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1 Introduction

Recently, dynamical systems that solve some optimization problems have

been proposed and studied actively, which seems to be motivated mainly

by the hope of analog parallel computing. Since Karmarkar [1] proposed
the projective scaling algorithm, a kind of interior point method for solv-
ing linear programming problems, its modi�cations and analyses have been

made by many researchers. Further, some gradient ows on a Lie group
are usefully applied for solving optimization problems, such as sorting of
lists (Brockett [2]), diagonalization of matrices (Brockett [2], Nakamura [3]),

matching problems (Brockett [4]), etc. In analyzing these dynamical sys-
tems, di�erential geometry played an essential role (Bayer and Lagarias [5],
Brockett [6]), which is the same as in classical mechanics [7] or in nonequi-
librium statistical physics [8].

On the other hand, infomation geometry, originated from the geometric
study of the manifold of probability distributions (Amari [9][10], Nagaoka
and Amari [11], Amari et al. [12], Chentsov [13], etc), has been successfully
applied to many �elds, such as statistical inference (Amari [10], Kumon

and Amari [14], Amari and Kumon [15], Okamoto et al. [16]), control sys-
tems theory (Amari [17], Ohara and Amari [18]), multiterminal information
theory (Amari and Han [19], Amari [20]), and neural networks (Amari et

al. [21]), etc. It is tempting to apply information geometry to the anal-
ysis of dynamical systems mentioned above. Obata et al. [22] applied it,
though very naively, to some nonequilibrium processes, to �nd that the
Uhlenbeck{Ornstein process is a geodesic motion with respect to the expo-

nential connection on a Gaussian model. Nakamura [23] also pointed out
that certain gradient ows on Gaussian and multinomial distributions can be

characterized as completely integrable Hamiltonian systems. It seems that
these results are important suggestions toward the connection between two

seemingly unrelated �elds, information geometry and integrable dynamical
systems.

In this paper, general dualistic properties of a gradient ow on a manifold

M associated with a dualistic structure (g;r;r�) is studied from an infor-
mation geometrical point of view. In order to demonstrate the importance
of the information geometrical viewpoint in analyzing dynamical systems,
some applications are given to such �elds as statistical inference, neural

networks, EM algorithms, linear programming problems, and mathematical
biology.
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2 Dualistic geometry

We �rst give a brief summary of dualistic geometry. For details, consult

[10][24]. Mathematicians are also studying the dualistic geometry (see No-

mizu and Simon [25], Kurose [26]). Let M be a Riemannian manifold with
metric g. Two a�ne connections represented by covariant derivativesr and
r� on M are said to be dual with respect to g if, for any vector �eld A, B,

and C on M ,
Ag(BjC) = g(rABjC) + g(Bjr�

AC); (2.1)

where g(BjC) denotes the inner product of B and C with respect to the
metric g. If the torsions and the Riemannian curvatures of M with respect
to the connectionsr andr� vanish,M is said to be dually at or simply at.
This does not imply that the manifold is Euclidean, because the Riemannian

curvature due to the Levi{Civita connection does not necessarily vanish. For
a dually at manifold M , a pair of divergences are de�ned in the following
way. We �rst construct mutually dual a�ne coordinates on M . Since M
is at with respect to r and r�, M has r{a�ne coordinate � = [�i] and

r�{a�ne coordinate � = [�i] such that rA@i = 0 for the natural basis
vector �eld @i = @=@�i and that r�

A@
j = 0 for the natural basis vector �eld

@j = @=@�j. Moreover, we can choose � and � such that

g(@i j @j) = �ji (2.2)

holds at any point in M . Then it was proved that there exist such potential
functions  (�), �(�) on M satisfying

�i = @i�(�); �i = @i (�);  (�) + �(�)� � � � = 0;

where � � � = �i�i and the Einstein's summation convention �i�i =
P

i �
i�i

is assumed hereafter. By using these potentials, we de�ne the r{divergence
D from p1 2M to p2 2M as

