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Abstract. In this paper, we propose a polynomial time algorithm for fractional
assignment problems. The fractional assignment problem is interpreted as fol-
lows. Let G = (I; J;E) be a bipartite graph where I and J are vertex sets
and E � I � J is an edge set. We call an edge subset X(� E) assignment

if every vertex is incident to exactly one edge from X: Given an integer weight
cij and a positive integer weight dij for every edge (i; j) 2 E; the frac-

tional assignment problem �nds an assignment X(� E) such that the ratio
(
P

(i;j)2X cij)=(
P

(i;j)2X dij) is minimized.

Our algorithm is based on the parametric approach and employs the ap-

proximate binary search method. The time complexity of our algorithm
is O(

p
nm logD log(nCD)) where jIj = jJ j = n; jEj = m; C =

maxf1;maxfjcij j : (i; j) 2 Egg and D = maxfdij : (i; j) 2 Eg+ 1:
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1 Introduction

The fractional programming problem has been widely studied in the last two decades

(see the survey paper [13] for example). In this problem, an objective function, which is

characterized by the ratio of given two linear functions, is to be minimized (or maximized).

There are several classes of fractional programming problems. One of the classes consists

of 0-1 fractional programming problems in which the variables are restricted to 0-1 integers

[12, 6, 2]. In this paper, we treat fractional assignment problems which are special cases of

0-1 fractional programming problems.

Let G = (I; J;E) be a bipartite graph where I and J are vertex sets and E � I �J

is an edge set; jIj = jJ j = n and jEj = m: An assignment X is a subset of edges such

that no two edges in X have a vertex in common and jXj = n: In this paper, we assume

that the bipartite graph G contains at least one assignment. For each edge (i; j) 2 E;

weights cij and dij are associated. The fractional assignment problem (FAP) is to �nd an

assignment X such that the ratio (
P

(i;j)2X cij)=(
P

(i;j)2X dij) is minimized. This problem

is formulated as follows:

(FAP) : minimize

X

(i;j)2E

cijxij

X

(i;j)2E

dijxij

subject to
X

j2�(i)

xij = 1; for i 2 I;

X

i2�(j)

xij = 1; for j 2 J;

xij 2 f0; 1g; for (i; j) 2 E;

where �(i) denotes the set of vertices adjacent with the vertex i: Here we assume that all

cij 's are integer numbers and dij 's are positive integers.

In this paper, we propose an algorithm for the fractional assignment problem whose time

complexity is O(
p
nm logD log(nCD)) where C = maxf1;maxfjcijj : (i; j) 2 Egg and

D = maxfdij : (i; j) 2 Eg + 1: This is the fastest one that solves fractional assignment

problems as far as we know. If the weight dij is equal to 1 for all (i; j) 2 E; the problem

FAP is equivalent to the linear assignment problem. In this case, the algorithm proposed

in this paper solves the linear assignment problem in O(
p
nm log(nC)) time and this time

complexity is the same as that of Orlin and Ahuja's algorithm [11]. Our algorithm is based

on the parametric approach and employs the approximate binary search method.
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Section 2 gives an outline of a classical parametric approach to fractional programming

problems. We also discuss some parametric methods and their time complexities when they

are applied to fractional assignment problems. In Section 3, we introduce the approximate

binary search method and show a result that is necessary to apply the method to fractional

assignment problems. In Section 4, we propose the new algorithm. Finally, we analyze the

time complexity of our algorithm in Section 5.

2 Previous works

For fractional programming problems, there are lots of algorithms based on the paramet-

ric approach which is associated with an auxiliary problem having one parameter [7, 3, 8].

