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Abstract

It was reported (Kabashima and Shinomoto 1992) that esti-
mators of a binary decision boundary show asymptotically strange
behaviors when the probability model is ill-posed. We give a rig-
orous analysis of this phenomenon in a stochastic perceptron by
using the estimating function method. A stochastic perceptron
consists of a neuron which is excited depending on the weighted
sum of inputs but its probability distribution form is unknown
here. It is shown that there exists no y/n-consistent estimator of
the threshold value h, that is, no estimator h which converges to
h in the order of 1//n as the number n of observations increases.
Therefore, the accuracy of estimation is much worse in this semi-
parametric case with an unspecified probability function than in
the ordinary case. On the other hand, it is shown that there
is a y/n-consistent estimator w of the synaptic weight vector.
These results elucidate strange behaviors of learning curves in a

semiparametric statistical model.

*Department of Mathematical Engineering and Information Physics, Faculty of Engi-
neering, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan.



1 Introduction

Learning of neural networks, especially of stochastic networks, can be re-
garded from the statistical point of view as sequential estimation of network
parameters from randomly chosen examples. Neural networks give good
non-linear models for analyzing non-linear multivariate statistical phenom-
ena and conversely statistical analysis gives a good insight on the learning
behaviors of neural networks. The present paper treats the simple stochas-
tic perceptron (stochastic neuron) to study strange asymptotic behaviors
of estimators of network parameters (synaptic weights and thresholds) in
the semiparametric situation to be explained later, cf. Kabashima and Shi-
nomoto (1992).

A simple stochastic perceptron (a stochastic neuron) classifies n-dimensional
input signals  into two categories C'y and C_ stochastically with probabil-
ities depending on the inputs. More definitely, let w be the synaptic weight
vector and let i be the threshold of a perceptron, where we assume |w| = 1.
Then, the signal space is divided into two parts by the separating hyperplane
of the perceptron

H: w-z—-h=0. (1.1)
The signed distance of a signal « from H is given by
dlx) =w x — h, (1.2)

where d(x) > 0 when « is in the positive side of H and d(x) < 0 otherwise.
A stochastic perceptron emits an output z = 1 or —1 with a probability
depending on the distance d(x). We can write the probability

Prob{z =1|xz} = 0.5+ ¢(w x — h), (1.3)
Prob{z = —1jx} = 0.5—¢(w 2 —h), (1.4)
Prob{z|x} =05+ z¢(w-x — h), (1.5)

where ¢(u) is assumed to be a monotonically increasing smooth function
with

$(0) = 0, (1.6)
|p(u)| < 0.5.
A specific sigmoidal function such as
1
o(u) = 3 tanh u (1.8)



is usually assumed for convenience, but the actual function ¢ is unknown
in the real biological situation. In this case we need to estimate w and h
under the condition that ¢ is unknown. The present paper proves that the
asymptotic behaviors of the estimators w, h are quite different in the semi-
parametric situation. The same strange behaviors emerge also in learning
of w and h from examples.

When ¢ is known, it is an ordinary statistical problem to estimate w
and h from the training set

Dn:{(wlazl)""’(wmzn)} (1'9)

of n randomly chosen examples. When n is large, the maximum likelihood
estimator is asymptotically best, and its expected square error is easily cal-
culated from the Fisher information matrix F' of the underlying statistical
model. The estimation error decreases in proportion inversely to the square
root of the number n of examples,

Ww-w = O, (%) (1.10)

- 1
h—h = 0, (\/ﬁ> . (1.11)
We call such an estimator a \/n-consistent estimator. This shows that the
squared error decrease in the oder of 1/n, as is the case with learning curves
of generalization error [Haussler et. al. (1988), Amari and Murata (1993)].

When ¢ is unknown, the situation changes drastically. Because, in ad-
dition to the parameters w and h of interest, the statistical model includes
the parameter ¢ which has infinite- or function-degrees of freedom. This ad-
ditional parameter is called a nuisance parameter, because we do not have
any interest in estimating it. Such a model is called a semiparametric sta-
tistical model and statisticians have been searching for effective methods of
inference in such a model [see, for example, Bickel et. al. (1993), Amari
(1993), etc.].