D(p1 k p2) =  (�2) + �(�1)� �2 � �1;
where �1 and �2 are the �{ and �{coordinates of points p1 and p2, respec-

tively. According to the duality, the r�{divergence D� is given as

D�(p1 k p2) = D(p2 k p1):

Note that our nomenclature of divergences is di�erent from the convention
in Amari's book [10], where the r{divergence D from p1 2M to p2 2M is

3



de�ned in a converse manner as

D(p1 k p2) =  (�1) + �(�2)� �1 � �2:

The statistical manifold, which is a family of probability distributions, is a
good example of such a structure. In this case, the r{divergence is proved
to be equal to the Kullback{Leibler information.

Next, we tackle the converse problem. When a potential U(�) is given
on a manifold M , where � = [�i] is a local coordinate system of M , we
construct a natural dually at structure on it. In the following, we restrict
ourselves to a domain � in which the potential U(�) is a convex function

with respect to �. We �rst de�ne another coordinate system � = [�i] and
the corresponding potential V (�) by a Legendre transformation as

�j = @jU(�); V (�) = max
�2�

f�i�i � U(�)g:

Then �j = @jV (�) holds, and the pair (�; �) satis�es the identity

U(�) + V (�)� � � � = 0:

The metric h on M is de�ned by

hij = @i@jU(�):

This de�nition can be rewritten as

hij =
@�j
@�i

;

which readily leads to the relation

hij =
@�j

@�i
= @i@jV (�);

where (hij) is the inverse of matrix (hji). This indicates that the coordinate
systems � and � are mutually dual with respect to h in the sense of Eq.

(2.2). Further let us set
Tijk = @i@j@kU(�);

and de�ne the �{connection r(�) by its parameters

�
(�)
ijk = h(r(�)

@i
@j j @k) = [ij; k]� �

2
Tijk;
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where [ij; k] is the Levi{Civita connection of the metric h. Then the cor-
responding covariant derivatives r(�) and r(��) are dual with respect to

h, so that M has a dualistic structure (h;r(�);r(��)). In particular, when
� = �1, M is dually at, and � and � become � = +1 and �1 a�ne coordi-
nates respectively, which can be a�rmed by a straightforward computation.
In this way, a dualistic structure (h;r(+1);r(�1)) on M is derived in a nat-

ural manner from the potential U(�). The (+1){divergence is de�ned as
follows:

D(+1)(p1 k p2) = U(�2) + V (�1)� �2 � �1
= U(�2)� U(�1)� (�2 � �1) � @�U(�1);

where (�1; �1) and (�2; �2) are the dual a�ne coordinates of the points
p1; p2 2 M , respectively. Note that the point whose � coordinates vanish

corresponds to the minimum of the potential U(�).

3 Dualistic Dynamical Systems on a Flat Mani-

fold

In this section, dualistic structures of a gradient system on a dually at
manifold is studied.

Theorem 1 Let M be a dually at manifold with respect to the dualistic

structure (g;r;r�), in which a potential function U(p) on M is de�ned by

U(p) = D(q k p);

where D(q k p) is the r{divergence and q 2 M is an arbitrarily pre�xed

point. Then the gradient ow [27, p. 205]

_�i = �gij@jU(�) (3.1)

converges to the point q along the r�{geodesic, where � is the r{a�ne

coordinates of point p, and U(�) = U(p(�)).

