
An Analysis of Dinkelbach's Algorithm

for

0-1 Fractional Programming Problems

Tomomi MATSUI * Yasufumi SARUWATARI y Maiko SHIGENO z

(METR92-14, December 1992 )

* Department of Mathematical Engineering and Information Physics

Faculty of Engineering, University of Tokyo

Bunkyo-ku, Tokyo 113, Japan

yDepartment of Social Sciences
The National Defense Academy

Hashirimizu, Yokosuka, Kanagawa 239, Japan

zDepartment of Management Science

Science University of Tokyo

Kagurazaka, Shinjuku-ku, Tokyo 162, Japan

Abstract: The 0-1 fractional programming problem minimizes the fractional ob-

jective function (c1x1 + c2x2 + � � �+ cnxn)=(d1x1 + d2x2 + � � �+ dnxn) = cx=dx un-

der the condition that x = (x1; � � � ; xn) 2 
 � f0; 1gn; where 
 is the set of

feasible solutions. For a fractional programming problem, Dinkelbach developed an

algorithm which obtains an optimal solution of the given problem by solving a se-

quence of subproblems Q(�), in which the linear objective function cx� �dx is

minimized under the same condition x 2 
: In this paper, we show that Dinkel-

bach's algorithm solves at most O(log(nM)) subproblems in the worst case, where

M = maxf max
i=1;2;���;n

jcij; max
i=1;2;���;n

jdij; 1g:

1



1 0-1 Fractional Programming Problems

The problem of maximizing or minimizing the ratio of two linear functions is called

a fractional programming problem and/or a hyperbolic programming problem. Fractional

programming problems are found in various �elds [22]. A frequent example which occurs

in economics is �nding the most favorable ratio of revenues and allocations subject to re-

strictions on the availability of goods. In addition, measures of e�ciency for a system are

represented as ratios such as pro�t/time, return/risk and cost/time. There are a lot of arti-

cles which dealing with analysis and algorithms for this class of problems [3, 5, 12, 20, 24].

There are several classes of fractional programming problems that have been studied ex-

tensively. Those are 0-1 fractional programming problems [1], which include minimal ratio

spanning tree problems [4], minimum ratio circuit problems [8, 6, 19], fractional knapsack

problems [15], and fractional cutting stock problems [10]. In this paper, we study 0-1 frac-

tional programming problems described below.

Let c = (c1; c2; � � � ; cn) and d = (d1; d2; � � � ; dn) be n-dimensional integer vectors. Then

a 0-1 fractional programming problem is formulated as:

FP: minimize

nX

i=1

cixi

nX

i=1

dixi

=
cx

dx
;

subject to x 2 
 � f0; 1gn;

where x denotes the column vector (x1; x2; � � � ; xn)T : The subset of 0 � 1 valued vectors


 is called feasible region, and when a 0 � 1 valued vector x is an element of 
;

we say x is a feasible solution. Throughout the paper, we assume that for any feasible

solution x; the value dx is positive. Here we denote C = maxf max
i=1;���;n

jcij; 1g and

D = maxf max
i=1;���;n

jdij; 1g: Then, it is clear that the optimal value of the problem is in the

interval [�nC; nC]:
For fractional programming problems, there are many algorithms which solve a sequence

of 0-1 integer programming problems with linear objective function described below.

Q(�): minimize cx� �dx

subject to x 2 
 � f0; 1gn:

2



Denote by z(�) the optimum objective value of Q(�). Let x
� be an optimal solution of

FP and let �� = (cx�)=(dx�) (i.e. the optimum objective value of FP). Then the followings

are well-known:

z(�) > 0 if and only if � < ��;

z(�) = 0 if and only if � = ��;

z(�) < 0 if and only if � > ��:

Furthermore, an optimal solution of Q(��) is also optimal to FP (cf. [7, 16, 17]). Thus

solving FP is essentially equivalent to �nding � = �� with z(�) = 0: For this purpose,

the function z(�) possesses good properties with respect to � : piece-wise linear, concave,

strictly decreasing, z(�nC) � 0; and z(nC) � 0: From the above properties, it is clear

that when we �x the parameter �; we can check whether the optimal value �� is greater

than, equivalent to or less than the current value of � by the optimal objective value of

Q(�).

