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Abstract

A learning curve shows how fast a learning machine improves its behavior
as the number of training examples increases. The present paper studies
universal asymptotic behaviors of learning curves for stochastie dichotomy
machines from the statistical point of view. The behavior of a trained machine is
evaluated by its entropic loss, that is, the negative of the logarithm of its
predictive distribution. It is important to study a difference in learing curves for
the generalization error and training error. The generalization entropic error is
the average loss when a machine trained with ¢ exé.mples classifies a new
examples, The training entropic errcr is the average loss when the trained
machine classifies the previous ¢ examples that have been used in the training
process. Itis proved that the generalization error converges to Hp, the entropy of
the conditional distribution of the true macﬁine, as Hg + m/(2t), while the
training error converges to Hp - m/(2#), where ¢ is the number of examples and m
is the number of modifiable parameters. This is a universal law because it holds
for any regular machines irrespective of their structure. It shows an important
relation between the training error and generalization error. The learning curves

are also given when the underlying statistical model is not faithful,



1. Introduction

It is an important subject of research of neural networks and machine
learning to study general characteristics of learning curves, which represent how
fast the behavior of a learning machine is improved by learning from examples.
This is an interdiseiplinary problem related to neural networks, machine

learning, algorithms, statistical inference, ete.

IThere has been a lot of research on learning algorithms in neural networks
based on the stochastic descent method (see, e.g., Rosenblatt [1961), Widrow
[1966], Amari {1967], Rumelhart, Hinton & Williams [1986], White [1989]).
Even in an old paper by Amari [1967], the asymptotic dynamic behavior of
learning curves was discussed, and the trade-off between the learning speed and
the accuracy was studied {see Heskes and XKappen [1991] for recent

developments).

A new framework of research was opened by Valiant [1984] in which the
learning performance was evaluated stochastically under computational
complexity constraints on algorithms, This approach was successfuily applied to
neural networks (Baum and Haussler [1989]). Haussler, Littlestone, and
Warmuth [1988] studied the convergence rate of general learning curves by
relaxing algorithmic constraints. Yamanishi [1990, 1991] among others
extended the framework to noisy or stochastic machines. Levin, Tishby and Solla
[1990] presented a Bayesian statistical-physical approach to study learning
curves, where behaviors of generalization errors, predictive-entropic errors, and
stochastic complexity of Rissanen [1986) were discussed. There are also a number
of statistical-mechanical research on this problem (see, for example, Hansel and
Sompolinsky [1990], Gyorgi and Tishby [1990], Seung, Sompolinsky and Tishby
[1991], Opper and Haussler [1991]). The statistical-mechanical method can give



some deep theory for specific models, in which the replica method is typically used
in the “thermodynamical limit” situation, implying that both the number m of
the parameters of a machine and the number ¢ of training examples tend to

infinity with its ratio s =¢/m being fixed.

Amari, Fyjita and Shinomoto [1992] studied several types of universal
properties of learning curves for dichotomy machines from a different point of
view. However, the so-called annealed appmﬁmaﬁon is used so that the results
are not necessary exact, and the discussions are mostly concentrated on
deterministic machines but not on stochastic machines, The present paper uses
the statistical approach to elucidate the universal property of learning curves for
generalization error and training error. We consider a stochastic machine

. parametrized by a vector parameter w, which when an input x is given, emits a
binary output y with probability p(y[x, w). Given ¢ examples &={(, x1), ", (3,
xp)}, where x; is randomly generated from a fized probability distribution p(x) and
yiis the corresponding output generated by the true machine with parameter wy,
the maximum likelihood estimator W, is calculated as a candidate machine whose
behavior is given by the predictive distribution p(y|x, w) of the output y given x.
There are two different methods of evaluating the behavior of a machine : One is
the average rate of error that the candidate machine predicts an output different
from that of the true machine. The other loss is measured by the average
predictive entropy evaluated by - logp(y|x, W for an input-output pair (x, ),
which is zero if the prediction is 100% sure. We use this entropic loss to evaluate

the learning behavior of machine (see also Yamanishi [1991]),

The generalization error is the average entropic loss or the average
predictive entropy of a trained machine for a new example (ye41, Xe+1). It is
proved that the average predictive entropy for the generalization error converges
to the entropy Hg of the true machine asymptotically as

where () denotes the expectation and m is the number of parameters in w.



m
{e(t))gen=H0 + a;

This is in agreement with Yamanishi's result (Yamanishi (1991]). On the other
hand, the training error is the average entropic loss of the estimated machine for
the training examples (y;, x;), i=1, '--, ¢, which are used to estimate W, It is

proved that the training error converges to
{e(t)) H i
t . 4 - -—..
train 0 2

These results coincide with those obtained in Seung, Sompolinsky and Tishby
[1991] under the thermodynamical limit. Our statistical theory is universal in
the sense that the results are valid for any regular stochastic machines,

irrespective of the architecture of the machines or their sizes,

It is possible to obtain similar results when the true distribution is not
included in a statistical model, where the 1/ convergence is the same but its
coefficient is different. The precise coefficient is given in this ¢ase, Similar
learning curves are obtainable from the Bayesian point of view, where we use the
Bayesian predictive distribution or a randomly chosen one subject to the posterior

distribution (Gibbs learning algorithm in Opper and Haussler [1991]),

The results are the same for the Bayesian predictive distribution. The
Beltzmann learning algorithm gives

{e())gen=Ho + “?'

for the generalization error, and
{e(tHtrain=Hy

for the training error.