Proof Let us denote the mutually dual a�ne coordinates of the points
p and q by (�; �) and (�0; �0), respectively. Since r{divergence D(q k p)
becomes

D(q k p) =  (�) + �(�0)� � � �0;
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the gradient ow can be expressed in the form

_�i = �gijf@j (�)� �0jg:

By multiplying gji to both sides and using the identity

gji _�
i =

@�j
@�i

d�i

dt
=
d�j
dt
;

we have
_�j = �f�j � �0jg;

which can readily be integrated to obtain

�j(t) = �0j + f�j(0)� �0jge�t:

This proves the theorem. 2

Here we give some examples of Theorem 1. Let us consider the family

of Gaussian probability distributions with mean � and variance �2:

p(x;�; �2) =
1p
2��

exp

"
�(x� �)2

2�2

#
:

This is a typical example of exponential family since it can be represented

in the form
log p(x;�; �2) = �1f1(x) + �2f2(x)�  (�)

where

�1 =
�

�2
; �2 =

1

2�2

and

f1(x) = x; f2(x) = �x2;  (�) =
�2

2�2
+ log

p
2��:

Since the cumulant generating function

 (�) = log

Z
exp

n
�1f1(x) + �2f2(x)

o
dx

is a convex function in � = (�1; �2), the dually at structure is naturally

de�ned. The metric
gij = @i@j (�)
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is the Fisher information metric, r(1) is the exponential or e{connection,
and r(�1) is the mixture or m{connection [10]. Throughout this example,

g is the Fisher metric, �jq are the e-a�ne coordinates of the point q, and
p�(x) = p(x;�; �2).

We �rst let r and r� be exponential and mixture connections, respec-
tively. Further let us set q as a �{distribution concentrated on the origin.

Then the potential becomes

U(�) = D(e)(q k p�) = K(q; p�) =  (�) + const:; (3.2)

where K is the Kullback{Leibler information de�ned by

K(p1; p2) =

Z
p1(x) log

p1(x)

p2(x)
dx:

The corresponding gradient ow coincides with Nakamura's dynamics [23],
which converges to the �{distribution q along an m{geodesic. Strictly speak-

ing, some suitable renormalization is needed in (3.2) since the constant di-
verges in this case.

Conversely, let r and r� be mixture and exponential connections, re-
spectively. Further let us set q as a uniform distribution, then �2q vanishes

and �1q remains inde�nite. In this case, r{a�ne parameters are the expec-
tation parameters �i = E�[fi(x)] where E� [ � ] denotes expectation at p�,
and the dynamics takes the form

_�i = �gij@jU(�): (3.3)

Since the potential becomes (after some renormalization)

U(�) = D(m)(q k p�) = K(p�; q) = �[ entropy of p� ]� �iq�i + const:;

the dynamics is a steepest ascent ow of entropy, which converges to the
uniform distribution q along an e{geodesic. Moreover, if we rescale the time
logarithmically such as

(t+ �) _�i = �gij@jU(�); (t � 0; � > 0); (3.4)

then the dynamics, which traces the same trajectory but in a di�erent speed,

can be integrated easily in the e{a�ne parameters and is given by

�j(t) = �jq +
�

t+ �
(�j(0)� �jq);
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where �j(0) is the e{a�ne coordinates of the initial point. This solution can
be expressed also in the (�; �) space as

�(t) =
�1(t)

2�2(t)
=
�1(0)� �1q
2�2(0)

+
�1q

2��2(0)
(t+ �);

�2(t) =
1

2�2(t)
=

1

2��2(0)
(t+ �):

Here we used the relation �2q = 0. If we set

�0 =
�1(0)� �1q
2�2(0)

; v =
�1q

2��2(0)
; D =

1

4��2(0)
;

then we have

�(t) = �0 + v(t+ �); �2(t) = 2D(t+ �);

which shows that the dynamics (3.4) is nothing but a Uhlenbeck{Ornstein
process [22].

