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Abstract

For semiparametric statistical estimation, when an estimat-

ing function exists, it often provides robust and e�cient estima-

tion of the parameter of interest against nuisance parameters of

in�nite dimensions. The present paper elucidates the estimat-

ing function method by solving the following problems. 1)When

does an estimating function exist and what is the set of all the

estimating functions? 2)How is the e�ciency of the estimators

derived from estimating functions and when are they fully ef-

�cient? 3)How to construct an e�cient or nearly e�cient esti-

mating function? The present theory is motivated by the dual

di�erential geometry of statistical inference and its extension to

�bre bundles, although we do not mention geometrical details.
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1 Introduction

A semiparametric statistical model treats a family of probability distribu-

tions speci�ed by a �nite-dimensional parameter � of interest together with

a nuisance parameter z of function-degrees of freedom. Estimation of the

parameter of interest in such a model has attracted statisticians for long

years, because various important problems are formulated in terms of semi-

parametric models. When the nuisance parameter is �nite-dimensional, a

fundamental role is played by the e�ective or projected score function, which

is the projection of the score function on the space orthogonal to the score

functions of the nuisance parameters. The Cram�er-Rao type inequality is

established in terms of the e�ective Fisher information and the bound is

asymptotically attainable.

It is not easy to generalize these results to the semiparametric case.

Levit(1978), Begun et al.(1983), Small and McLeish(1989) de�ned the e�ec-

tive Fisher information in the semiparametric model by using the projected

score, and showed that the Cram�er-Rao type inequality holds. It is only

recently that its asymptotic attainability is established under a certain reg-

ularity conditions [see Groeneboom and Wellner(1992), Bickel, Klaassen,

Ritov and Wellner(1993)] based on various e�orts on functional analysis

[e.g., Ritov and Bickel(1990), van der Vaart(1991)]. It is also known that

there exists a pathological case where the bound is not asymptotically at-

tainable [see Hasminskii and Ibragimov(1983)]. Estimation procedures are

generally very complicated because of the in�nite dimensionality of the nui-

sance parameter.

There is a class of estimators which are obtained by solving a simple

equation of the type
nX
i=1

y(xi; �) = 0; (1:1)

where x1; � � � ; xn are i.i.d. observations from a semiparametric model. Here,

the function y(x; �) should satisfy

E�;z[y(x; �)] = 0
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for all z, where E�;z denotes the expectation with respect to the distribution

speci�ed by � and z. Such a function y(x; �) which does not include the nui-

sance parameter is called an estimating function [Godambe(1976)]. It gives

a practically tractable method of estimation [see, for example McLeish and

Small(1988), Godambe(1991), Godambe and Heyde(1987)]. The present pa-

per aims at elucidating the estimating function method and its e�ciency.

The estimating function method has a merit of robustness in the sense

that it always gives a consistent estimator whatever y we choose, while

the maximum-likelihood method does not necessarily have this property.

Therefore, it is important to know when an estimating function exists and

how e�cient such a simple estimator is.

We prove in the present paper that the Cram�er-Rao bound of the e�ective

Fisher information is attainable by using an adequate estimating function,

when a statistical model has the m-
at nuisance structure. This is the case

with many important semiparametric models. In this case, the estimating

function method combined with the adaptive method gives a fully e�cient

estimator. The problem is again how to choose the best estimating function.

However, the point is that even if the estimated nuisance parameter ẑ is

wrong or is arbitrarily assigned, the estimating function method gives an

estimator which might not be fully e�cient but is still consistent.

The present paper studies the structure and e�ciency of estimating func-

tions by answering the following fundamental problems :

1. When does an estimating function exist?

2. What is the set of all the estimating functions?

3. What is the best estimating function?

4. When does the best estimating function gives a fully e�cient estimator

and what is the amount of loss of information caused by using the

estimation function method?

5. How to construct the best or a very good estimating function?
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The method of the present paper is an extension of Amari and Ku-

mon(1988), and Amari(1987). They studied a special but important type

of the semiparametric models where the number of nuisance parameters

increases in proportion to the number of observations. There are lots of

research on this subject [Neyman and Scott(1948), Andersen(1970), Lind-

say(1982,1985), Bhanja and Ghosh(1992)]. They obtained a condition that

guarantees the existence of the best estimating function that gives a uni-

formly e�cient estimator whatever z is. Although this theory is applica-

ble only to the very limited cases that the best estimating function exists

irrespective of z, the theory elucidated the geometrical structure of semi-

parametric models. The theory is motivated by the information geometry

[Amari(1985), Nagaoka and Amari(1982)], which studies the structure of the

manifold of probability distributions or a statistical model by introducing a

Riemannian metric due to the Fisher information and a pair of dual a�ne

connections. It has been proved to be a powerful method in various �elds of

information sciences [Amari(1985,1987), Amari and Han(1989), Amari and

Kumon(1988) Okamoto, Amari and Takeuchi(1990), Amari, Kurata and Na-

gaoka(1992)]. However, we do not enter in details of the dual di�erential

geometry of the manifold of function-degrees of freedom, nor details of func-

tional analysis [see Bickel et al.(1992)], because it is still mathematically not

easy to construct di�erential geometry of function spaces rigorously.