2. Statistical theory of stochastic machines

Let us consider a machine which receives an n-dimensional input signal
x€Rn and emits an binary output y=1 or -1. A machine is stochastic when y is
not a function of x but y takes on 1 and -1 subject to a probability p(y|x) specified

by x.

Let us consider a parametric family of machines where a machine is
specified by an m-dimensional parameter w&¢Rm such that the probability of

output y, given an input x, is specified by p(y[x, w).

A typical form of p(yx, w) is as follows: A machine first calculates a smooth

function Ax, w) and then specifies the probabilities by

ply=1]x, w) = k{fix, w)}, (2.1)

ply=-Ux, w) = 1-k{flx, w)},

where

(2.2)

1
k() = .
* 1+e-8f

When Ax, w)>>0, it is more likely that the output of the machine is y=1, and
when flx, w)<0, it is more likely that the output is y= -1. The parameter 1/ is
the so-called “temperature” parameter . When g=00, the machine is

deterministic, emitting y=1 when f{x, w)>>0 and y = -1 when f{ix, w) <0.

Let wq be the true machine which generates examples. More specifically,
let p(x} be a non-singular probability distribution of input signals x, and let x1,
X2, -**, X; be t randomly and independently chosen input signals subject to p(x).
The true machine generates answers y1, ", ¥: by using the probability

distribution p( y; | xi, wg),i=1, ", &



Let & be £ pairs of examples thus generated,

&e={(x1,y1), ", (x5, ¥y}, 2.3

from which we guess the true machine.

Let ¥; be the maximum likelihood estimator from £ observed data £;. Since

the probability of obtaining &¢ from a machine is

t _
pledwr= Tlp(xdpGilxi, w),

i=1

by taking the logarithm, the w; maximizes

4 .
logp(&dw)= 2_Kyilx;, w),

i=1
where
Hylx, w)y=logp(y{x, w). (2.4)
Hence, it satisfies
> Viyilxi, W) =0, 2.5)

where V is the gradient with respect to w,
d al
Vi=—1I-= ( -'—) .
aw aw;

3. Generalization error and training error in terms of predictive distribution

Given t examples &;, we estimate the true parameter W;. The behavior of the
estimated machine is given by the conditional probability p(y|x, W;). Given the
next example x;41 randomly chosen subject to p(x), the next output ye+1 is
predicted with the probability p(y¢+1]x¢4 1, W¢). The best prediction in the sense
of the minimum expected error is that the predicted output y*;+ 1 is 1 when

pAxe11, W) >p(-1ixe 41, Wi,



and is -1 otherwise. The prediction error is given by ut=0.5|y:+1 - ¥*++1]. Thisis

a random variable depending on the ¢ training examples ¢ and x4 1.

Its expectation {(us)gen With respect to & and x¢4+1 is called the
generalization error, because it denotes the average error when the machine

trained by t examples predicts the output of a new example.

On the other hand, the training error is evaluated by the average of u; (i=1,
-+, ) which are the errors when the machine with ¢ predicts the past outputs y;
for the past training inputs x;, retrospectively, by using the distribution p(y|x;,
W),

1
(wdtwain= < Tou) .

These error never converge to 0 when a machine is stochastic, because even
when W; converges to the true parameter wg the machine cannot be free from

stochastic errors,

The prediction error can be measured by the logarithm of the predictive
probability for the new input output pair (y:4 1, X¢+1),
()= - logp(ye+1[xe+ 1, W) @.1)
This is called the entropic loss, log loss or stochastic complexity (Rissanen [1986],
Yamanishi [1991]). The generalization entropic error is its expectation over the
randomly generated training examples &, X;+1 and yt 41,
{e(Ogen={ -logp(ye+1[X¢+ 1, We)). (3.2)

Since the expectation of -logp(y[x) is the conditional entropy,
H(Y[0 =Bl logpylx)= -/ T plyix)logay|x)dx,
y

the generalization entropic loss is the expectation of the conditional entropy



H(Y|X; %) over the estimator W, The entropic error of the true machine,
specified by wo, is given by the conditional entropy,

Ho=H(Y|X; wo)=E[ -logp(y|x, wg)). 3.3)
Similarly, the training entropic error is the average of the entropic loss over

the past examples (y;, X;) that are used for obtaining W,

1.¢
(e(train= - _tz(log' plyilxi, %), (3.4)
i=1

Obviously, the training error is smaller than the generalization error. It is
interesting to know the difference between the two errors. The present paper
studies the universal behaviors of the training and generalization entropic errors

from the statistical point of view.