We next consider an example in the linear programming problem of the

form (
minimize c � x;
subject to Ax � b:

(3.5)

In order for the constraints Ax < b to be satis�ed automatically, we intro-
duce a convex potential function on Rn by

U(x) = �
X
i

log (bi �Aijx
j)

(see also Lagarias [28]). From this potential, we can derive a dualistic struc-
ture (h;r(+1);r(�1)), in which x = (xi) forms a r(+1){a�ne coordinate

system. The dual r(�1){a�ne coordinate system y = (yj) is

yj =
X
k

Akj

bk � Aklxl
;

and the metric h is

hij =
X
k

AkiAkj

(bk �Aklxl)2
:

Let us consider a gradient ow with respect to the potential  (x) = c � x :

_xi = �hij@j (x) = �hijcj :
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Then it is shown that the ow converges to the optimum point for the
problem (3.5) along (�1){geodesic. Indeed,

d

dt
 (x) = ci _x

i = �hijcicj < 0:

The reason why the potential  (x) = c � x is used here instead of the diver-
gence is clari�ed in section 5.3.

4 Constrained Dynamics on a Submanifold

In this section, we investigate a dynamical system which is induced on a
submanifold N = fp� ; � 2 � � Rng embedded in a at manifold M

with respect to a dualistic structure (g;r;r�). Theorem 1 indicates that
the gradient ow in M with respect to the potential U(p) = D(q k p) is
a dynamical system whose gradient vector is the tangent vector along r�{
geodesic connecting the two points p and q (for short, r�{tangent vector).

Therefore we can construct a constrained dynamics on N by projecting the
gradient r�{tangent vector onto the tangent space Tp(N) with respect to
the metric g, see Fig.1. Such a dynamical system on N induced from a
gradient ow on M is also a gradient ow on N of the form

_�i = �~gij @

@�j
D(q k p�); (4.1)

where � is an arbitrary local coordinate system of N , and

~gij = g(
@

@�i
j @
@�j

)

is an induced metric on N and (~gij) is the inverse matrix of (~gij). Let us ex-
amine geodesic characterization of such restricted dynamics. In general, the

dualistic structure (g;r;r�) on a manifold M naturally induces a dualistic

structure (~g; ~r; ~r�) on a submanifold N of M by projection with respect
to the metric g onto the tangent space T (N), i.e., for every vector �elds

A;B;C on N , ~r and ~r� are de�ned by

g(rABjC) = g( ~rABjC) = ~g( ~rABjC);
g(r�

ABjC) = g( ~r�
ABjC) = ~g( ~r�

ABjC):
Duality of ~r and ~r� follows directly from the de�nition (2.1). A submanifold
N is called autoparallel with respect to the connection r if for all A;B 2
T (N), rAB 2 T (N) holds.
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Theorem 2 If N is r{autoparallel, then the gradient ow (4.1) converges

to a unique stationary point independent of the initial point along ~r�{

geodesic.

Proof Since N is r{autoparallel, Pythagorian theorem [10] assures that

there exists a unique point p(0) on N satisfying

D(q k p�) = D(q k p(0)) +D(p(0) k p�):

Then
@

@�j
D(q k p�) = @

@�j
D(p(0) k p�):

Moreover, the following lemma indicates that

D(p(0) k p�) = ~D(p(0) k p�);

where ~D denotes the ~r{divergence on N . Therefore, the theorem can be
proved in the same way as Theorem 1 by taking � as an ~r{a�ne coordinate
system without loss of generality. 2

Lemma 1 Given a at manifold M with respect to (g;r;r�). If a subman-

ifold N embedded in M is r or r�{autoparallel, then N is also intrinsically

at with respect to (~g; ~r; ~r�) and for every two points p1; p2 2 N ,

D(p1 k p2) = ~D(p1 k p2);

where D and ~D are r{divergence on M and ~r{divergence on N , respec-

tively.

Proof First, we show the atness of N . A straightforward calculation

shows that the connection coe�cients of ~r and ~r� with respect to an arbi-
trary coordinate system of N become ~�ijk = �ijk and ~��ijk = ��ijk. Then if
M is torsion free with respect to r and r�, N is automatically torsion free
with respect to ~r and ~r�. To evaluate the Riemanian curvatures of N , we

�rst let N be r{autoparallel. Then the following commutative diagram

Tp1(M)
r�! Tp2(M)

id: " # id:

Tp1(N)
~r�! Tp2(N)
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indicates that the parallel transports of tangent vectors of N with respect
to ~r does not depend on the choice of the path connecting two points p1
and p2 since M is r{curvature free. Therefore, N is ~r{curvature free.
Moreover, in general, when one of the dual connections is curvature free,
the other is automatically curvature free. Hence N is at. In the same way,
r�{autoparallel case can be proved.