2 Semiparametric statistical model and estimat-

ing function

Let p(x;�; z) be a probability density functions of a random variable x with

respect to a common measure �(x), speci�ed by two kinds of parameters

� = (�1; � � � ; �k) and z, where � 2 � is a �nite-dimensional vector and z 2 Z
is a parameter having function-degrees of freedom. The set of distributions

S = fp(x;�; z)g is called a semiparametric statistical model, where � is

called the parameter of interest and z is called the nuisance parameter.

Let y(x;�) = [yi(x;�)]; i = 1; � � � ; k; be a vector-valued smooth function
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of x and � having the same dimensions as �, not depending on z. Such

a function is called an estimating function, when it satis�es the following

conditions,

E�;z[y(x; �)] = 0; (2.1)

det jE�;z[@�y(x; �)]j 6= 0; (2.2)

E�;z[k y(x;�) k2] < 1; (2.3)

for all � and z, where E�;z denotes the expectation with respect to the

distribution p(x;�; z), @�y is the gradient of y with respect to �, i.e., the

matrix whose elements are (@yi=@�
j) in the component form, det j j denotes

the determinant of a matrix, and k y k2 is the squared norm of the vector

y, k y k2=P
(yi)

2.

When a function satisfying (2.1) � (2.3) exists, we have an estimator �̂

of � by solving
nX
i=1

y(xi;�) = 0; (2:4)

where x1; � � � ; xn are n i.i.d. observations. This is called the estimating

equation.

The asymptotic behavior of the estimator �̂ is obtained from the expan-

sion

0 =
nX
i=1

y(xi; �̂) =
nX
i=1

y(xi;�) +
nX
i=1

@�y(xi;�)(�̂� �) +Op(j�̂� �j2); (2:5)

by applying the law of large numbers to (1=n)
P
@�y(xi;�) and the central

limit theorem to (1=
p
n)
P
y(xi;�),

1

n

X
@�y(xi;�) � E�;z[@�y(x;�)] = A; (2.6)

1p
n

X
y(xi;�) � "; (2.7)

where " is the normal random variable subject to N(0; V ) with

V = E�;z[yy
T]; (Vij = E�;z[yiyj ]) (2:8)
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and y is a column vector and yT is its transposition. From this, by neglecting

higher order terms, we have

�̂ � � � A�1": (2:9)

The following theorem was immediately proved under the ordinary regularity

conditions [Godambe(1976)].

Theorem 1 The estimator �̂ obtained from an estimating function y(x;�)

is asymptotically consistent and asymptotically normally distributed, with

the asymptotic covariance matrix

AV[y] = A�1E�;z[yy
T](AT)�1; (2:10)

where the asymptotic covariance matrix is de�ned by

AV [y] = lim
n!1

nE�;z[(�̂ � �)(�̂ � �)T]: (2:11)

Let T (�) be a non-singular k � k matrix. It should be noted that

y�(x;�) = T (�)y(x;�) gives an estimating function equivalent to y.

We give some examples of semiparametric statistical models. See Bickel

et al.(1993) and Groeneboom and Wellner(1992) for many other interesting

models.

1. Location-scale model :

When density functions of x 2 R1 are given by

p(x; �; �) =
1

�
z

�
x� �

�

�
; (2:12)

where � = (�; �) is the two-dimensional location and scale parameters

of interest and z is an unknown shape of the density function, the

family is called the location-scale model. For the sake of convenience,

we represent the density function relative to the normal measure

'(x) =
1p
2�

exp

(
�x

2

2

)
;

6



so that we treat the following representation

p(x; �; �) =
1

�
z

�
x� �

�

�
'

�
x� �

�

�
; (2:13)

instead of (2.12), where z is assumed to be smooth and square inte-

grable with respect to the normal measure and z(x)'(x) is rapidly

decreasing. In order that the parameters � and � are identi�able and

that it represents a probability distribution, we pose the following con-

ditions,

z(x) > 0;Z
z(x)d��(x) = 1;Z
xz(x)d��(x) = 0; (2.14)Z
x2z(x)d��(x) = 1

where

d��(x) = '(x)d�(x):

This model will be analyzed in detail by Amari et al.(1993).

2. Mixture model :

Let fq(x; �; �)g be a regular statistical model, where both the pa-

rameter of interest � and the nuisance parameter � are of �nite di-

mensions. Let xi, i = 1; 2; � � � ; n, be n independent observations from

q(x;�; �i), where � is common but �i takes di�erent values at each

observation. Moreover, we assume that the unknown �i are inde-

pendently generated subject to a common but unknown probability

distribution having a density function z(�). Then, xi are regarded as

i.i.d. observations from the semiparametric model

p(x; �; z) =

Z
q(x;�; �)z(�)d�; (2:15)

where z(�) is the nuisance parameter of function-degrees of freedom.

This model is called the mixture model. When �i are not random
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but a �xed unknown sequence, we may regard the empirical distribu-

tion Z(�) as the governing probability law [see van der Vaart(1991)].