Universal Convergence Theorem for Training and Generalization Errors.

The asymptotic learning curve is given by

(e{train=Ho - -2"—; (3.5)

for the entropic training error, and by

<e(t))gen=H0+ QEt (3.6)

for the entropic generalization error, where m is the number of parametersin w.

The result of 1/t convergence is in good agreement with the results obtained
by the statistical-mechanical approach (e.g., Seung, Sompolinsky and Tishby
[1991).) It is possible to compare our result with Yamanishi [1991], where the
cumulative log loss
isused. Here w; is the maximum likelihood estimator based on the i ohservations

;. From (3. 6), we easily have



1 t
(e(eum= '{Z { -logp(yilxi, W)

mlogt

{e(theum =Ho + ot +

in agreement with Yamanishi [1991], because of

= logt+ o(logt).

=

1
:

The proof uses the following fundamental lemma in statistics.

Lemma. The maximum likelihood estimator v, based on ¢ observations &,
is asymptotically normally distributed with mean wq and covariance matrix

(t&@) -1,

~ N(wy, %G-l), 3.7)

where wq is the true parameter and G=(g;) is the Fisher information matrix

defined by
8 a
gij=E[—logp(y|x, wy—logp(y}x, w)] (3.8)
aw; dw;
where E denotes the expectation with respect to the distribution p(x)p(y[x, w).

When the probability distribution is of the form (2. 1), the Fisher

information matriz can be calculated to be

af of
gi=p2f Zk(l B p(xdx, 3.9)
w; aWJ
(see Amari [1991]). This shows that G diverges to & as the temperature tends to

0, the estimsator W, becoming more and more accurate,

Proof of the theorem. In order to calculate



{e{t)gen= -Ellogp(y|x, W4,
we expand
iyix, Wiy=logplylx, W)

at wy,
I(}'lx, \i";) = I(ylxv “’G) + VI(YIX, WU)(\i’r - WO)

1
+ E (g - WQ)TVVI(_’V‘X, wglw - wg)+ -

where Vi is the gradient with respect to w, VVI=(32] / dw;dw;) is the Hessian
matrix and the superscript T denotes the transposition of a column vector. By

taking the expectation with respect to the new input-cutput pair (y, X), we have

E[i(y|x, wo}]= - Hy, (3.10)
ElVi(y]x, wo)l =0, (3. 11)
E[VViy|x, wp)l= - G, (3.12)

because of the identity

- E[VVyix, wo)]=E[VI(VDT).

Taking the expectation with respect to W, we have
El¥ . wpl=0(1/12),

1
E[(w,. woX Wy wp)T] =;G 1+ 0(1/12),

or

El(%,. wo)TG(W, . wo)] =? +O(U),
Therefore, we have (3. 6).

We next evaluate the training error. To this end, expanding i(yj|x;, W), we

have

Wyilxi, Wo = lyijxi, wa) + Vilyi|xi, wo)(¥, . wo)

10



1
+E(¢3_W0)T(VVI)(¢V¢- wg)+ -, (3.13)

We then expand

Vilyilx;, W{])_= Viyilxi, W) - (W Wu)TVVI(y;']x;‘, wpl+ -,

and substituting this in (3. 13), and then summing over i, we have

Z“y ]x,, W= ZI(ysIX:.WoJ ]Z(wf WO)TVVI(.)’slxn wp(W; . wq)
i=1
because W, satisfies
t
Y Vilyixi, =0,
i=1
Since the x/’s are independently generated, then by the law of large numbers, we

have

1 ¢
? Z Iyilxi, wo) ~ - Ho.

On the other hand,

1 4
; Z YViyilxi, wo) ~ E[VVi(y|x, wo)]= -

Since (W, -wg)/Viis normally distributed with mean 0 and covariance matrix G-1,

(We. wo)TG(W; . wo)
can be expressed as a sum of squares of m independent normal random variables
with mean 0 and variance 1, implying that it is subject to the y2-distribution of

degree m. Therefore, we have

11



t

1 1
- Zlogp(yslx:,\iwth-—xz , (3. 14)
ti=1 2t"m

where y2, is a random variable subject to the y2-distribution of degree m. Since

its expectation is m,

{e(t) =H, Z
e\t train =440 - 2t.