There are some methods for generating a sequence of parameters converging to ��: One is

due to the ordinary binary search method [17, 21, 13]. In the case that the objective values of

two di�erent feasible solutions are not equivalent, then its di�erence is greater than or equal

to 1=(nD)2: It implies that when we apply the binary search method, the optimal value ��

can be obtained by solving the subproblem Q(�) at most O(log(
2nC

1=(nD)2
)) � O(log(nCD))

times.

In 1979, Megiddo [18] proposed an ingenious method to generate a sequence of param-

eters systematically. He showed that if the subproblem Q(�) is solvable within O(p(n))

comparisons and O(q(n)) additions, then FP is solvable in O(p(n)(q(n) + p(n))) time.

Another method is similar to the Newton method in theoretical sense and proposed by

Isbell and Marlow [14] and Dinkelbach [7] (and called also Dinkelbach's algorithm). This

algorithm was discussed in [17, 21, 11] (and possibly by others). A formal description of the

algorithm is given in the next section. Schaible [21] showed that for non-linear fractional

programming problems, the convergence rate of the binary search method is only linear,

however Dinkelbach's algorithm converges superlinearly. In addition, it is said that Dinkel-

bach's algorithm is e�cient and robust in practice (see [13, 23] for example). However, the

worst case time complexity of Dinkelbach's algorithm for 0-1 fractional programming prob-

3



lems is not shown. In this paper, we show that Dinkelbach's algorithm terminates after at

most O(log(nCD)) subproblems Q(�) are solved. Remark that this time complexity is

equivalent to that of ordinary binary search method. Our result implies that if there exists a

polynomial time algorithm for the subproblem Q(�), Dinkelbach's algorithm solves FP also

in polynomial time. In addition, even if the subproblem Q(�) is in the class NP-complete or

NP-hard, we can obtain an optimal solution to the original FP by solving the subproblem

polynomial times.

2 Description of Dinkelbach's Algorithm

It is essential to observe that the line

z = cx
0 � �dx0;

is tangent to the function z(�) at � = �0; where x
0 is an optimal solution of Q(�0).

Therefore, �dx0 is a subgradient of z(�) at �0: Also it is easy to see that the above line

crosses the �-axis at � = cx
0=dx0:

Now we describe Dinkelbach's algorithm for FP. Dinkelbach's algorithm generates a se-

quence of parameters converging to �� in the manner as shown by thin lines in Figure 1.

When the objective value of the subproblem Q(�) becomes 0, the algorithm terminates.

Dinkelbach's Algorithm

Step 1: Set � = �1 such that �� � �1 � nC:

Step 2: Solve Q(�) and obtain an optimal solution x:

Step 3: If z(�) = 0; then output x and stop. Else, set � = cx=dx and go to Step 2.

As initial �1; nC may be used, though better choices are often possible by exploiting

the structure of given problems.

3 Analysis of Dinkelbach's Algorithm

In this section, we assume that Dinkelbach's algorithm terminates at kth iteration. Then

we obtain a sequence of parameters (�1; �2; � � � ; �k) and a sequence of 0� 1 valued vectors

4



-

6

O

z

�

phhhhhhpaaaaap

Q
Q
Q
Q
Q
Qp

@
@
@
@
@p

S
Sp

A
A
A
A
A

@
@
@

A
A
A
A
A
A
A
A
A
A

r

r

r

r

r r r

r

r

r

r

r

�1 = nC�2�3���nC
��*

z(�)

Figure 1: Illustration of the sequence f�rg generated by Dinkelbach's algorithm.