Next, we derive the divergence equality. Let the dual a�ne coordinate
systems of M be (�; �) and the corresponding dual potentials ( (�); �(�)).
Suppose N is r{autoparallel, then N can be parameterized with a ~r{a�ne
parameter � = [�i] of N as

�i(�) = aij�
j + bi; (9aij;

9bi 2 R):

The accompanying dual ~r�{a�ne parameter � = [�i] satis�es

�ji = g(
@

@�i
j @

@�j
) =

@�k

@�i
@�l
@�j

g(
@

@�k
j @

@�l
) = aki

@�k
@�j

:

Integration of this equation yields

aki �k(�) = �i + ci; (9ci 2 R):

Further, let us de�ne two functions on N by

~ (�) =  (�(�))� ci�
i;

~�(�) = �(�(�))� bi�i(�):

Then we have

~ (�) + ~�(�)� � � � = f (�(�))� ci�
ig+ f�(�(�))� bi�i(�)g � �i�i

=  (�(�)) + �(�(�))� (ci + �i)�
i � bi�i(�)

=  (�(�)) + �(�(�))� (aki �
i + bk)�k(�)

=  (�(�)) + �(�(�))� �(�) � �(�)
= 0;

and

@

@�i
~ (�) =

@ 

@�k
@�k

@�i
� ci = �ka

k
i � ci = �i;

@

@�i
~�(�) =

�
@�

@�k
� bk

�
@�k
@�i

= (akj �
j)
@�k
@�i

= �i:
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These relations imply that the two functions ~ (�) and ~�(�) form the dual
potentials on N with respect to the dualistic structure (~g; ~r; ~r�). Then

~D(p1 k p2) = ~ (�2) + ~�(�1)� �2 � �1
= f (�(�2))� ci�

i
2g+ f�(�(�1))� bi�i(�1)g � �i2�1i

=  (�(�2)) + �(�(�1))� (ci + �1i)�
i
2 � bi�i(�1)

=  (�(�2)) + �(�(�1))� (aki �
i
2 + bk)�k(�1)

=  (�(�2)) + �(�(�1))� �(�2) � �(�1)
= D(p1 k p2):

On the other hand, when N is r�{autoparallel, then the above proof leads
to

D�(p1 k p2) = ~D�(p1 k p2);
which shows D(p2 k p1) = ~D(p2 k p1) according to the duality. 2

Note that Theorem 1 can be derived directly from Theorem 2 by setting
M = N .

5 Examples

In this section, we give some examples which can be viewed as gradient
systems on submanifolds embedded in manifolds having dualistic structures.

5.1 Maximum likelihood estimation

We �rst give a rather trivial example from statistical inference. Let M =
fp�g�2� be a parametric statistical model embedded in the set of all the

positive probability distributions P on a �nite set X . The maximum likeli-
hood estimation is a method to estimate the parameter � from n observed
data (x1; � � � ; xn) 2 X n such that

max
�

nY
i=1

p�(xi):

It is easy to derive another equivalent formulation which takes the form

min
�

K(qn; p�);

12



where K is the Kullback{Leibler information which is identical to the di-
vergence with respect to the exponential connection, and qn is the empirical

distribution de�ned by

qn(x) =
1

n

nX
i=1

�xi(x); �xi(x) =

(
1; if x = xi;
0; otherwise:

Consider the dynamics of the form

_�i = �gij@jK(qn; p�); (5.1)

where gij is the inverse of the Fisher metric on M .

Corollary 3 The gradient ow (5.1) converges to a local maximum likeli-

hood estimate on M . If M is an exponential family, then it converges to the

unique maximum likelihood estimate independent of the initial point along

an m-geodesic.

