
An Algorithm for Finding All the Spanning Trees in Undirected Graphs

Tomomi MATSUI

(March 1993)

Department of Mathematical Engineering and Information Physics

Faculty of Engineering, University of Tokyo

Bunkyo-ku, Tokyo 113, Japan

Abstract: In this paper, we propose an algorithm for �nding all the spanning trees

in undirected graphs. The algorithm requires O(n +m + �n) time and O(n + m)

space, where the given graph has n vertices, m edges and � spanning trees. For

outputting all the spanning trees explicitly, this algorithm is optimal.

1 Introduction

This paper considers a problem for �nding all the spanning trees in undirected graphs.

This problem has a long history and a lot of algorithms have been proposed (e.g., [4, 5, 9]).

In 1975, Read and Tarjan presented an algorithm by using a technique called backtracking

[7]. Their algorithm requires O(n+m + �m) time and O(n +m) space, where the given

graph has n vertices, m edges and � spanning trees. In [3], Gabow and Myers re�ned the

backtracking approach and obtained an algorithm with O(n+m+�n) time and O(n+m)

space. For outputting all the spanning trees explicitly, this algorithm is optimal.

In this paper, we propose an algorithm which generates all the spanning trees explicitly

and it requires O(n +m+ �n) time and O(n +m) space. Both the time complexity and

the memory requirement are the same as those of Gabow and Myers' algorithm.

Di�erent from the backtracking approach, our algorithm �nds a new spanning tree by

exchanging two edges. It means that our algorithm traverses 1-dimensional faces of the

spanning tree polytope (the convex hull of the characteristic vectors of spanning trees).

More precisely, our algorithm follows a tree structure (a rooted spanning tree) on the skeleton

graph of the spanning tree polytope. Our algorithm can be considered as a specialization of

the reverse search method proposed by Avis and Fukuda [1], which is a general scheme for

solving enumeration problems.

Our algorithm has an advantage in that the tree search rule by which we traverse the tree

structure on the skeleton graph is irrelevant to the time complexity. Thus, one can easily

construct various algorithms with O(n +m + �n) time complexity by using di�erent tree

search rules. For example, employing the depth-�rst search rule and a recursive structure, we

obtain an algorithm whose space complexity is O(n+m): A breadth-�rst implementation

requires as much as O(n� + m) space, but when a parallel computer is available, this

might have an advantage. One can even combine the two tree search rules to construct an

1

algorithm which runs parallel but requires a �xed amount of memory storage. In this sense,

our algorithm is
exible.

In [3], Gabow and Myer proposed an e�cient algorithm by using a specialized data

structure. In our algorithm, we do not require any specialized data structure, but the pre-

procedure plays an important role. In the pre-procedure, we partition all the edges into a

specialized set of forests by employing the algorithm proposed by Nagamochi and Ibaraki [6]

for generating a sparse k-connected graph. Based on this set of forests, we decide the order

of edges to exchange.

2 Main Framework

Let us consider an undirected graph G = (V;E) with the vertex-set V and the edge-

set E: In this paper, we assume that the graph G is connected and it contains neither

self-loops nor parallel edges. We denote jV j by n and jEj by m: An edge-subset

F � E is called a forest, when the graph (V; F) does not contain any cycle. If a forest F

satis�es that the graph (V; F) is connected, we say F is a spanning tree (of G). Denote

the set of all the spanning trees of G by T and jT j by �: For any spanning tree T

and for any edge f 62 T; cycle(T; f) � E denotes the unique cycle in (V; T [ffg): For

any edge g 2 T; the graph (V; T n fgg) contains exactly two components. Thus the set of

edges in E connecting these two components becomes a cut-set and we denote the cut-set

by cut(T; g):

Throughout this paper, we assign a linear ordering on the edge-set by setting E =

fe1; e2; : : : ; emg: For any edge ej; we say that the index of the edge ej is j: We denote

the index of an edge e by Index(e): Given an edge-subset E0 � E; the edge in E0

with the smallest index is called the top edge of E 0 and denoted by top(E 0): Similarly,

we call the edge in E0 with the largest index the bottom edge of E 0 and denote the edge

by btm(E0): For any pair of edge-subsets E 0 and E00; we say E0 is lexicographically

greater than E 00; denoted by E0 >lex E
00 or E00 <lex E

0; when there exists an integer j

satisfying that (1) for any k with 0 � k < j � m; ek 2 E0 if and only if ek 2 E00 and

(2) E0 3 ej 62 E00:

Throughout this paper, we assume that the following property holds

Assumption 1 The edge-subset T � = fe1; e2; : : : ; en�1g is a spanning tree of G:

Clearly, T � is the lexicographically maximum spanning tree of G.