We show that there is a severe difficulty in estimating the threshold
h rather than in estimating the weights w. To show this, we study the
following models separately:

1. Threshold model (Dose-response model):
In this case, an input x is a scalar and w = 1, so that d(x) = z— h. Here,
the threshold h is the only parameter to be estimated, and the probability



model is
Prob{z|z} =0.5+z¢(x — h). (1.12)

This model is also called the (semiparametric) dose-response model. In this
case, an amount = of dose is applied to a subject and we observe success
(z =1) and failure (z = —1) of the result of the treatment. The probability
of the success (z = 1) increases with the amount = of the dose as in equation
1.12, and we want to estimate the amount x = h of the dose where the
success probability balances with the failure probability.

Kabashima and Shinomoto (1992) studied this model, and found that the
maximum likelihood estimator does not work in this case. They proposed
an estimator A whose squared error converges to 0 with the oder of n=2/3,
In other words, the estimator is consistent with the stochastic order n—1/3,

h=h=0,(n) (1.13)
This convergence is slower than n='/2 of the ordinary one. Their estimator is
known as the maximum score estimator [see Manski (1975), Kim and Pollard
(1990)]. We prove in the present paper that no estimators which converge
to the true value with the stochastic order n~1/2 exists. This shows that the
learning curve has a slower characteristic in this case. We then prove that
there exists an estimator better than the maximum score estimator which
converges in order of n~?/(2P*1) where p is an arbitrary integer. This result
is also known by statisticians (Nawata 1989), but the estimator which we
newly propose here is much simpler and easier to construct.

2. Synaptic weights model with A = 0 (Orientation detection):

Here, x is m-dimensional (m > 0), w is to be estimated and h = 0.
When the separating hyperplane passes through the origin, the probability
is determined depending on w - x,

Prob{z|z}=0.5+z¢(w - x). (1.14)

We show that there exists an estimator w converging to the true value w in
stochastic order n=/2. We also construct the estimator explicitly.

3. The general case:

Combining the above two results, we propose an estimator w and h
applicable to the general case. Here w is \/n-consistent but h is nP/(2p+1)
consistent.



Our method is based on the geometrical consideration on the estimating
functions (Amari and Kumon 1988, Amari 1993). An estimating function
gives a consistent estimator of order n~/2 when it exists, and the estimating
equation is very simple. However, we show that no estimating functions exist
in the one-dimensional case. We instead propose an asymptotic estimating
function which balances the bias and the variance term [cf. Geman and
Bienenstock (1992)], giving a consistent estimator of order n~?/(2P+1),

2 Estimating Function

We briefly explain estimating functions. Given a statistical model {p(z,8)}
where probability distribution p(z, ) of random variable z is specified by a
scalar parameter 6, a function g(z,0) is said to be an estimating function
when it satisfies

1) Eplg(z,0)] =0, (2.1)
2) Eq[0g(x,0)] # 0,

where FEjy is the expectation with respect to p(z,0) and 9y = d/df. Given
n independent observations 1, -, zy, »_ g(z;, #) is the empirical substitute
to the expectation Ejp[g(z,6)], so that it is plausible that

n

> glai6) =0 (2.3)

=1

gives a good estimate . The score function u(x,0) = dplog p(z,0) (that is
the derivative of the log likelihood) satisfies the above conditions 1), 2) and
the estimating function

u(x,0) = dglogp(z,H) (2.4)

gives the maximum likelihood estimator.

The idea of the estimating function was introduced by Godambe (1960)
as a generalization of the maximum likelihood method. It is known that
the estimating function equation 2.3 gives an asymptotically normally dis-
tributed \/n-consistent estimator .

The estimating function method can be applicable to the semiparamet-
ric model {p(z,0,¢)} where the probability distribution is specified by a
parameter 6 which is to be estimated and also by a nuisance parameter ¢



of infinite dimensions in which we do not have any interest. It is in general
very difficult to estimate ¢ from a finite number of observations. However,
if there exists a function g(z,0), not depending on the nuisance parameter
¢, such that

1) Epelglz,0)]=0, (2.5)
2)  Eggl0pg(x,0)] #0, (2.6)

hold for any ¢, where Ejy 4 denotes the expectation with respect to p(z, 8, ¢),
we can avoid the tedious procedure of estimating ¢ and a good estimator is
obtained by the simple estimating equation

n

> g(a,0) =0. (2.7)

=1

Moreover, the estimating function method directly leads to a learning
procedure. The stochastic approximation method suggests the following
learning algorithm, R X X

9n+1 = an —Cp g(mn+1; an)a (28)

where én is the estimator obtained from n previous data z1,- -, T, én+1 is
the new estimator to be obtained from 6,, and the new data z,41, and ¢, is
a constant satisfying

ch = 00, ZC?L < 00. (2.9)

It is possible to study the accuracy of learning in a similar way as in the
present statistical analysis [see Kabashima and Shinomoto (1993)].