5.2 Boltzmann Machines and EM algorithms

We next consider a neural network called Boltzmann machine with n visible

units and m hidden units [29]. Let xV = (xV1 ; � � � ; xVn ) 2 f0; 1gn and xH =
(xH1 ; � � � ; xHm) 2 f0; 1gm be the states of visible and hidden units, respectively.
The stationary distribution of the Boltzmann machine is written as

p(xV ;xH ;w) = expf�E(xV ;xH ;w)�  (w)g;

where  (w) is the normalization factor and

E(xV ;xH ;w) =
X
i>j

w
ij
V x

V
i x

V
j +

X
i>j

w
ij
Hx

H
i x

H
j +

X
i;j

w
ij
V Hx

V
i x

H
j

is the \energy" of the state x = (xV ;xH) and w = (wij
V ; w

ij
H ; w

ij
V H). The coef-

�cients wij
V ; w

ij
H ; w

ij
V H are connection weights among the visible units, among

the hidden units, and between the visible and the hidden units, respectively.
The thresholds are included in the terms wi0

V and wi0
H by emvisaging virtual

units xV0 = xH0 � 1. Let us denote the set of all the probability distri-

butions on x = (xV ;xH) by P. Then P is a manifold having a dualistic
structure as a statistical manifold with dimP = 2n+m � 1. The Boltzmann
machine is trained by examples given from a stationary distribution Q(xV )
on the visible units. The purpose of this learning is to approximate Q(xV )
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by p(xV ) =
P
xH

p(xV ;xH ;w) of the stationary distribution of the Boltz-
mann machine by modifying the parameter w. Amari et al. [21] proved that

learning of Boltzmann machines is equivalent to the divergence minimization
problem of the form

min
p2B; q2EQ

K(q; p): (5.2)

Here, K is the Kullback{Leibler information, B is the set of all the proba-
bility distributions in P realizable by the Boltzmann machine, i.e.,

B = fp(xV ;xH ;w) 2 P ; wij 2 Rg;

and EQ is the set of all the probability distributions in P that have the same

marginal distribution Q(xV ) on the visible units, i.e.,

EQ = fq(xV ;xH) 2 P ;
X
xH

q(xV ;xH) = Q(xV )g:

It is easy to see that B is an exponential family with dimB = 1
2(n+m)(n+

m+1) and EQ is a mixture family, since EQ is de�ned by a linear constraint,
with dimEQ = 2n(2m � 1).

We propose simultaneous gradient ows to solve the minimization prob-
lem (5.2), 8>>>><

>>>>:
_wij = �gij;kl @

@wkl
K(q; p);

_qk = �gkl @
@ql

K(q; p);

(5.3)

where wij are e{a�ne parameters of p 2 B, qk are m{a�ne parameters
of q 2 EQ, g

ij;kl is the inverse of the Fisher metric on B, and gkl is the
Fisher metric on EQ. Since K(q; p) = D(e)(q k p) = D(m)(p k q) where D(e)

and D(m) are divergences with respect to the exponential and the mixture
connections, the dynamical system (5.3) has a geometrical interpretation in
the sense of section 4: The dynamics for p is a restricted gradient ow on B
under the inuence of the \force" from q ( more precisely, m{tangent vector

), while the dynamics for q is a restricted gradient ow on EQ under the
\force" from p ( e{tangent vector ), each ow being coupled through the
equation (5.3) to form a two body dymanics, see Fig. 2.

If there are no hidden units, then dimEQ = 0 and the gradient system

(5.3) is reduced to the same situation as in the maximum likelihood esti-
mation. In the general case, the dynamics converges to a local minimum.
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Observing the fact that the dynamics (5.3) can be solved simultaneously, it
is expected that its convergence is much faster than the conventional nested

iterative EM algorithm or its modi�cations [30].