For any spanning tree T 0 (6= T �); �(T 0) denotes the spanning tree (T 0 n ffg) [fgg;

where f is the bottom edge of T 0 and g is the top edge of the cut-set cut(T 0; f):

Lemma 1 Let T 0 be a spanning tree satisfying T 0 6= T �: If �(T 0) n T 0 = fgg; then the

edge g is contained in T �:

Proof. The de�nition of � implies that the edge g is the top edge of cut(T 0; f);

where f is the bottom edge of T 0: Since T � is a spanning tree, cut(T 0; f) \ T � 6= ; and

Index(g) = Index(top(cut(T 0; f))) � Index(top(cut(T 0; f)\T �)) � Index(btm(T �)) = n�1:

Then, Assumption 1 implies that g 2 T �: 2

2

The proof of the above lemma implies that if T 0 (6= T �) is a spanning tree of G; then

j�(T 0) \ T �j = jT 0 \ T �j+ 1; �(T 0) >lex T
0 and 1 � 9k � n� 1; �k(T 0) = T �:

Given a spanning tree T 0(6= T �); we say T 0 is a child of �(T 0) and �(T 0) is the parent

of T 0: Then, we can construct a tree structure, denoted by (T ; �); with the node set T

and the arc set f(T; T 0) 2 T � T j T 0 6= T �; T = �(T 0)g: Clearly, the spanning tree T �

corresponds to the root of this tree structure. Our algorithm searches this tree structure by

using a tree search rule and outputs all the spanning trees of the given graph.

3 Finding All the Children

In this section, we propose a procedure for �nding all the children of a spanning tree.

3.1 Naive Algorithm

Let T be a spanning tree of G and T 0 = (T nfgg)[ffg be a child of T: It is obvious

that g is the top edge of cut(T 0; f): Since cut(T 0; f) = cut(T; g); g is the top edge

of cut(T; g): We denote the edge-subset fe0 2 T j e0 = top(cut(T; e0))g by H(T): Then,

g 2 H(T) and the edge f joins two di�erent components of the graph (V; T nH(T)):

Given a spanning tree T of G; we say that an edge f is a pivot edge of T; if there

exists a child T 0 of T such that T 0 n T = ffg: Then the following lemma characterizes

the pivot edges.

Lemma 2 Let T be a spanning tree of G: An edge f is a pivot edge of T if and only

if f satis�es the conditions that (1) Index(f) > Index(btm(T)); and (2) the edge f joins

a pair of distinct components of the graph (V; T nH(T)):

Proof. When f is a pivot edge, it is clear that f satis�es the above two conditions.

Conversely, suppose that the edge f satis�es above two properties. It is obvious that

cycle(T; f) \H(T) 6= ;: Let g be an edge in cycle(T; f) \H(T): Clearly, the edge-subset

T 0 = (T nfgg)[ffg is a spanning tree of g: From the condition (1), f is the bottom edge

of the spanning tree T 0: Since g 2 H(T) and cut(T; g) = cut(T 0; f); g is the top edge

of cut(T; g) = cut(T 0; f): Thus, T 0 is a child of T and so f is a pivot edge of T: 2

Consider the following problem:

label((V; T);H)

input: a graph (V; T) with a vertex-set V and a spanning tree (an edge-set)

T; and an edge-subset H (� T):

output: labels of vertices satisfying that two vertices have same labels if and

only if the two vertices are connected in the graph (V; T nH)

When vertex labels are obtained by solving the problem label((V; T);H(T)), it is clear that

an edge f is a pivot edge of T if and only if Index(f) > Index(btm(T)) and the end

vertices of f have di�erent labels. Thus, for each edge f; we can check whether f is a

pivot edge or not in O(1) time.