This problem was studied by Neyman and Scott(1948) and has at-

tracted many researchers [Andersen(1970), Lindsay(1982), Kumon and

Amari(1984), Amari and Kumon(1988), etc.]. Most researchers have

treated the distributions of the following exponential form as exam-

ples,

q(x;�; �) = expf� � s(x;�) + r(x;�)�  (�; �)g; (2:16)

where s(x;�) is a vector with the same dimensions as �, not depending

on � and � is the inner product. Here, the distribution is of exponential
type for � when � is �xed. This type of models has the m-
at nuisance

structure to be explained later so that they possess nice properties as

will be shown later.

3. Linear binary choice model :

Let x 2 Rm be a random variable subject to the normal distributionN(0; I),

where I is the identity matrix. Let q be a binary random variable tak-

ing values on 1 and �1. Given x, the conditional probability of q is

assumed to depend only on � � x,

p(qjx;�; z) = 0:5 + qz(� � x); (2:17)

where � 2 Rm is a unit vector (j�j = 1) which is the parameter of

interest and z is a monotonically increasing smooth function satisfying

z(0) = 0;

z0(0) > 0;

jz(u)j < 0:5:

This model shows that, above the hyperplane passing through the

origin

� � x = 0;
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the probability of success (q = 1) is larger than 0:5 and below the

hyperplane the probability of failure is larger than 0:5, depending on

the distance of x from the unknown hyperplane. We want to estimate

the hyperplane or � in the case where the function z is unknown. Such

a problem occurs in the �elds of economics, pattern recognition and

neural networks [Nawata(1989), Manski(1985), Kawanabe, Amari and

Hiroshige(1993)].

4. Semiparametric dose-response model :

When x is one-dimensional and the separating hyperplane (point)

does not necessarily pass through the origin, we have the following

simple model

p(qjx; �; z) = 0:5 + qz(x� �); (2:18)

where � is the separation point. We may regard this a one-dimensional

version of the binary choice model. This is a non-parametric dose-

response model, if we interpret x as the amount of dose and q = �1
is the result after treatment where q = 1 represents the success of

treatment and q = �1 failure. Here � is the point that the probabilities
of success and failure are �fty-�fty.

3 Hilbert �bre space and score function

Given a probability density function p(x), its small deviation in the direction

of a(x) can be represented by a curve starting from p(x),

p(x; t) = p(x)f1 + ta(x)g; (3:1)

where t (" > t � 0) is the parameter of the curve. Here

E[a(x)] = 0

holds where E is the expectation with respect to p(x), because ofZ
p(x)f1 + ta(x)gd�(x) = 1: (3:2)
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In order to be speci�c, we consider the linear space of rapidly decreasing

smooth functions satisfying

E[a(x)] = 0; E[a2(x)] <1: (3:3)

The closure of such a set is a Hilbert space Hp with the inner product of

a(x) and b(x) de�ned by

ha(x); b(x)i = E[a(x)b(x)]: (3:4)

We call the random variable

a(x) =
d

dt
log p(x; t)

����
t=0

(3:5)

the tangent vector of the curve (3.1). This is the score function for the

one-dimensional statistical model (3.1) parameterized by t. More precisely,

in order to de�ne the tangent vector at p(x) 2 S in an in�nite-dimensional

space S, we need to use the Fr�echet derivative in the sense of the Hellinger

distance instead of the pointwise di�erentiation of (3.5). Refer to Bickel at

el.(1993) and Groeneboom and Wellner(1992) for mathematical details.

Given a semiparametric model S = fp(x; �; z)g, a Hilbert space Hp =

H�;z is associated at each point (�; z), i.e., at each distribution p(x) =

p(x;�; z) speci�ed by (�; z). A collection of such H�;z is called a �bred

structure, where the �bres are the Hilbert spaces.

We �rst de�ne the tangent directions along the parameter of interest.

Let

ui(x; �; z) =
@

@�i
log p(x;�; z) (3:6)

be the score function with respect to the i-th component �i of �. Obviously,

E�;z[ui] = 0 (3:7)

is satis�ed and we further assume that it is square-integrable. Then it be-

longs to H�;z. We call the subspace spanned by these ui's the tangent

subspace T I
�;z

along the parameter of interest. (A more rigorous theory re-

quires the pathwise di�erentiability of � in the sense of van der Vaart(1991).)

The score function vector is u = (u1; � � � ; uk).
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We next de�ne the tangent directions along the nuisance parameter. Let

us assume that, for any ~z in a small neighborhood of z in the set Z of the

nuisance parameter, there exists a curve c(t) connecting them, such that

c(0) = z and c(") = ~z, and that the score function for the one-dimensional

statistical model pfx; �; c(t)g parameterized by t,

v(x;�; z; c) =
d

dt
log pfx;�; c(t)g

����
t=0

(3:8)

belongs to the H�;z. This v is the tangent vector along c(t) of the nuisance

parameter. Let TN
�;z

be the smallest closed subspace including all such v's.

We call it the nuisance tangent space.