However, it is in general not easy to find an estimating function in a
semiparametric case. The score function does not in general satisfy the con-
dition 1) and the maximum likelihood estimator is not necessarily unbiased.
It is even not certain if an estimating function ever exists or not. Amari and
Kumon (1988) analyzed this problem by generalizing the dual information
geometry (Amari 1985), and gave a definite answer to this problem. Amari
(1993) extended the results to be applicable to general semiparametric mod-
els.

The result becomes simpler if the probability distribution is linear in ¢
as is in the present case. In this case, the projected score or the effective
score denoted by u”(x, 0, ¢g) gives an estimating function for any ¢g even if
¢o does not coincide with the true ¢. We will explain about the projected
score u”(z,0, ¢o).



Let us construct a curve

bt = do +1¢ (2.10)

showing a change of the nuisance function ¢ in the direction of £&. We then
have a parametric model

p(x,t) :p($,9, ¢t) (2'11)

parameterized by t (6 being fixed). The score function of the nuisance
parameter in the direction ¢ is given by

ola,8.60,6) = 7 log p(o,0,00)| . (212)

Let TV be the closure of linear space spanned by random variables v in all
the directions ¢ of the change in the nuisance function. We call TV the
nuisance subspace.

Let

u(r,0,00) = = log p(x, 0, ) (213)

be the score function of #, which includes information how the log likelihood
changes as 0 changes. However, this change might have common directions
to a change in the nuisance parameter ¢. These directions cannot be used
for estimating 6 because they can be produced by changing ¢. Therefore,
we project u to the space orthogonal to the nuisance subspace TV. Here,
the orthogonal projection is defined by the inner product of two random
variables a(z) and b(z) given by

(a,b) = Eg g, [a(x)b(x)]. (2.14)

The projected score u” is this orthogonal component of the score u(z, 8, ¢).
The main results of Amari and Kumon (1988) and Amari (1993) are
summarized in the following theorem.



Theorem 1

1. An estimating function ezists when T™ does not include u, that is u”

18 not null.

2. For any ¢',
9(x,0) = u(,0,¢") (2.15)

18 an estimating function satisfying
Epg [u"(2,0,6)] =0 (2.16)

for any ¢.

3. The estimator 0 is asymptotically normally distributed and is +/n-
consistent, with the asymptotic variance

lim nB(d - 6)? = " [{9(z,0)}"]
e {(Eo.00 | 00g(z,0) ]}

where ¢q s the true nuisance parameter.

(2.17)

If we can choose the true ¢g or one close to it, the estimator 6 is asymp-
totically the best. However, The point is that even if we misspecify ¢ and
use a wrong ¢, the estimator 0 is still unbiased and /n-consistent. This is
a very attractive point of the estimating function method.

The result can easily be extended to the vector parameter case where
g(z,0) is a vector function having the same dimensions as 8. Estimating
functions satisfy

) Ey [9(2,0)]=0, (2.18)
2) By [grad g(z,0)]| #0, (2.19)
where | - | means the determinant of a matrix. In the present case, the

random variable is a pair (x, z) and the parameter are (w, h).

3 Dose-response Curve

We first show that no estimating functions exist for estimating h. We assume
that signal z is uniformly distributed in the interval [0,1]. Then, the joint
probability distribution of x and z is given by

p(z,z;h, ¢) = 0.5+ z¢p(x — h). (3.1)



Therefore, the score function is

g oy 2@ —h)
u(x, zyh, @) = 05t 20(@—T) (3.2)

On the other hand, a change in ¢(z) is written as

¢(x) = do(z) + t&(x) (3.3)
where £(x) is an arbitrary smooth function satisfying
£(0) =0, (3.4)
because of
¢(0) = 0. (3.5)
The score in the direction £ is given by
2&(z —h)
3 h = . 3.6

Because of ¢'(0) > 0, the score u is not represented as a linear combi-
nation of v’s. However, the u is proved to be included in TV which is the
closure of the set spanned by v’s. This together with Begun et. al. (1983)
gives the following result.

Theorem 2 No estimating functions exist in the semiparametric dose-response
model, nor exist any \/n-consistent estimators.

Remark When the curve ¢ is an odd function satisfying

P(—u) = —¢(u), (3.7)

in an interval [—ug, uo|, there exist estimating functions. So, there exists a
\/n-consistent estimator.