3

When we obtain a pivot edge f of a spanning tree T; the following lemma gives an

idea for �nding all the children of T with bottom edge f:

Lemma 3 Let T be a spanning tree of G and f be an edge which satis�es the condition

Index(f) > Index(btm(T)): Then an edge-subset T 0 with the bottom edge f is a child

of T if and only if there exists an edge g satisfying that g 2 cycle(T; f) \ H(T) and

T 0 = (T n fgg) [ffg:

Proof. Let g be an edge in cycle(T; f)\H(T): Since g 2 cycle(T; f); the edge-subset

T 0 = (T n fgg) [ffg is a spanning tree. From the de�nition of T 0; g is the top edge of

cut(T; g) = cut(T 0; f) and it implies that T is the parent of T 0:

The only if part is easy. 2

Now we propose a naive algorithm for generating all the children of a spanning tree T:

At �rst, we solve the problem label((V; T);H(T)). Next, we �nd all the pivot edges of T by

comparing the end vertices of every edge whose index is larger than that of the bottom edge

of T: When a pivot edge f is obtained, we construct the edge-subset cycle(T; f) \H(T)

and output the spanning tree (T n fgg) [ffg for every g 2 cycle(T; f) \ H(T): In the

worst case, this algorithm checks O(m� n+ 1) edges and �nds that the spanning tree T

has no child. In the next subsection, we give an idea for �nding all the pivot edges e�ciently.

3.2 Pre-procedure

In the rest of this section, we assume that the following condition holds.

Assumption 2 There exists a sequence of integers (j0; j1; : : : ; jr) satisfying that (1)

0 = j0 < j1 < � � � < jr = m; and (2) the edge partition (F1; F2; : : : ; Fr); where

Fs = fejs�1+1; ejs�1+2; : : : ; ejsg; satis�es the condition that:

8s 2 f1; 2; : : : ; rg; Fs is a maximal forest of the graph (V; Fs [Fs+1 [� � � [Fr):

Since the given graph G = (V;E) is connected, the forest F1 is a spanning tree of G and

so the edge indices satisfying the above assumption also satisfy Assumption 1. In the paper

[6], Nagamochi and Ibaraki proposed an O(n +m) time algorithm for �nding a partition

(F1; F2; : : : ; Fr) of the edge-set E which satis�es the above condition. Thus, when we

employ their algorithm in a pre-procedure, we can assign the integer numbers f1; 2; : : : ;mg

to E so that Assumption 2 holds. The above assumption directly implies the following

property.

Claim 4 Let s be an integer satisfying 1 < s � r: For any edge fu; vg 2 Fs; the

vertices u and v are connected in the graph (V; Fs�1):

From the above claim, we can show the following.

Lemma 5 Let T be a spanning tree of G and k the index of the bottom edge of T:

(1) If T has at least one child, then there exists a pivot edge f satisfying the condition

that Index(f) � k + 2n� 3:

(2) For any pivot edge f of T; either Index(f) � k + 2n� 3 or there exists a pivot edge

f 0 satisfying the condition that Index(f)� 2n+ 3 � Index(f 0) < Index(f):

4

Proof. (1) Let f = fu; vg be the pivot edge of T with the smallest index. Suppose

that Index(f) > k + 2n � 3: Let Fs be the forest containing the edge f: Then the

forest Fs�1 satis�es that k < Index(top(Fs�1)) and Index(btm(Fs�1)) < Index(f): From

Claim 4, there exists a path P in the graph (V; Fs�1) connecting u and v: Since f

is a pivot edge, u and v are not connected in the graph (V; T nH(T)): Thus the path

P contains an edge which joins a pair of distinct components of the graph (V; T nH(T)):

From Lemma 2, P contains at least one pivot edge and it is a contradiction. We can show

the property (2) analogously. 2

The above lemma gives a condition to stop searching the pivot edges. Denote the bottom

edge of the current spanning tree T by ek: In our algorithm, we compare the labels of

two end vertices of the edges (ek+1; ek+2; : : : ; em) in this order. When consecutive 2n � 3

edges are not pivot edges, we can stop �nding pivot edges.

3.3 Algorithm for Finding All the Children

Now we describe an algorithm for �nding all the children. In the previous sub-sections,

we discussed a method for �nding all the children of a spanning tree T under the assumption

that the edge-subset H(T) is obtained. However, it seems time consuming to construct

the edge-subset H(T) directly from T: In our algorithm, we construct the edge-subset

H(T 0); for each child T 0 of T: The following lemma gives an idea to obtain H(T 0)

e�ciently.