(x1;x2; � � � ;xk): The concavity of z(�) implies the following inequalities:

dx
1 > dx

2 > � � � > dx
k�1 � dx

k > 0;

cx
1 + nCdx1 > cx

2 + nCdx2 > � � � > cx
k�1 + nCdxk�1 � cx

k + nCxk � 0:

Since the function z(�) is strictly decreasing, it is also easy to see that

z(�1) < z(�2) < � � � < z(�k) = 0 and �1 > �2 > � � � > �k:

Lemma 1 If 0 � z(�r) > �1=nD (2 � r � k); then z(�r) = 0:

Proof. Since �r = cx
r�1=dxr�1;

z(�r) = cx
r � �r

dx
r = cx

r � cx
r�1

dx
r

dxr�1
=
cx

r
dx

r�1 � cx
r�1

dx
r

dxr�1
:

Suppose that z(�r) < 0; Then cx
r
dx

r�1 � cx
r�1

dx
r � �1: Thus the inequalities

0 < dx
r�1 � nD imply that z(�r) � �1=nD: It is a contradiction.//

The above lemma comes from the integrality of the weight vectors c and d: The lemma

implies that if z(�r) > �1=nD; then z(�r) = 0 and thus the algorithm terminates at the

rth iteration.

Lemma 2 If 0 � cx
r + nCdxr < 1; then z(cxr=dxr) = 0:

5



-

6

O

z

�

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS

r

r

r

`r

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

r

r

`r+1

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

r

r

�r+1

6

?

�
�
�
�
�
�
�

jz(�r+1)j

�r
r

6

?

jz(�r)j

�nC

6
?

6

?cx
r+1 + nCdxr+1

cx
r + nCdxr

r

P

M

Q

R

r

P 0

M 0

Q0

R0

Figure 2: Illustration of Case (i) of the proof of Lemma 3.

Proof. Since the value cx
r + nCdxr is integer, if 0 � cx

r + nCdxr < 1; then

cx
r +nCdxr = 0 and cx

r=dxr = �nC: From the fact that the optimal value �� � �nC;
x

r is an optimal solution to FP and �� = cx
r=dxr = �nC: Then it is clear that

z(cxr=dxr) = z(��) = 0: //

The above lemma shows that if the value cx
r + nCdxr < 1; then the algorithm

terminates at rth or r + 1st iteration.

Now we give the main lemma.

Lemma 3 If 1 � r � k�1; then either jz(�r+1)j � (1=2)jz(�r)j or cx
r+1+nCdxr+1 �

(1=2)(cxr + nCdxr) is satis�ed.

Proof. If �r+nC � 0; then �r = �� = �nC and it implies that z(�r) = (1=2)z(�r+1) =

0: Now assume that �r + nC > 0: Two cases arise.

6



Case (i) At �rst we consider the case that z(�r+1)(�r + nC) � z(�r)

2
(�r+1 + nC): This

condition is illustrated in Figure 2. In the �gure, the line z = cx
r��dxr is denoted by `r:

Here we will use the notations in Figure 2. Let M be the midpoint of the segment PR:

Then the point M has the co-ordinates (�r+1;
z(�r)(�r+1 + nC)

2(�r + nC)
): Thus the condition

z(�r+1)(�r + nC) � z(�r)

2
(�r+1 + nC) implies that the point Q = (�r+1; z(�r+1)) lies on

the segment MR: Under this condition, we show that the inequality cx
r+1 + nCdxr+1 �

(1=2)(cxr + nCdxr) holds. It means that when the line `r+1 and the segment MR

cross each other, the line `r+1 also intersects with the segment M 0R0; where M 0 is the

midpoint of the segment P 0R0: Now we prove the inequality.