Now, let us project the score functions ui to the subspace
�
TN
�;z

�?
which

is the orthogonal complement of TN
�;z

. The result is the function uEi = ui�v
that minimizes

jui � vj2; v 2 TN
�;z:

These functions uEi are called the e�ective or projected score functions [see

Begun et al.(1983), Amari and Kumon(1988), Small and McLeish (1989)].

Let TE
�;z

be the subspace spanned by the e�ective score functions uEi 's.

Let TA
�;z

be the orthogonal complement of TN
�;z

� TE
�;z

called the ancil-

lary subspace which represents directions orthogonal to any changes in the

parameter of interest and the nuisance parameter. We thus have the orthog-

onal decomposition of the Hilbert �bre space [Amari and Kumon(1988); see

also Small and McLeish(1988)],

H�;z = TE
�;z � TA

�;z � TN
�;z: (3:9)

The matrix GE = (gEij) de�ned by using the e�ective score functions

gEij = E�;z[u
E
i u

E
j ] (3:10)

is called the e�ective Fisher information matrix. Begun et al. (1983) proved

that GE gives the Cram�er-Rao bound of the asymptotic variance of estima-

tors �̂,

lim
n!1

nE
h
(�̂ � �)(�̂ � �)T

i
�
�
GE

��1
(3:11)
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for any asymptotically normally distributed unbiased estimators in a semi-

parametric model. Recently, an exact theory is constructed to show that the

above bound is asymptotically attainable under mild regularity conditions

[Bickel et al.(1992)]. It is important to show when the e�cient estimator is

given by an estimating function.

4 Invariant decomposition of Hilbert �bres due

to dual parallel transports

An estimating function y(x; �) satis�es the unbiasedness condition (2.1) for

all z. Such a global structure as for all z 2 Z is elucidated by introducing

two parallel transports of the Hilbert �bres along the nuisance space.

Let a(x) be a random variable belonging to H�;z. Let us �x �, and

consider a subset S� = fp(x;�; z)jz 2 Zg. We de�ne two parallel transports

of a vector a(x) at H�;z to H�;z0 . The following

(e)Y
z0
z a(x) = a(x)� E�;z0 [a(x)]; (4.1)

(e)Y
z0
z a(x) =

p(x;�; z)

p(x;�; z0)
a(x) (4.2)

are called the e-parallel transport and the m-parallel transport of a(x) from

(�; z) to (�; z0), respectively. It should be noted that the e-parallel transport

exists only when the expectation of a(x) at (�; z0) exists. It is easy to show

E�;z0

2
4(m)Y

z0
z a(x)

3
5 = 0

always holds, and

E�;z0

2
4 (e)Y

z0
z a(x)

3
5 = 0

holds when E�;z0 [a(x)] exists. However, the e- and/or m-parallel transports

of a(x) do not necessarily belong to H�;z0 . They belong to H�;z0 only when

they are square-integrable at (�; z0) with respect to p(x;�; z0).
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The parallel transports are generalizations of the dual geometrical struc-

tures derived from the underlying e- andm-connections or e- andm-covariant

derivatives in the �nite dimensional case [see Amari(1985), see also Amari

and Kumon(1988)], but we do not go into mathematical details of di�erential

geometry.

The following lemma shows the most important property connecting the

two parallel transports. The proof is immediate and hence omitted.

Lemma 1 The two parallel transports are dual in the sense that, for any

two a(x); b(x) 2 H�;z, the inner product is kept invariant when their parallel

transports belong to H�;z0,

ha; bi�;z =
* (e)Y

z0
z a;

(e)Y
z0
z b

+
�;z0

; (4:3)

where the su�x (�; z) denotes that the expectation is taken with respect to

p(x;�; z).

We now reorganize the decomposition (3.9) of H�;z by taking account

of the global structure induced by the parallel transports. The information

�bre F I
�;z

at (�; z) is constructed such that it is orthogonal to the nuisance

spaces at any points (�; z0), z0 2 Z. To this end, we �rst consider a vector

r(x) 2 TE
�;z � TA

�;z

whose e-transport exists in H�;z0 for any z
0, that is

E�;z0 [r(x)
2] <1: (4:4)

If its e-transport to (�; z0) is orthogonal to TN
�;z0

for any z0 2 Z, that is,
*
v;

(e)Y
z0

z r(x)

+
�;z0

= 0; v 2 TN
�;z0 ; (4:5)

it is free of any nuisance directions at any z0 when it is e-transported. We

consider the closed subspace of H�;z consisting of the vectors satisfying the
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above conditions (4.4) and (4.5) and denote it tentatively by F I+A
�;z

, where

I denotes the information part and A denotes the ancillary part. Obviously

F I+A
�;z

� TE
�;z � TA

�;z: (4:6)

The nuisance �bre space FN
�;z

is de�ned by the orthogonal complement of

F I+A

�;z
in H�;z. Obviously

FN
�;z � TN

�;z: (4:7)

We have

H�;z = F I+A

�;z
� FN

�;z: (4:8)

We now decompose F I+A

�;z
. Let uIi be the projection of the score ui to

F I+A

�;z
. The information �bre space denoted by F I

�;z
is the subspace spanned

by the information score functions uIi (x; �; z). Its orthogonal subspace in

F I+A

�;z
is the ancillary �bre space denoted by FA

�;z
,

F IA
�;z = F I

�;z � FA
�;z:

We thus have another orthogonal decomposition of H�;z,

H�;z = F I
�;z � FA

�;z � FN
�;z; (4:9)

which represents a more global structure of H�;z. The F
N
�;z

includes all the

m-parallel transports of v 2 TN
�;z0

from any (�; z0) to (�; z) when it belongs

to H�;z, because of the relation (4.5). It is the information �bre F I
�;z

that

plays an important role.