5.3 Linear Programming

Let us consider a general linear programming problem in a canonical form(
minimize c � x;
subject to Ax = b; x � 0:

(5.4)

The problem considered in section 3 is of course included. In this formula-

tion, the domain of the problem can be regarded as a submanifold M of the
enveloping space Rn

+, where

Rn
+ = fx 2 Rn ; x � 0g; M = fx 2 Rn

+ ; Ax = bg:
Let us construct a dualistic structure on Rn

+ in which x becomes a (+1){
a�ne coordinate system. In order for the nonnegativity constraints x � 0
to be satis�ed automatically, we introduce a convex potential function on
Rn
+ by

U(x) = �
nX
i=1

log xi:

By using the general scheme presented in section 2, we can derive a natural

dualistic structure (h;r(+1);r(�1)). For instance, the metric is

hij(x) = @i@jU(x) =
�ij
(xi)2

;

the (�1){a�ne coordinate system

yj = @jU(x) = � 1

xj
;

and (+1){divergence

D(+1)(p0 k p) =
nX
i=1

"
xi

x0i
� log

xi

x0i

#
� n:

Setting aside the constraints Ax = b, we have the trivial explicit solution

of the problem (5.4) as

xi0 =

(
0; (ci � 0);

+1; (ci < 0):
(5.5)
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Let p0 be this optimal point. We then have a (formal) gradient system

_xi = �hij@jD(+1)(p0 k p); (5.6)

which converges to the p0 along a r(�1){geodesic. Returning to the origi-
nal constrained problem, the submanifold M determined by the a�ne con-

straints Ax = b is r(+1){autoparallel since x is (+1){a�ne coordinate sys-
tem. So we have

Corollary 4 Let an arbitrary coordinate system on M be � = [�i]. Then

the constrained dynamics

_�i = �~hij @

@�j
D(+1)(p0 k p�)

on M converges to the optimum solution of the linear programming problem

(5.4) along a ~r(�1){geodesic.

However, since (5.5) is singular, this result seems quite formal. A realistic
modi�cation of the dynamics (5.6) may be

_xi = �hij@jfc � xg = �hijcj;

whose gradient vectors are parallel to those of (5.6) but always �nite. This is
a steepest descent ow of the potential  (x) = c�x with respect to the metric
h in Rn

+ and is also a r(�1){geodesic motion. Therefore, the corresponding

gradient ow constrained on the submanifold M

_�i = �~hij @

@�j
fc � x�g

has the same properties as in Corollary 2. This is the continuous version of
the a�ne scaling method [31] famous in the linear programming problem.

5.4 Replicator Equation in Mathematical Biology

It is well-known that the dynamical system on a simplex Sn = fx 2 Rn+1
+ ;

Pn
i=0 x

i =
1g of the form

_xi = xi(aijx
j � arsx

rxs) (5.7)

is often encountered in mathematical biology, which is called the replicator
equation [32]. In social biology, this is a game dynamical equation that
describes the evolution of competing phenotypes. In the symmetric case
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aij = aji, it describes a continuous version of the selection equation in
population genetics. Further, there exists a close connection between (5.7)

and the Lotka{Volterra equation, i.e., there exists a natural di�eomorphism
on Sn to R

n
+ which maps the trajectory of (5.7) to the solution of the Lotka{

Volterra equation [32]. Let us examine (5.7) in view of information geometry.
We �rst de�ne a potential function on Rn+1

+ by

U(x) =
nX
i=1

xi log xi:

From this potential, we derive a natural dualistic structure (h;r(+1);r(�1))
in that x is (+1){a�ne coordinate system. In particular, the metric

hij =
�ij
xi

is called Shahshahani metric [33]. It can be shown that if aij = aji, then
(5.7) is a steepest ascent ow of the potential  (x) = 1

2aijx
ixj with respect

to the Shahshahani metric restricted on the simplex Sn [32]. In this case,
however, the dynamics does not trace a ~r(�1){geodesic in general since

@j (x) = ajkx
k is not a r(�1){tangent vector, i.e., it is not parallel to

@jD
(+1)(p0 k p) = log(xj=xj0).