When we adopt the approach to the fractional assignment problem, the auxiliary problem

is de�ned as follows:

(FAP(�)) : minimize
X

(i;j)2E

(cij � �dij)xij

subject to
X

j2�(i)

xij = 1; for i 2 I;

X

i2�(j)

xij = 1; for j 2 J;

xij 2 f0; 1g; for (i; j) 2 E;

where � is a scalar parameter. Note that if � is �xed, the auxiliary problem FAP(�)

becomes an ordinary linear assignment problem and we know that there proposed several

algorithms for the linear assignment problem. For example, Fredman and Tarjan devel-

oped a strongly polynomial time algorithm using Fibonacci heaps and its time complexity is

O(n2 log n+ nm) [4]. In 1992, Orlin and Ahuja developed a (weakly) polynomial time algo-

rithm which is based on the auction algorithm and its time complexity is O(
p
nm log nM )

where M is the maximum value of the integer edge weights [11]. These are currently the

best available time bounds.

Let z(�) be the optimal value of FAP(�) and �� the optimal value of FAP. The

function z(�) is continuous, concave and strictly decreasing with respect to �: We can

observe the following properties (detailed see [13] for example).

Observation

(1) The parameter � is equal to �� if and only if z(�) is equal to 0.

(2) An assignment is optimal to FAP(��) if and only if it is optimal to FAP.
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The property (1) says that when we �x the parameter �; we can check whether the current

value of � is equivalent to �� or not by solving FAP(�): Thus, solving FAP is

essentially equivalent to �nding � = �� with z(�) = 0: These properties suggest search

methods which test successive trial values of �: In the rest of this section, we consider three

well-known methods which test the parameter � iteratively.

The �rst method is Dinkelbach's method [3] which is essentially equal to the New-

ton method. Recently, authors [9] showed that when we apply Dinkelbach's method to

fractional assignment problems, the number of iterations is bounded by O(log(nCD));

and thus Dinkelbach's method solves FAP in O((n2 log n + nm) log(nCD)) time or

O(
p
nm(log(nCD))2) time.

The second method is the binary search method. It is clear from de�nitions of C

and D that the optimal value of FAP is in the interval [�C;C]; and if the objective

values (ratios) of two assignments are not equal, then the di�erence is at least 1=(nD)2:

Therefore, the binary search method terminates after O(log(nCD)) iterations, since it

reduces the search interval by factor 2 in each iteration. When we employ the strongly

polynomial time algorithm for linear assignment problems, the binary search method solves

FAP in O((n2 log n+ nm) log(nCD)) time. However, if Orlin and Ahuja's algorithm for

linear assignment problems is used in the binary search method, we need to replace the edge

weights with 2(nD)2cij � b2�(nD)2cdij; because every edge weight must be integer in their

algorithm. In this case, the binary search method solves FAP in O(
p
nm(log(nCD))2)

time, since every edge weight is less than or equal to O(n2CD3):

In 1979, Megiddo [10] proposed an ingenious method for fractional combinatorial op-

timization problems. By employing his method, we can construct an algorithm for the

fractional combinatorial optimization problem whose time complexity is at most square of

the time complexity of an algorithm for the linear version of the combinatorial optimization

problem. Thus, by incorporating two algorithms for linear assignment problems mentioned

above, Meggido's method solves the fractional assignment problem in O(n4(log n)2+n2m2)

time or in O(nm2(log(nCD))2) time.

3 Basic ideas

Our algorithm employs the approximate binary search method. The idea of the approxi-

mate binary search method is due to Zemel [15] and Orlin and Ahuja [11]. The approximate
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binary search method is similar to the ordinary binary search method in the following sense.

These two methods maintain the search interval [LB;UB] containing the target (i.e. the

optimal value �� of FAP ), and reduce the search interval without excluding the target in

each iteration. For the reduction of the search interval, the ordinary binary search method

solves the auxiliary problem FAP(�) by �xing � to (UB+LB)=2; and updates [LB;UB]

to [�;UB] or [LB; �]: In the approximate binary search method, however, we use an ap-

proximate solution to FAP(�) (where � = (UB+ LB)=2 ) instead of an optimal solution

to FAP(�):

In the followings, we describe the de�nition of approximate solutions proposed by Bert-

sekas [1] and Tardos [14]. Let ui and vj be variables indexed by the vertex sets I and

J; respectively. For an error bound "; we say that X 0(� E) is an approximate solution

to FAP(�) if there exist ui and vj satisfying the following conditions:

Primal Feasibility : X 0 is an assignment.