However, in many cases, the e-parallel transports of TE
�;z

� TA
�;z

belongs

to H�;z0 for any z
0. Moreover, it is orthogonal to TN

�;z0
. In such a case, the

situation becomes very simple, because

FN
�;z = TN

�;z;

F I
�;z = TE

�;z; (4.10)

FA
�;z = TA

�;z;
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and the information �bre coincides with the e�ective score space. In most

examples we treat here, the conditions are satis�ed. The following is a

typical case.

By �xing �, we have the statistical model S� = fp(x;�; z)g where z 2 Z
is the only parameter. The submodel S� is said to be m-
at when, for any

z1, z2 2 Z, the mixture family connecting them,

p(x; t) = (1� t)p(x;�; z1) + tp(x;�; z2)

= p(x;�; (1� t)z1 + tz2); (4.11)

also belongs to S� and that the tangent vector of the curve connecting z1

and z2,

v =
p(x;�; z2)� p(x;�; z1)

p(x;�; z1)
;

belongs to H�;z1. In this case,

(m)Y
z0

z T�;z = T�;z0 (4:12)

holds, and FN
�;z

= TN
�;z

, F I
�;z

= TE
�;z

, provided the e-transport of uEi belongs

to H�;z0 .

5 Estimating functions and their e�ciency

Based on the decomposition of the Hilbert space H�;z, we can now char-

acterize the set of all the estimating functions. We �rst answer the two

important questions when an estimating function exists and what is the set

of all the estimating functions.

Theorem 2 An estimating function exists when and only when F I
�;z

is non-

degenerate at any z and the projections of
Q(e) z0

z u
E
i span F I

�;z0
at any z0.

Theorem 3 Any estimating function y(x;�) = ( yi(x; �) ) can be repre-

sented by a sum

yi(x;�) = uIi (x; �) + ai(x;�); a 2 FA
�;z (5:1)
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and conversely such a sum gives an estimating function when the projection

of the components yi to F
I
�;z0

spans it.

The theorems are proved by the following lemmas.

Lemma 2 Any estimating function y(x;�) belongs to F I
�;z

� FA
�;z

. Let

yIi (x;�) be the projection of the i-th component of y(x;�) to F I
�;z

. Then,

yIi (x;�), i = 1; � � � ; n, span F I
�;z

.

Proof Let y(x; �) be an estimating function. Then, its e-transport al-

ways exists in the corresponding Hilbert spaces because of (2.3), and more-

over it is e-invariant
(e)Y

y(x;�) = y(x;�); (5:2)

because of (2.1) and (4.1). By di�erentiating

E�;z[y(x;�)] = 0

along a curve z = z(t) whose direction is v 2 TN
�;z

, we have, for any z 2 Z,

d

dt

Z
p(x; �; z(t))y(x;�)d�(x)

=

Z
v(x; �; z(t))p(x;�; z(t))y(x;�)d�(x)

= hv;y(x;�)i�;z = 0: (5.3)

This shows that y is included F I
�;z

�FA
�;z

. Moreover, by di�erentiating (5.1)

with respect to �, we have

E�;z[@�y(x;�)] + hu;y(x;�)i = 0; (5:4)

where hu;yi implies a matrix whose elements are hui; yji. This shows that

E�;z[@�y] = �hu;yi:

Since y belongs to F I
�;z
�FA

�;z
and the projection of u to the space F I

�;z
�FA

�;z
includes only F I

�;z
-part, we have

hu;yi = huI ;yi;
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where uI is the projection of u to F I
�;z

. Therefore, (2.2) implies that the

determinant of huIi ; yji does not vanish, implying that the projections of

vectors yi's on F
I
�;z

span F I
�;z

and also that F I
�;z

is non-degenerate, that is,

its dimension number is the same as that of the parameter of interest �. 2

Now we prove the converse of Lemma 2

Lemma 3 When a vector w(x;�) belongs to F I
�;z

� FA
�;z

for some z 2 Z,

it automatically belongs to F I
�;z0

� FA
�;z0

for any z0 2 Z. It is an estimating

function when the projections of its components wi to F
I
�;z0

span F I
�;z0

for

any z0.