Lemma 6 Let T be a spanning tree of G and T 0 = (T n fgg) [ffg a child of T:

Then, H(T 0) = H(T) n fe0 2 cycle(T; f) \H(T) j Index(e0) � Index(g)g

Proof. Clearly, T 0 \ T � = (T \ T �) n fgg:

Case (1): Let e0 be an edge in (T 0 \T �) n (cycle(T; f)): Then cut(T; e0) = cut(T 0; e0); and

so e0 2 H(T 0) if and only if e0 2 H(T):

Case (2): Let e0 be an edge in (T 0 \ T �) \ cycle(T; f): Then it is clear that cut(T 0; e0) =

cut(T; e0)4 cut(T; g); where 4 denotes the symmetric di�erence.

Case (2-i): Suppose that e0 62 H(T): Denote the top edge of cut(T; e0) by e00:

When e00 2 cut(T; g); then Index(g) < Index(e00) < Index(e0); g 2 cut(T 0; e0);

and so e0 62 H(T 0): If e00 62 cut(T; g); then Index(e00) < Index(e0); e00 2

cut(T 0; e0); and we have e0 62 H(T 0): Therefore, if e0 2 (T 0 \ T �) \ cycle(T; f)

and e0 62 H(T); then e0 62 H(T 0):

Case (2-ii): Consider the case that e0 2 H(T): Clearly, e0 = top(cut(T; e0)) and

g = top(cut(T; g)): It implies that the top edge of cut(T 0; e0) is either e0 or

g: Thus, e0 is the top edge of cut(T 0; e0) if and only if Index(e0) < Index(g):

Summerizing the above, we obtain the required result. 2

The above lemma says that if T 0 is a child of a spanning tree T; then H(T 0) � H(T) �

H(T �) = T �:

5

Now we describe our algorithm.

Algorithm A

input: a spanning tree T and the edge-subset H = H(T)

output: all the pairs f(T 0; H(T 0)) j T 0 is a child of Tg

A1: begin
A2: solve the problem label ((V; T);H) ;

A3: set k := Index(btm(T)) ; set j0 := k ; set j := k + 1 ;
A4: while j � j0 + 2n� 3 do

A5: begin

A6: if labels of two ends of ej are same then set j := j + 1;

A7: else

A8: begin

A9: set f := ej ; set j 0 := j ; set j := j + 1 ; set D := cycle(T; f) \H ;
A10: for g 2 D do

A11: begin

A12: set T 0 := (T n fgg) [ffg ;

A13: set H 0 := H n fe0 2 D j Index(e0) > Index(g)g ;
A14: output (T 0;H 0) ;

A15: end;
A16: end;

A17: end;
A18: end

Now, we discuss the time complexity of the above algorithm. In our algorithm, we

maintain the current spanning tree T by the adjacency list of the graph (V; T): Then, for

any pair of vertices, we can �nd a unique path in T connecting the pair in O(n) time by

employing a tree search algorithm, e.g., depth-�rst search and/or breadth-�rst search (see

[8]). For each edge e of the current spanning tree T; we assume that we can check whether

e 2 H or e 62 H in O(1) time. For example, it is accomplished by a 1-dimensional array

indexed by the edges T which represents the characteristic vector of H: Then, we can

solve the problem label ((V; T); H) in O(n) time by applying a tree search algorithm to

the graph (V; T n H): Thus, the time complexity of every line in the above algorithm is

bounded by O(n): Especially, Lines A4 and A6 require O(1) time. Let � 0 be the number

of children of T: Lemma 5 says that Lines A4 and A6 are executed at most 2(2n � 3)� 0

times. All the other lines are executed at most � 0 times. From the above, the overall

time complexity becomes O(n+m+ � 0n): Clearly, the memory requirement is bounded by

O(n+m):

4 Algorithms for Finding All the Spanning Trees

Here, we discuss some algorithms for �nding all the spanning trees in undirected graphs.