(�r � �r+1)(cxr+1 + nCdxr+1)

= (cxr+1 � �r+1
dx

r+1)(�r + nC)� (cxr+1 � �r
dx

r+1)(�r+1 + nC)

= z(�r+1)(�r + nC)� (cxr+1 � �r
dx

r+1)(�r+1 + nC)

� z(�r)

2
(�r+1 + nC)� (cxr � �r

dx
r)(�r+1 + nC)

= �(1=2)(cxr � �r
dx

r)(�r+1 + nC) = �(1=2)(cx
r

dxr
� �r)dxr(

cx
r

dxr
+ nC)

= �(1=2)(�r+1 � �r)(cxr + nCdxr) = (1=2)(�r � �r+1)(cxr + nCdxr)

Since �r > �r+1; the inequality cx
r+1 + nCdxr+1 � (1=2)(cxr + nCdxr) has shown.

Case(ii) Next, consider the case that z(�r+1)(�r + nC) >
z(�r)

2
(�r+1 + nC):

jz(�r+1)j = �z(�r+1) <
�z(�r)

2

(nC + �r+1)

(nC + �r)
=
jz(�r)j

2
(1� �r � �r+1

nC + �r
) � 1

2
jz(�r)j:==

Note that both of the values jz(�)j and cx + nCdx are nonincreasing throughout

the iterations. At the �rst iteration, the value jz(�)j is less than or equal to 2n2CD:

From Lemma 1, it is clear that if there are O(log(
2n2CD

1=nD
)) � O(log(nCD)) iterations, each

of which decreases the value z(�) by at least 50%, then the algorithm terminates and an

optimal solution is obtained. In the same way, Lemma 2 implies that the number of iterations

which decreases the value cx+ nCdx by at least 50% is O(log(2n2CD)) � O(log(nCD))

in the worst case. Lemma 3 shows that each iteration decreases either jz(�)j of cx+nCdx
by at least 50%. Thus, the number of overall iterations is bounded by O(log(nCD)):

7



Theorem 4 The number of iterations of Dinkelbach's algorithm is O(log(nCD)) �
O(log(nM)) in the worst case, where M = maxfC;Dg:

The above theorem shows that the number of iterations of Dinkelbach's algorithm is

O(log(nCD)) in the worst case. It implies that, if there exists a strongly polynomial time

algorithm for Q(�), Dinkelbach's algorithm solves FP in polynomial time. However, when

we solve subproblems by a polynomial time algorithm, we need to estimate the input size

of the coe�cients of the objective function of Q(�). In the next section, we discuss this

argument by considering minimum ratio spanning tree problems and fractional assignment

problems.

4 Discussions

Chandrasekaran [4] proposed an algorithm for minimum ratio spanning tree problems,

which is based on the binary search method. Dinkelbach's algorithm solves this problem in

O(T (v; e) log(vCD)) time, where v is the number of nodes, e is the number of edges of the

given graph and T (v; e) denotes the time complexity of a strongly polynomial time algo-

rithm for ordinary minimum spanning tree problems. It is easy to expand Chandrasekaran's

algorithm into general matroid programming problems with fractional objective function. In

this case, the number of break points of the function z(�) is at most n(n� 1)=2 (see [4]).

Thus, when the feasible region 
 is the set of characteristic vectors of bases of a matroid,

Dinkelbach's algorithm terminates after O(minfn2; log(nCD)g) iterations.

For the assignment problem, many algorithms have been developed. Perhaps the most

famous algorithm is Hungarian method and its worst case time complexity is O(v(v log v+

e)) [9]. By employing Hungarian method, Dinkelbach's algorithm solves the fractional

assignment problem in O(v(v log v+ e) log(vCD)) time. In [19], Orlin and Ahuja proposed

an O(
p
ve log(vW )) time algorithm for the assignment problem and it is said that their

algorithm is competitive with the existing strongly polynomial algorithm (see [2] also). In

their algorithm, it is assumed that the edge weights are integer and W denotes the maximum

of the absolute value of edge weights. To incorporate their algorithm into Dinkelbach's

algorithm, we need to replace the objective function of the subproblem Q(�) solved at the

8



rth iteration by

(dxr�1)cx� (cxr�1)dx;

where x
r�1 denotes the optimal solution of the subproblem obtained at the r�1st iteration.