6 Other Related Topics

It is possible to characterize the dualistic gradient ow as a completely

integrable Hamiltonian system, which gives a generalization of Nakamura's
work [23].

Theorem 5 If N is r{autoparallel and dimN is even, say 2k, then the

dynamical system (4.1) can be regarded as a compeletely integrable Hamil-

tonian system with generalized positions Qi = @2iD(q k p�), generalized mo-

mentums P i = �1=@2i�1D(q k p�), and Hamiltonian H = �QiP
i, provided

� is taken, without loss of generality, a ~r{a�ne coordinate system. The

k quantities Hi = @2iD(q k p�)=@2i�1D(q k p�) are mutually independent

constants of motion.

Proof As was mentioned in the proof of Theorem 3, the dynamical
system (4.1) can be rewritten in the ~r�{coordinate system � as

_�j = �(�j � �
(0)
j ); (6.1)
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where �
(0)
j is the �{coordinate of p(0). Further, in this dual coordinate

system,

Qi = �2i � �
(0)
2i ; P i = �1=(�2i�1 � �

(0)
2i�1); Hi =

�2i � �
(0)
2i

�2i�1 � �
(0)
2i�1

:

Then

_Hi =
1

(�2i�1 � �
(0)
2i�1)

2

n
(�2i � �

(0)
2i )

_�2i�1 � _�2i(�2i�1 � �
(0)
2i�1)

o
= 0:

Involutivity is shown as follows.

fHi;Hjg =
kX
l=1

�
@Hi

@P l

@Hj

@Ql

� @Hi

@Ql

@Hj

@P l

�

=
@Hi

@P i

@Hj

@Qi
� @Hi

@Qi

@Hj

@P i
= 0:

Independency of Hi is trivial. By straightforward computation, Hamilton's
equation

dQi

dt
=
@H

@P i
;

dP i

dt
= � @H

@Qi
;

are reduced to

_�2i = �(�2i � �
(0)
2i );

_�2i�1 = �(�2i�1 � �
(0)
2i�1);

which reproduce the original dynamical equation (6.1). 2

The condition for dimN to be even is not essential. Indeed, if N is
r{autoparallel and dimN is odd, then the dynamical system (4.1) can be

regarded as a subdynamics of a higher dimensional completely integrable

Hamiltonian system by combining it with an independent odd dimensional
gradient system.

In a naive sense, a 2k dimensional Hamiltonian system is equivalent to
a k dimensional Lagrangian system. From this analogy, we can imagine a

2nd order dynamics of the form

��l +

�
l

ij

�
_�i _�j = �glj@jU(�):
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This is the equation of motion of a particle constrained on a submanifold N
associated with a potential U(�). It is well known that this dynamics can

be derived by the variational principle with Lagrangian

L =
1

2
gij _�

i _�j � U(�):

In the same way, if we consider a dynamical system of the form

��l + �
(�1)l
ij

_�i _�j = �hlj@jU(�);

where � is a (+1){a�ne coordinate system of N , then we have

��i = ��i
in the dual a�ne coordinate system, which indicates that the system is
composed of k independent harmonic oscillators and can be regarded as
a completely integrable Hamiltonian system. In this case, however, it is

not yet clear whether the system can be derived by a certain variational
principle.

7 Conclusions

We �rst constructed the gradient ow on a at manifold M with respect
to a dualistic structure (g;r;r�) which converges to an arbitrarily pre-

�xed point along the r{geodesic. We next derived a constrained dynamics
on a submanifold N embedded in a at manifold M , and investigated its
geodesic characterization. Some examples followed, which are collected from

various regions of optimization problems such as statistical inference, neural

networks, EM algorithms, linear programming problems, and mathematical
biology. Finally, we showed that the dualistic gradient ow can be charac-
terized as a completely integrable Hamiltonian system.
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