4. Learning curves for unfaithful model

It has so far been assumed that there exists wq such that the true
dstribution p(y}x) is written as
pOI%) =pGIx, wo. (4.1)
This implies that the model M = {p(yjx, w)} of the distribution parameterized by w
is faithful. When the true distribution is not in M, that is, there exists no wy

satisfying (4. 1), the model M is said to be unfaithful.

We can obtain learning curves in the case of unfaithful models, in a quite
similar manner as in the faithful case. Let p(y|x, w*p} be the best approximation
of the true distribution p(y|x) in the sense that w*; minimizes the Kullback-

Leibler divergence

plx)

Dip(yix), plyix, w)]= Ellog———],
P(J’lx: w)

where the expectation E is taken with respect to the true distribution p(x)p(y|x).

We define the following quantities,

H*g=E{ -logp(y|x, w*p)], 4.2)
G* = E[{Vilylx, w*o){VI(yx, w*o)}7], (4.3)
K*= -E[VVi(ylx, w*o)l. (4.4)

In the faithful case, w*g=wy, H*g=Hy, and G*=K*=G is the Fisher

information matrix. However,

12



G*=K*

does not in general hold in the unfaithful case.

Universal Convergence Theorem for Learning Curves (Unfaithful

Case).

The asymptotic learning curve is given by

m*
{e(tMrain=H*o - o (4.5)

for the entropic training error, and by

m*
(e(t»gen:H*O"‘ ?t (4. 6)

for the entropic generalization error, where
m* =tr(X*-1G¥)

is the trace of K*-1 G*,
The proof uses the follwoing lemma.

Lemma. The maximum likelihood estimator w; under an unfaithful model
is asymptotically normally distributed with mean w*o and covariance matrix

t1H*1GH*1,
1
Wi N(wo, — K*1GHE*1) 4.7

The proof of the theorem is almost parallel to the faithful case, if we replace

wy by w*lo and taking account that K*# G*.

5. Bayesian approach

13



The Bayesian approach uses a prior distribution g{w), and then calculates
the posterior probability distribution Q(w}é; based on t observations (training
examples). The predictive distribution based on ¢;is defined by

pUx; &)= f plylx, wIQ(wlé)dw. (5.1)

One idea is to use this predictive distribution for predicting the output. Another
idea is to choose one candidate parameter w*; from the posterior distribution
Q(w|¢y) and to use p(y|x; w*y for predicting the output. This is called the Gibbs
algorithm (Opper and Haussler [1991)).

The entropic generalization loss is evaluated by the expectation of - logp(y|x;
&p) for a new example (y, x) or of -logp(y|x; w*;), while the entropic training loss is
‘given by

1 1t
-7 2 logp(yilx;, &) or " > logp(yilx;, w*y.
i=1 i=1

We first study the case of using the predictive distribution p(y|x; £;). By putting

¢
Zy gy =[ a(w) [1e(yix:, widw, (5.2)

i=1
the predictive distribution is written as
Pt 1|Xer1,60=2¢41/ 24 (5.3)
(Amari, Fujita and Shinomoto [1992], see also the statistical-mechanical
approach, for example, Levin, Tishby and Solla {1990], Seung, Tishby and
Sompolinsky [1991], Opper and Haussler [1991]). Therefore,

(e(t))gen=<logzt) -{logZs+1). (5.4)
By using the maximum likelihood estimator, we have

4
P(WiEd ~ g(WI |G\ Zexp( - {w - WG(w - ol (5.5)

14



and

t

Z; ~ t-mi2G|'2 [T p(yifxi, W) (5.6)
i=1
or
logZe ~ - Ho- —1 11 L m 5.7
ogZ;~-Hop- 5 ogt-2 og[Gl+2tx2. (5.7)

From this we have

Theorem3d. The learniang curves for the Bayesian predictive

distribution are the same as those for the maximum likelihood estimation.
We can perform similar calculations in the cage of the Gibbs
algorithm.

Theoremd4.  The learning curves for the Gibbs algorithm is
{e{))train=Hp (5. 8)

for the training error and

{e())gen=Ho+ ? (5.9)
for the generalization error.
Conclusions

We have presented a statistical theory of learning curves. The
characteristies of learning curves for stochastic machines can easily be analyzed
by the ordinary asymptotie method of statistics, We have shown the universal 1/¢
convergence rule under the faithful and unfaithful statistical models. The
difference between the training error and the generalization erroris also given in

detail. These results are in terms of the entropic loss, which fits very well with

15



the maximum likelihood estimator. The present theory is closely related with the

AIC approach (Akaike [1974]) and the MDL approach (Rissanen [1986]).

Our statistical method cannot be applied to deterministic machines, because
the statistical model is non-regular in this case, where the Fisher information

diverges to infinity. However, we can prove
(e(”)gen=

for the entropic loss without using the annealed approximation. But this does not

hold for the expected error u,.
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