Thus, in each iteration, Dinkelbach's algorithm solves an assignment problem such that the

absolute values of edge weights are less than or equal to 2v2CD: It implies that the worst

case time bound of Dinkelbach's algorithm for fractional assignment problems is

O(
p
ve(log(2v3CD))(log(eCD))) � O(

p
ve(log(vCD))2):

We remark that when there exists a polynomial time algorithm for a 0-1 integer pro-

gramming problem with linear objective function, we can solve a 0-1 fractional programming

problem also in polynomial time by using the objective function described above.

Acknowledgment

The authors would like to thank Prof. Hirabayashi of the Science University of Tokyo

for his constant encouragement and discussions.

References

[1] Y. Anzai. On integer fractional programming. J. Operations Research Soc. of Japan,

17 pp.49{66, 1974.

[2] D. P. Bertsekas and J. Eckstein. Dual coordinate step methods for linear network 
ow

problems. Mathematical Programming, 42 pp.203{243, 1988.

[3] G.R. Bitran. Experiments with linear fractional problems. Naval Research Logistics

Quarterly, 26 pp.689{693, 1979.

[4] R. Chandrasekaran. Minimum ratio spanning trees. Networks, 7 pp.335{342, 1977.

[5] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval

Research Logistics Quarterly, 9 pp.181{186, 1962.

[6] Y. Chengen and J. Dayong. A primal-dual algorithm for the minimum average weighted

length circuit problem. Networks, 21 pp.705{712, 1991.

[7] W. Dinkelbach. On nonlinear fractional programming. Management Science, 13

pp.492{498, 1967.

[8] B. Fox. Finding minimal cost-time ratio circuits. Operations Research, 17 pp.546{551,

1969.

9



[9] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network

optimization problems. J. ACM, 34 pp.596{615, 1987.

[10] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock

problems - part II. Operations Research, 11 pp.863{888, 1963.

[11] M. Grunspan and M. E. Thomas. Hyperbolic integer programming. Naval Research

Logistics Quarterly, 20 pp.341{356, 1973.

[12] S. Hashizume, M. Fukushima, N. Katoh, and T. Ibaraki. Approximation algorithm

for combinatorial fractional programming problems. Mathematical Programming, 37

pp.255{267, 1987.

[13] T. Ibaraki. Parametric approaches to fractional programs. Mathematical Programming,

26 pp.345{362, 1983.

[14] J. R. Isbell and W. H. Marlow. Attrition games. Naval Research Logistics Quarterly, 3

pp.71{93, 1956.

[15] H. Ishii, T. Ibaraki, and H. Mine. Fractional knapsack problems. Mathematical Pro-

gramming, 13 pp.255{271, 1976.

[16] R. Jagannathan. On some properties of programming problems in parametric form

pertaining to fractional programming. Management Science, 12 pp.609{615, 1966.

[17] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and

Winston, New York, 1976.

[18] N. Megiddo. Combinatorial optimization with rational objective functions. Mathemat-

ics of Operations Research, 4 pp.414{424, 1979.

[19] J. B. Orlin and R. K. Ahuja. New scaling algorithm for the assignment and minimum

mean cycle problems. Mathematical Programming, 54 pp.41{56, 1992.

[20] P. Robillard. (0,1) hyperbolic programming problems. Naval Research Logistics Quar-

terly, 18 pp.47{57, 1971.

[21] S. Schaible. Fractional programming II: on Dinkelbach's algorithm. Management Sci-

ence, 22 pp.868{873, 1976.

[22] S. Schaible. Fractional programming: applications and algorithms. Europ. J. Opera-

tional Research, 7 pp.111{120, 1981.

[23] S. Schaible and T. Ibaraki. Fractional programming. Europ. J. Operational Research,

12 pp.325{338, 1983.

[24] M. Sniedovich. Analysis of a class of fractional programming problems. Mathematical

Programming, 43 pp.329{347, 1989.

10