"-Dual Feasibility : (cij � �dij)� ui � vj � �"; for all (i; j) 2 E:

"-Complementary slackness : (cij � �dij)� ui � vj � "; for all (i; j) 2 X 0:

We call these conditions the "-optimality conditions, and the solution X 0 is called an "-

optimal solution. Additionally, if X 0 is an "-optimal solution to FAP(�) for some �xed

parameter �; the objective value
X

(i;j)2X 0

(cij � �dij) is said to be the "-optimal value of

X 0:

Since the ordinary binary search method solves FAP(�) exactly, it can reduce the

search interval by a factor of 2. In the approximate binary search method, it is hard to

reduce the search interval by a factor of 2, because we obtain only an "-optimal solution

of FAP(�): The following lemma, however, gives an idea to reduce the search interval by

using an "-optimal solution.

Lemma 1 Let X 0 be an "-optimal solution to FAP(�) for some �xed parameter �:

We denote the optimal value of FAP by ��: Then the followings hold.

(1) If
X

(i;j)2X 0

(cij � �dij) � 0; then �� 2" � ��:

(2) If
X

(i;j)2X 0

(cij � �dij) < 0; then �+ 2" > ��:

Proof. (1) Let u�i and v�j be variables corresponding to an "-optimal solution X 0:

Denote by X� an optimal solution to FAP. It follows from the "-optimality conditions
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that
X

(i;j)2X0

(cij � �dij)�
X

i2I

u�i �
X

j2J

v�j � n"

and
X

(i;j)2X�

(cij � �dij)�
X

i2I

u�i �
X

j2J

v�j � �n":

Summing up these inequalities, we get

X

(i;j)2X 0

(cij � �dij)�
X

(i;j)2X�

(cij � �dij) � 2n"

� X

(i;j)2X�

(cij � �dij) � 2n"

�(�� � �) � 2n"
X

(i;j)2X�

dij
� 2n"

n
= 2":

(2) Similarly to (1). ==

The above lemma shows that when we obtain an "-optimal solution to FAP(�) for some

su�ciently small "; either the upper bound or the lower bound of the search interval can

be updated; that is, if the "-optimal value to FAP(�) is nonnegative, then the new lower

bound becomes �� 2"; otherwise the new upper bound becomes �+ 2":

The proof of Lemma 1 directly implies the following corollary.

Corollary 2 Let X 0 be an "-optimal solution to FAP(�) and X� an optimal solution

to FAP: Then
X

(i;j)2X 0

(cij � �dij) �
X

(i;j)2X�

(cij � �dij) � 2n":

4 Algorithm

In this section, we will develop an algorithm for fractional assignment problems which

employs the approximate binary search method. Our algorithm maintains the scalar param-

eter, the error bound and the search interval including the optimal value ��:

Here, we denote the parameter, the error bound and the search interval in the k-th

iteration by �k; "k and [LBk;UBk] respectively. Our algorithm sets �k and "k as below;

�k =
UBk + LBk

2
; "k =

UBk � LBk

8
;

and �nds an "k-optimal solution Xk of FAP(�k) in the k-th iteration. Lemma 1 implies

that if the "k-optimal value of Xk is nonnegative, then the search interval [LBk+1;UBk+1]
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becomes [�k � 2"k;UBk]; otherwise it becomes [LBk; �k +2"k]: The de�nitions of �k and

"k show that UBk+1�LBk+1 = 3=4(UBk�LBk): Thus the (k+1)-th interval length is 3/4

of the k-th interval length. The above is the same technique that Orlin and Ahuja adopted

the approximate binary search method into their algorithm [11]. In the �rst iteration, our

algorithm sets [LB1;UB1] = [�C;C]: Then it is clear that the initial search interval contains
the optimal value ��:

Next, we discuss the terminal condition of our algorithm. We assume that the interval

length becomes less than 1=(nD)2 for the �rst time at `-th iteration; i.e. UB`�1�LB`�1 �
1=(nD)2 > UB`�LB`: Then at the entrance of `-th iteration, the approximate binary search

method stops and our algorithm �nds an "`-optimal solution to FAP(UB`): The following

shows that an "`-optimal solution to FAP(UB`) is also optimal to FAP.

Lemma 3 Assume that UB` � LB` < 1=(nD)2: When an assignment X 0 is an "`-

optimal solution to FAP(UB`); it is also optimal to FAP:

Proof. We denote the ratio (
X

(i;j)2X 0

cij)=(
X

(i;j)2X0

dij) by �0: Let X� be an optimal

solution to FAP and �� the optimal value of FAP.

We assume that X 0 is not optimal to FAP. Then it is clear that �0 � �� > 0 and

�0 � �� =

X

(i;j)2X 0

cij
X

(i;j)2X�

dij �
X

(i;j)2X�

cij
X

(i;j)2X 0

dij

X

(i;j)2X 0

dij
X

(i;j)2X�

dij
� 1

(nD)2
:

Furthermore, facts that UB`�LB` < 1=(nD)2 and LB` � �� imply UB` < ��+1=(nD)2:

Now we get UB` < �� + 1=(nD)2 � �0: Then the properties �� � UB` < �0 imply that

X

(i;j)2X0

(cij � (UB`)dij)�
X

(i;j)2X�

(cij � (UB`)dij)

=
X

(i;j)2X 0

dij(�
0 � UB`)� X

(i;j)2X�

dij(�
� � UB`)

� n(�0 � UB`) � n(�� � UB`) = n(�0 � ��) � n
1

(nD)2
=

1

nD2
:

From Corollary 2 and UB` � LB` < 1=(nD)2;

X

(i;j)2X 0

(cij � (UB`)dij)�
X

(i;j)2X�

(cij � (UB`)dij) � 2n"` = 2n
UB` � LB`

8
<

1

4nD2
:

Thus, 1=(nD2) � X

(i;j)2X0

(cij � (UB`)dij)�
X

(i;j)2X�

(cij � (UB`)dij) < 1=(4nD2) and it is a

contradiction. ==
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Lemma 3 shows that we can correctly obtain an optimal solution to FAP by this terminal

condition.

Now, we describe our algorithm.

Algorithm

begin

[LB;UB] := [�C;C];
while (UB� LB) � 1=(nD)2 do

begin

� := (LB+ UB)=2; " := (UB � LB)=8;

�nd an "-optimal solution X 0 of FAP(�); | (?)

if the "-optimal value is nonnegative

then [LB;UB] := [�� 2";UB]

else [LB;UB] := [LB; �+ 2"]

end;

� := UB; " := (UB� LB)=8;

�nd an "-optimal solution X 0 of FAP(�);

output X 0 as an optimal solution of FAP

end.

5 Analysis of the algorithm

Finally, we will show that our algorithm runs in O(
p
nm logD log(nCD)) time.

Our algorithm reduces the interval length by 3/4 in each iteration. At the �rst iteration,

the search interval is [�C;C] and its length is 2C: When the interval length becomes less

than 1=(nD)2; the approximate binary search method terminates. Thus, the number of

iterations of the approximate binary search method is bounded by O(log(nCD)):

Now, we discuss the operations in each iteration. At the line marked (?) in the above

algorithm, we �nd an "-optimal solution of FAP(�): In [11], Orlin and Ahuja developed a

procedure which �nds an "-optimal solution from a 2"-optimal solution in O(
p
nm) time.

Our algorithm calls this procedure consecutively at the line marked (?):

The following lemma is convenient to obtain an initial solution.