In the previous section, we described an algorithm for �nding all the children of a span-

ning tree. By using the algorithm as a subprocedure, we can construct a spanning tree

enumeration algorithm which searches the tree structure (T ; �) by using a tree search rule,

6

e.g., depth-�rst search rule and/or breadth-�rst search rule. As described in the previous

section, we can assign the integer numbers f1; 2; : : : ; mg to E so that Assumption 2 holds

by applying Nagamochi and Ibaraki's algorithm in O(n +m) time. Thus, the overall time

complexity of the algorithm becomes O(n+m+ �n):

Now we discuss the memory complexity. Each subprocedure requires a memory space to

maintain the doublet (T 0;H(T 0)) for each child T 0 of the current spanning tree. Clearly,

any spanning tree has O(nm) children. It implies that if we use the depth-�rst search rule,

the algorithm maintains at most O(n2m) doublets, since the height of the tree structure

(T ; �) is O(n): Thus the algorithm requires O(n3m) memory space. If we employ both

the depth-�rst search rule and the recursive structure, each subprocedure maintains only

one doublet and so the over all memory complexity becomes O(n2):

In the rest of this section, we describe an O(m + n) space algorithm. We modify the

algorithm obtained by employing the depth-�rst search rule and a recursive structure as

follows. When we apply the depth-�rst search to the tree structure, we have to maintain

a sequence of spanning trees (T 0 = T �; T 1; T 2; : : : ; T l) satisfying that T j is a child

of T j�1 and the length l is less than n: To save the memory space for the doublets

f(T j; H(T j)) j j = 1; 2; : : : ; lg; we maintain the relative di�erences ff jg = T j n T j�1;

fgjg = T j�1 n T j ; and �Hj = H(T j�1) n H(T j): Since l < n; we need to maintain at

most O(n) edge pairs (f j ; gj): From Lemma 6, T � = H(T 0) � H(T 1) � � � � � H(T l)

and so the overall memory space required for the edge-subsets f�H1;�H2; : : : ;�H lg is

bounded by O(n): At last, we show an idea to save the memory space for the edge-subsets

Dj = cycle(T j�1; f j) \H(T j�1) (j = 1; 2; : : : ; l): Clearly, T j(g) = (T j�1 n fgg) [ff jg is

a child of T j�1 for every g 2 Dj: If we construct the children fT j(g) j g 2 Djg in the

order that the edge index of g is decreasing, we do not need to maintain the edge-subset

Dj: When we update the edge g; we construct the edge-subset Dj again in O(n) time

and replace the edge g by the bottom edge of fe0 2 Dj j Index(e0) < Index(g)g: The

above modi�cation saves the memory complexity to O(m+n) without decreasing the time

complexity. However, it seems that this modi�cation makes the algorithm slower in practice.

In the following, we describe the above algorithm in a pseudo code.

Algorithm B

B1: begin

B2: procedure find-children (T;H)

B3: (comment: T is the current spanning tree and H = H(T))

B4: begin

B5: output T ;

B6: solve the problem label ((V; T);H) ;

B7: set k := Index(btm(T)) ; set j0 := k ; set j := k + 1 ;

B8: while j � j 0 + 2n � 3 do

B9: begin

B10: if labels of two ends of ej are di�erent then j := j + 1 ;

B11: else

B12: begin

B13: set f := ej ; set j0 := j ; set j := j + 1 ; set g := en ; set �H := ; ;

7

B14: do

B15: begin

B16: set g := btm(fe0 2 cycle(T; f) \H j Index(e0) < Index(g)g) ;
B17: set T := T n fgg [ffg ; set H := H n fgg ; set �H := �H [fgg ;
B18: find-children (T;H) ;
B19: set T := T n ffg [fgg ;
B20: end;
B21: while g is not the top edge of cycle(T; f) \H ;
B22: set H := H [�H
B23: end;
B24: end;
B25: end; (comment: end of procedure find-children)
B26: begin (comment: start of the main routine)
B27: set T = T � ; set H = T � ;
B28: find-children (T;H) ;
B29: end; (comment: end of the main routine)
B30: end

5 Discussions

In this section, we give some ideas which are useful for practical implementations.

In Algorithms A and B, we solve the problem label((V; T);H(T)). However, from the

vertex labels of the current spanning tree, we can e�ciently construct the vertex labels of

every child in practice. Assume that a pivot edge f is obtained. If we construct the child

(T n fgg) [fgg for each edge g 2 D = cycle(T; f) \H(T) in the order that the index of

the edge g is decreasing, then the components of the graph (V; T nH(T)) are merged one

by one. So, we can employ a comfortable data structure for disjoint sets (see [2] Section 22

for example). In the above modi�cation, we have to sort the edge-subset D by the edge

indices and it requires O(jDj log jDj) time. Since the current tree has jDj children with

bottom edge f; it does not increase the time complexity.