Proof We �rst prove that w(x;�) belonging to F I
�;z

� FA
�;z

is e-parallel

invariant,
(e)Y

z0

z w(t) = w(t):

Let c(t) be a curve connecting two points z and z0 and we put

f(t) = E�;c(t)[w(x;�)]:

Obviously f(0) = 0. By di�erentiation, we have

d

dt
f(t) =

Z
d

dt
p(x;�; c(t))w(x;�)d�(x)

= E�;c(t)[v(t)w(x;�)] = hv;wi�;c(t);

where

v(t) =
d

dt
log p(x;�; c(t)):

By m- and e-transporting v and w from c(t) to z, respectively, we have

hv;wic(t) =
*(m)Y

z
c(t)v;

(e)Y
z
c(t)w

+
�;z

:

Since
(e)Y

z
c(t)w = w � E�;z[w] 2 F I

�;z � FA
�;z;
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we have
d

dt
f(t) = 0:

Therefore,

E�;c(t)[w(x;�)] = 0

holds, proving the e-invariancy of w. From

*(m)Y
z0
z00v;w

+
z0

=

*(m)Y
z
z00v;w

+
z

= 0;

it is shown that w 2 F I
�;z0

�FA
�;z0

for any z0. Since w spans F I
�;z0

for any z0,

E�;z0 [@�w(x;�)] is non-degenerate. Therefore, w is an estimating function

satisfying (2.1) � (2.3). 2

The next important problem is to calculate the asymptotic covariance

matrix of an estimating function. This calculation leads us to the optimal

estimating function. An estimating function y(x;�) is decomposed into

y(x; �) = uI(x;�) + a(x;�);

where uI = (uIi ) and a = (ai) 2 FA
�;z

. It is easy to show

E[@�a] = �hu;ai = 0

by di�erentiating E�;z[a(x;�)] = 0. Therefore, we have

�E[@�y] = �E[@�uI ] = hu;uIi = huI ;uIi; (5.5)

E[yyT] = E[uI(uI)T] + E[aaT] = GI +GA; (5.6)

where we put

GI = E[uIuIT]; GA = E[aaT]: (5:7)

So we have the following theorem.

Theorem 4 The asymptotic covariance matrix derived from an estimating

function y(x;�) is given by

V [y] = (GI)�1 + (GI)�1GA(GI)�1: (5:8)
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The estimating function given by

y(x;�) = uI(x;�; z0) (5:9)

is the optimal at (�; z0), with the asymptotic covariance (GI)�1.

We can now answer the question of what is the amount of loss of in-

formation by using the method of estimating functions compared to other

estimating methods. We also show when the best estimating function is

lossless, that is fully e�cient, provided the best estimating function could

be chosen.

Theorem 5 The optimal estimating function is fully e�cient when S� is

m-
at. When S� is not m-
at, the loss of information is given by

GE �GI = E[(uI � uE)(uI � uE)T]: (5:10)

Proof When S� is m-
at, TN
�;z

= FN
�;z

so that

uI = uE

holds. Therefore, GI = GE . On the other hand

uI = uE + (uI � uE)

is an orthogonal decomposition so that the loss of information is given by

(5.10). 2

It should be noted that most semiparametric models so far treated by

many researchers are m-
at. Therefore, the method of estimating functions

produces no loss of information. However, there is still a serious prob-

lem of guessing a good z0 from which we construct the estimating function

uI(x;�; z0) by �xing z0. In spite of this, the point is that, even if we choose

a wrong z0, the estimator is still consistent although it is not fully e�cient.

The maximum likelihood estimator does not in general has this robust prop-

erty.
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6 Construction of estimating functions

The �nal problem is how to choose a good estimating function. It is clear

that when uI(x;�; z) does not depend on z, this uI(x;�) gives the best

estimating function without any loss of Fisher information. There are a

number examples belonging to this class [Amari and Kumon(1988)].

When uI(x;�; z); i = 1; 2; � � � ; n; includes unknown z, one orthodox idea
is �rst to �nd a consistent estimator ẑ(x1; � � � ; xn;�) where � is �xed. We

then have the optimal estimating function uI(x;�; ẑ). However, this requires

a formidable task and practically non-e�cient. Moreover, there is a subtle

problem in analyzing the estimating equation

X
uI(xi;�; ẑ) = 0;

because uI(xi;�; ẑ) are not independent but are dependent through random

variables ẑ(x1; � � � ; xn;�). We do not touch upon this problem [see, for

example, Bhanja and Ghosh(1992)].

It is the point of an estimating function that a misspeci�ed z still gives a

consistent estimator. Therefore, it is wise for practical purpose to choose a

simple but good z. To this end, we propose to use a parameterized submodel

of z,

M = fz(�)g; M � Z;

where � is a �nite dimensional parameter to specify z. Since the true z is

not necessarily included in the model M , we have an unfaithful statistical

model

S� = fp(x;�;�) = p(x;�; z(�)g
parameterized by a �nite number of parameters (�;�). It is not di�cult to

obtain an estimate (~�; ~�), say the m.l.e. This ~� is not consistent in general.

Instead of using this ~�, use the estimating function

uI(x; �; z(~�))

to obtain a good consistent estimator �̂. This type of idea was also used by

Lindsay(1982).
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The amount of loss of information by using a wrong z is given by the

expectation of the square of the FA
�;z

-part of the m-parallel transport of

uI(z) from the true z0 to z.