Lemma 4 If we set the initial search interval [LB1; UB1] = [�C;C] and ui = 0 for

all i 2 I and vj = 0 for all j 2 J; then any assignment is a (4"1)-optimal solution to

FAP(�1):
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Proof. From the de�nition of �k and "k; �1 = 0 and "1 = C=4: Let X be any

assignment. For each edge (i; j) 2 X; (cij � �1dij)� ui � vj = (cij � 0 � dij)� 0� 0 � C =

4(C4 ) = 4"1: And for all edge (i; j) 2 E; (cij � �1dij)� ui � vj = (cij � 0 � dij) � 0 � 0 �
�C = �4(C

4
) = �4"1: ==

By setting the initial search interval as described above, any assignment is 4"1-optimal.

Hence, we can start our algorithm with an arbitrary assignment (we can �nd a perfect

matching in bipartite graph G = (I; J;E) in O(
p
n m) time by Hopcroft and Karp's

algorithm [5]) and Orlin and Ahuja's procedure �nds an "1-optimal solution from 4"1-optimal

solution in O(2
p
n m) = O(

p
n m) time at the �rst iteration.

Let us consider the iterations after the �rst. Following lemma gives an idea to obtain an

"k+1-optimal solution e�ciently at (k + 1)-th iteration.

Lemma 5 Let Xk be an "k-optimal solution to FAP(�k): Then Xk is a (D"k)-optimal

solution to FAP(�k+1):

Proof. From the de�nition of �k+1; we have two cases: (i) �k+1 � �k (when the lower

bound increases) and (ii) �k+1 � �k (when the upper bound decreases).

We begin with Case (i). Since Xk is an assignment, the (D"k)-primal feasibility

condition holds. It can be easily shown that �k+1 = �k + "k; since the lower bound

increases. For each edge (i; j) 2 Xk;

cij � �k+1dij � ui � vj � cij � �kdij � ui � vj � "k � D"k:

It implies that Xk satis�es the (D"k)-complementary condition. Furthermore, for every

edge (i; j) 2 E ,

cij � �k+1dij � ui � vj = cij � (�k + "k)dij � ui � vj � �"k � "kdij = �"k(1 + dij) � �D"k:

Thus, the (D"k)-dual feasibility condition is kept and completes the proof.

Case (ii) can be proved similarly to Case (i). ==

From the de�nition, "k is equal to (4=3)"k+1: Therefore the above lemma implies

that the assignment obtained at the k-th iteration is a ((4=3)D"k+1)-optimal solution of

FAP(�k+1): When we apply the procedure developed by Orlin and Ahuja p times, an

((4=3)D"k+1(1=2p))-optimal solution is obtained [11]. So, by setting p = O(log2(4=3)D); we

can �nd an "k+1-optimal solution of FAP(�k+1) in O(
p
nm log2((4=3)D)) = O(

p
nm logD)

time.
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Similarly to the above, it is easy to show that when an assignment X`�1 is an "`�1-

optimal solution to FAP(�`�1); it is (4D"`)-optimal to FAP(UB`): Thus, when the

approximate binary search method terminates, our algorithm �nds "`-optimal solution to

FAP(UB`) in O(
p
nm logD) time.

Lastly, we will show the overall time complexity of our algorithm. The number of it-

erations of the approximate binary search method is bounded by O(log(nCD)): In each

iteration, we can �nd an "-optimal solution of FAP(�) in O(
p
nm logD) time and other

steps are executed in constant time. Summarizing the above, the following theorem holds.

Theorem 6 Our algorithm correctly determines a minimum fractional assignment in

O(
p
nm logD log(nCD)) time.

6 Conclusion

In this paper, we developed a polynomial time algorithm for fractional assignment prob-

lems. Same discussion will be done for some optimization problem with fractional objective

functions if for the linear version of the problem, there exists an algorithm which is based

on approximation optimality.
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