For each child of the current spanning tree, we can enumerate their children indepen-

dently in our algorithm without increasing the time complexity. In the previous section, we

proposed an algorithm which searches the tree structure (T ; �) by the depth-�rst search

rule. However, if a parallel computer is available, it seems that the breadth-�rst search rule

provides an e�cient speedup over the sequential algorithm.

When we have the lexicographically minimum spanning tree, we can �nd the pivot edge

with the largest index in O(n) time by using the following property.

Lemma 7 Let T be a spanning tree with at least one child. Then the pivot edge of T

with the largest index is contained in the lexicographically minimum spanning tree of G:

Proof. Let f be the pivot edge of T with the largest index. Then there exists an edge

g in cycle(T; f) \ H(T): Clearly, f is the bottom edge of the cut-set cut(T; g): For

any cut-set C 0 � E; the bottom edge of C 0 is contained in the lexicographic minimum

spanning tree. Thus f is contained in the lexicographically minimum spanning tree. 2

8

The above lemma implies that when we check the edges in the lexicographically minimum

spanning tree, we can �nd the pivot edge of T with the largest index in O(n) time, if T

has a child. Let el be the pivot edge of the current spanning tree with the largest index

and ek the bottom edge of the current spanning tree. Then, in Algorithms A and B, we

can apply the `pivot edge test' for each edge in fek+1; ek+2; : : : ; elg in any order without

changing the time complexity. When we use a parallel computer, we can apply the above

pivot edge tests independently.

Lastly, we consider the case that the given graph is weighted. Let w(e) be the weight

of the edge e 2 E:

Lemma 8 Let T � = fe1; e2; : : : ; en�1g be a minimum weight spanning tree. If the

edge-set fe1; e2; : : : ; emg satis�es Assumption 1, then for any spanning tree T 0(6= T �);X

e2T 0

w(e) �
X

e2�(T 0)

w(e):

Proof. Denote the spanning tree �(T 0) by T = (T 0 n ffg) [fgg: Assume the contrary

that
X

e2T 0

w(e) <
X

e2T

w(e): Since
X

e2T

w(e) =
X

e2T 0

w(e)� w(f) + w(g); w(f) < w(g): Then

it is clear that w(g) > w(f) � minfw(e) j e 2 cut(T; g)g: It contradicts with the property

that g is contained in a minimum weight spanning tree T �: 2

Then the weight of a spanning tree is greater than or equal to that of its parent, if it

exists. When we need to solve a minimum weight spanning tree problem with additional

constraints, we can construct an enumerative algorithm which searches the tree structure

(T ; �) by using the best-�rst search rule.

References

[1] D. Avis and K. Fukuda, Reverse search for enumeration, Research report 92-5, Graduate
School of Systems Management, The University of Tsukuba, (1992).

[2] T.H. Cormen, C.H. Leiserson and R.L. Rivest, Introduction to Algorithms (The MIT-
Press, Cambridge, Massachusetts, 1990).

[3] H.N. Gabow and E.W. Myers, Finding all spanning trees of directed and undirected
graphs, SIAM J. Computing 7 (1978) 280{287.

[4] W. Mayeda and S. Seshu, Generation of trees without duplications, IEEE Trans. on
Circuit Theory CT-12 (1965) 181{185.

[5] G.J. Minty, A simple algorithm for listing all the trees of a graph, IEEE Trans. on
Circuit Theory CT-12 (1965) 120.

[6] H. Nagamochi and T. Ibaraki, Linear time algorithm for �nding a sparse k-connected
spanning subgraph of a k-connected graph, Algorithmica 7 (1992) 583{596.

[7] R.C. Read and R.E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths,
and spanning trees, Networks 5 (1975) 237{252.

[8] R.E. Tarjan, Depth-�rst search and linear graph algorithms, SIAM J. Comput. 1 (1972)
146{160.

[9] H. Watanabe, A computational method for network topology, IRE Trans. on Circuit
Theory CT-7 (1960) 296{302.

9