7 Examples

Example 1 Location-scale model

This is a nuisance m-
at model, because the probability density is linear in

the nuisance function z. From

p(x; �; �; z) =
1

�
z

�
x� �

�

�
'

�
x� �

�

�
;

the score functions of the parameters of interest are

u� = @� log p = � 1

�

z0

z
+
x� �

�2
;

u� = @� log p = �x� �

�2
z0

z
+
(x� �)2

�3
� 1

�

where � = (�; �), @� = @=@�, @� = @=@�. The tangent space T�;z is spanned

by u� and u�.

We next construct a curve connecting z(x) and z(x) + r(x) by

z(x; t) = z(x) + tr(x); (7:1)

where z(x; 0) = z(x). Then, the score function in the direction r is given by

d

dt
log p =

r

z
: (7:2)

Here, we assume that Z consists of such functions that, for any z1; z2 2 Z,Z
(1� z2

z1
)2z1d�

�(x) <1: (7:3)

This guarantees that v = r=z belongs to H�;z. From (2.14), r(x) satis�esZ
r(x)d��(x) = 0;Z
xr(x)d��(x) = 0; (7.4)Z
x2r(x)d��(x) = 0:
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Let Hi(x), i = 0; 1; 2; � � � ; be the Hermite polynomials which satisfy the

orthonormality conditionsZ
Hi(x)Hj(x)d�

�(x) = �ij: (7:5)

Since Hi(x) is a polynomial in x of degree i, the conditions (7.4) show that

any r can be expanded as

r(x) =
1X
i=3

ciHi(x): (7:6)

Therefore, the nuisance tangent space TN
�;z

is spanned by fHi=z; i � 3g.
The ancillary space TA

�;z
is composed of the other square integrable random

variables w(x) orthogonal to TN
�;z

and T I
�;z

.

The subspace F I
�;z

� FA
�;z

is therefore spanned by H1(x) and H2(x),

because these are orthogonal to (Hi=z), i = 3; 4; � � �. Hence, we have the

following estimating function,

y1(x;�) = x� �;

y2(x;�) = (x� �)2 � �2:

This is unique and optimal, since any other estimating functions are written

as their linear combinations. It gives rather trivial estimators

�̂ =
1

n

X
xi;

�̂ =
1

n

X
(xi � �̂)2

but they are the best in the semiparametric setting.

When other information is variable, we may have better estimators. For

example, if z is known to be even function, r(x) is also an even function.

Hence, r(x) is expanded as

r(x) =
1X
i=2

c2iH2i(x); n = 1; 2; � � � : (7:7)

Therefore, the FN
�;z

= TN
�;z

is spanned by fHi=z; i = 4; 6; 8; � � �g, and F I
�;z

�
F I
�;z

is spanned by H1;H2;H3;H5;H7; � � �. There are lots of candidates for
estimating functions, and the best one is obtained by the projected score.
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Example 2 Mixture model

These models have again the m-
at nuisance structure. The �-score and

the nuisance score in direction a(�) of (2.15) and (2.16) can be calculated in

a similar way but their expressions are rather complicated. For notational

convenience, we de�ne

L(s; z) =

Z
expf� � sg[z(�) expf� (�;�)g]d�;

so that

p(x;�; z) = Lfs(x;�); zg expfr(x;�)g:
The L(s; z) is the Laplace transform of z(�) expf� (�;�)g. By using this

function, the �-score is written as

u =
L(s; f�@�s+ @�r � @� gz(�))

L(s; z)
;

where s = s(x;�). The nuisance score is

v[a] =
L(s; a)

L(s; z)
:

Since a is an arbitrary function and L(s; a) is its Laplace transform, we can

conclude that the nuisance subspace TN
�;z

is the linear space generated by

the random variable s(x;�).

It is known that the projection of a random variable t to the space gen-

erated by s is given by the conditional expectation E[tjs] and the projection

to the orthogonal complement is t�E[tjs]. Hence, the e�cient score is given
by

uE = u� E[ujs]
=

1

L(s; z)
L[s; f�(@�s� E[@�sjs])� @� gz]

+@�r � E[@�rjs]:

This gives the e�cient estimating function. It is an interesting special case

when @�s is a function of s. In this case, @�s = E[@�sjs]. The e�cient

score is given in this case by

uE = @�r � E[@�rjs]:
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It does not depend on z(�), so that the optimal estimation function exists in

this case for any z(�) and is given by the above uE. There is no information

loss.