Even though no /n-estimator exists, we can obtain a consistent estima-
tor with slower convergence. To obtain such one, we go back to the original
idea of the estimating equation,

> f(wi,2i:h) =0 (3.8)



and analyze the behavior of i carefully. When the solution % of this equation
is close to the true value h, we have by expansion

Zn: f(ziyzi3h) + 2": I (i, 25 h) (iL —h)+0O (|iL — h|2> =0. (3.9)
i=1 i=1

By neglecting the term of [ — h|2, we have

> f (@i, zi3h)

By the law of large numbers, the denominator converges to na, where

h—h= (3.10)

a=E[f'(z,z;h)]. (3.11)

Let us put
b= E[f(x,zh)] (3.12)

which is 0 when f(z,z;h) is an estimating function. It is not 0 because no
estimating functions exist in the present case. We put

vQZV[f(x,z;h)], (3.13)

where V' denotes the variance. When b is small, the central limit theorem
shows that the numerator is asymptotically normally distributed random
variable which can be approximated by

nb + Vnve, (3.14)

where € is the standard normal random variable subject to N(0,1).
This simple but rough analysis shows that h — h is distributed approxi-
mately as

h—h=—-—=——¢ (3.15)
and the expected square error is

v2 b2

na? a?’

E[(h-h)?] = (3.16)

For large n, the first variance term goes to 0 but the second bias term
remains finite. Therefore, we cannot obtain a consistent estimator.
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In order to minimize the square error, we need to minimize both the bias
and variance terms. To this end, we consider the following window function

frlw ) = 2w (T1)), (3.17)

T T

where w is a smooth rapidly decreasing function satisfying the normalization
condition
/w(m) dr = 1. (3.18)

When 7 is small, the function 7~ !'w{(x — h)/7} is almost 0 outside a small
neighborhood of x = h. On the other hand, the probability of z = 1 and
z = —1 is fifty-fifty at £ = h whatever ¢ is chosen, and is almost so in
a small neighborhood of x = h. Hence, by choosing the above f;, the
bias term b becomes small. However, the variance term v becomes large,
because this estimator takes only those data in a neighborhood at =z = h
into account and discard all the other data outside the small window. This
is the dilemma explained in Geman and Bienenstock (1991). The problem is
how to compromise the bias term and the variance term by choosing a good
window function. It is also important how small 7 we choose depending on
the number n of observations.
When a window function w(s) satisfies

/w(s)skds = 0, k=1,---,p—1 (3.19)
/w(s)spds — b (£0), (3.20)

it is called a p-th order function.

Theorem 3 There exists an estimator h which converges to the true value
in the order of n P/t This estimator is given by using a p-th order
window function.

Proof  We first calculate the necessary terms.

1. bias term:
b = E[fo(n,5h)] (3.21)
- 2/ ( ) bz — h) dz. (3.22)

11



Now we expand ¢ as
o0
o(x) = Z ozt (3.23)
k=1
and use a p-th order window function. Then the bias is
br =2ba,t™” + 0O (Tp+1> , (3.24)
converging to 0 in the order of 77 when 7 is small.

2. variance term:

’U2

2= Bl - (Bl ~ (3.25)

T

v

where

v? = / {w(s))? ds. (3.26)

This shows that the variance term diverges to oo in the order of 771

3. information term:

o= B[] = 2a1/w(s)ds +0(r) (3.27)
~ 2¢'(0) >0 (3.28)

This term does not depend on 7 asymptotically.
The overall error term is now written as

h—h)Q]zi

2
::7 + 48202 TQP] , (3.29)

when we use a p-th order function w. It is easily seen that, as 7 becomes
small, the variance term increases while the bias term decreases. The best
compromise is to choose 7 depending on n such that

1

— ~ 7% 3.30
nr (3:30)
or
Y AT auD (3.31)
The overall error is then given by
E [ (h = h)?] = en 20/CrtD), (3.32)

12



proving that there exists a n?/(2?T1)_consistent estimator. O

The last but important problem is to construct a p-th order function
wp(x) explicitly. To this end, we use the Hermite polynomials defined by

(_1)[) m2/2£67m2/2‘

hy(z) = N/ e (3.33)
They form an orthonormal system,
1 22
e 2 hy(x)hg(z)dr = bpq (3.34)

and hp(x) is a polynomial of degree p.
By expanding w(s) in the form of

1 52
w(s) = e” 2 314+ ) chi(s 3.35
(5) = =e 7 {14 Xeihils)} (3.35)
and by taking the conditions (3.19) into account, we have

wy(s) = \/12_7re_§ {hp—sl(s>} (3.36)

when p is even. See Fig.1. It is possible to obtain a similar one for an odd
p but it is not useful.

