a normal distribution. The squared error usually shows a stronger
convergence, This is because the manifold of probability distributions has a
Riemannian structure in the stochastic case (Amari [1985}), while it has a
Finslerian structure in the deterministic case (Amari (1987)).

This suggests a difference of the validity of the random phase approximation
in the two cases. We believe that the random phase approximation is valid in the
stochastic case. This will be reported in another paper.
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