Example 3 Linear binary choice model

In this model, we assume that signals x are generated independently from

the normal distribution with mean 0 and the unit covariance matrix,

'(x) = c exp

�
�1

2
x � x

�
:

Then, the distribution is written as

p(x; y;�; z) = '(x)f0:5 + qz(� � x)g:

The �-score is

u =
qxz0(� � x)

0:5 + qz(� � x) :

On the other hand, the nuisance-score in the direction of a is given by

v =
qa(� � x)

0:5 + qz(� � x)
where

a(0) = 0:

The nuisance tangent space is spanned by these v vectors. Since a(u) is

an arbitrary smooth function, the nuisance tangent space is included in the

�-algebra generated by

s = � � x
and q. Therefore, the projection of u to this space is given by the conditional

expectation

E[ujs; q] = E[xjs]z0(s) q

0:5 + qz(s)
;

and it is included in TN
�;z

. We put

m(� � x) = E[xj� � x ]:
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When x is subject to N(0; I), it is easy to show that

m(� � x) = E[xj� � x = s ] = s� = (� � x)�:

Then, the projected score is

uE = u� E[uj� � x; q ]
=

qfx�m(� � x)gz(� � x)
0:5 + qz(� � x) :

This model is analyzed in detail in a forthcoming paper [Kawanabe, Amari

and Hiroshige(1993)].

Example 4 Dose-response curve

The �-score is given by

u =
�qz(x� �)

0:5 + qz(x� �)
:

The nuisance score along the direction a, is given by

v[a] =
qa(x� �)

0:5 + qz(x� �)
:

where

z(t) = z(x) + ta(x);

a(0) = 0;

Since z0(0) > 0, u is not equal to any of v[a] because a(0) = 0. However,

u is included the closure TN
�;z of the space spanned by v[a]. Hence, the

e�ective score is null, uE = 0 and the e�ective Fisher information gE is

equal to 0. This implies that no
p
n-consistent estimator exist in this case.

No estimating functions exist either.

Kawanabe, Amari and Hiroshige(1993) studied this problem by using

asymptotic estimating functions, and obtained an np=(2p+1)-consistent esti-

mator for any positive integer p.
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Example 5

Not all the models are mixture m-
at. To show this, we give an arti�cial

model of �nite dimensions. It is a simple parametric model having a scalar

parameter � of interest and a scalar nuisance parameter �,

p(x; �; �) = (2�)�3=2 expf�1

2
[(x1 � r1)

2 + (x2 � r2)
2 + (x3 � r3)

2]g

where

r1 = �;

r2 = � + �2;

r3 = �:

Since this is a �nite-dimensional parametric model, it can easily be analyzed.

The �-score is given by

u = (x1 � �) + (x2 � � � �2);

and the nuisance score (�-score) is given by

v = 2�(x2 � � � �2) + (x3 � �):

From

hu; ui = 2; hv; vi = 4�2 + 1;

hu; vi = 2�;

the projected score is

uE = u� hu; vi
jvj2 v = u� 2�

4�2 + 1
v

= (x1 � �) +
1

4�2 + 1
(x2 � � � �2)� 2�

4�2 + 1
(x3 � �):

Hence the e�ective Fisher information is

gE = huE ; uEi = 1 +
1

1 + 4�2
:
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When we �x �, the submodel S� is not m-
at since it is not linear in �.

The m-transport of v(�0) to v(�) is

(m)Y
�
�0 = expf(�02 � �2)x2 + (�0 � �)x3

+(� + �2)2 � (� + �02)2 + �2 � �02g;

The closed space spanned by all of these for any �0 includes the random

variables x2 � � � �2 and x3 � �. Therefore, the information score uI is

di�erent from the e�cient score uE and is given by

uI = x1 � �:

Its magnitude is

huI ; uIi = 1 � gE :

Therefore, in this simple case, if we can guess the value of � accurate

enough, the m.l. equation

X
uE(xi; �; �̂(�)) = 0

gives an e�cient estimator. However, if we use wrong �,

X
uE(xi; �; �) = 0

does not give a consistent estimator. The best estimating function is uI =

xi � �, giving the estimating equation

nX
i=1

(xi1 � �) = 0

or

�̂ =
1

n

X
x1i:

This includes a loss of information, but is free of the precise estimation of

�. In this �nite-dimensional case, the estimation of � is easy. However,

the point is that the estimating function method always gives a consistent

estimator without any precise estimation of the nuisance function.
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8 Conclusions

The present paper showed that the geometrical theory of estimating func-

tions [Amari and Kumon(1988)] can be applicable to general semiparametric

models which have nuisance parameters of functional degrees of freedom. By

using the geometrical concept of Hilbert �bre space, Riemannian metric and

dual parallel transports, the condition for existence of estimating function

was derived, the space of estimating functions was speci�ed, and the e�-

ciency of the estimating function method was discussed. When a statistical

model has m-
at nuisance structure, the e�ective score function itself is

an estimating function, and estimating function method combined with the

adaptive method gives a fully e�cient estimator. This is the case with many

important semiparametric models. For some of them the e�ective scores are

calculated explicitly in the present paper.

Although the theory was established in a rather informal way manner,

it is also necessary to study these problems further by functional analysis

combined with the di�erential geometry of function space. The reason is

not only that we need to make the theory mathematically rigorous, but

also that the e�ective score functions, the space of estimating functions,

etc. depend so much on the functional space of the nuisance parameter.

Therefore it is important to study the relation between the structure of

estimating functions and that of the space of the nuisance parameter, by

applying the geometrical theory to many semiparametric models. It may

be interesting to consider the case that some kind of symmetric or invariant

restrictions are imposed on the space of the nuisance functions.
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