4 Orientation Detection

In the m-dimensional case where the separating hyperplane passes through
the origin, we assume that x is isotropically distributed. More definitely,
we assume that it is normally distributed with mean 0 and with the unit
covariance matrix,

a(@) = Wexp{—gw-w}. (4.1)

The probability distribution is

p(@,z;w) = q(x) {05+ 2 p(w - z) }. (4.2)
We now calculate the score function,

 zxd(w-x)
05+ zd(w-x)

(4.3)

13



The score function of the nuisance ¢ in the direction of £(w - ) is similarly
given by

B z&(w - x)
vlél = 0.5+ z¢(w-x) (4.4)
Now let us put
s=w-x. (4.5)

Then v[¢] is a function of s = w -« and z. Since £(s) is an arbitrary smooth
function satisfying £(0) = 0, the nuisance tangent space T is included in the
set of random variables expressed as a function of s and z. The projection
of a random variable u to this space is given by the conditional expectation

Eluls,z]. (4.6)
The projection of the score function u is then given by

zm(s) ¢'(w - x)

E = 4.7
where ¢’ is the derivative of ¢ and
m(s) = FElx|w- -x=s]. (4.8)
Since this is included in TV, the effective score u” is given by

0.5+ z¢p(w - x)

This gives an estimating function whatever ¢ is chosen. In practical situa-
tion, we can employ adaptive method, that is, at first we compute a rough
estimator ¢3 of the true nuisance parameter ¢g, and then use the effective
score u” at qs to derive estimator w. The conditional expectation is explic-
itly written as

Elz|lw-z=s]=sw=(w-x)w. (4.10)
Therefore, the optimal estimating function is

Hz—(w-z)w} ¢h(w - )
0.5+ z go(w - x)

The asymptotic variance of the estimator @ derived by this estimating func-

tion is

uE(

(4.11)

T, zyw) =

im n w-—w)(w-—w)'| = {(%(S)}Q ov|lx|lx-w=s
Jim 0B [ (0 —w) (i —w)"] E[O'%_{%(S)pc =] !

(4.12)
showing that the w is a y/n-consistent estimator.

14



5 General Case

In the general case of a stochastic neuron, no estimating function exist be-
cause of the threshold term. However, we can construct a good asymptotic
estimating function by combining the above two results. More definitely, we
can use the combined function

folx, 2z; hyw) = (fT(a:,z; h,w), uE(w,z; h,w)) (5.1)

having two components where

T T

ol zshw) = 2o (TER) (5.2)

is an asymptotic estimating function constructed with an p-th order window
function, and u” is the effective score function of the direction w defined by
(4.11).

In the same way as previous sections, we can derive asymptotic properties
of the estimator (iL, w ) which is defined as a solution of the estimating
equation of f,. It can be shown that ( h, w ) is a consistent estimator of the
stochastic order

h—h = 0, (n*p/@P“)) : (5.3)
w-—w = 0, (n71/2> . (5.4)

We remark that the convergence speed of h is slower than n =12 but this
doesn’t influence that of w.

6 Conclusion

In this paper, we discussed estimation of parameters of stochastic neurons
in the semiparametric situation. It is shown that there is no estimating
function for threshold parameter h, while there exist estimating functions for
orientation parameter w. We defined the p-th order asymptotic estimating
functions of window type for threshold h. We also proposed an estimator
(il, w ) derived from the combination of the asymptotic estimating function
for h and the effective score function for w. The estimator h of threshold
is consistent with the order n?/(2P+1) where p is an arbitrary integer. The
convergence speed of the orientation estimator @ is of stochastic order n=1/2.

15



Although we dealt with estimation of 50% point and hyperplane in this
paper, it is easy to extend these results to estimation of (o x 100)% point
and hyperplane.

There remain some important problems unsolved in this paper. The first
is how we choose the optimal order p,, of the asymptotic estimating function
for given sample size n. The second is how we can construct a consistent es-
timating function when the distribution of the input & is unknown. We can’t
use the effective score u” in this case, because the conditional expectation
of x for given s = w - x is included in it.

Although we treated only one stochastic neuron in this paper, we want
to extend these results to networks of such neurons in the future.
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