
A Linear Time Algorithm for the Minimum Spanning Tree Problem

on a Planar Graph

Tomomi MATSUI

(January 1994)

Department of Mathematical Engineering and Information Physics

Faculty of Engineering, University of Tokyo

Bunkyo-ku, Tokyo 113, Japan

Abstract: In this paper, we propose a linear time algorithm for �nding a minimum

spanning tree on a planar graph.

Keywords: Combinatorial problems; graphs; spanning trees; planar graphs

1 Introduction

Finding a spanning tree of minimum weight is one of the best known graph problems.

Several e�cient algorithms exist for solving this problem [1, 3, 4, 5, 6, 9, 11, 13]. This paper

presents a liner time algorithm for the minimum spanning tree problem on a planar graph.

In [1], Cheriton and Tarjan have proposed a linear time algorithm for this problem. The

time complexity of our algorithm is the same as that of Cheriton and Tarjan's algorithm.

Di�erent from Cheriton and Tarjan's algorithm, our algorithm does not require the clean-up

activity. So, the implementation of our algorithm is very easy.

Our algorithm maintains a pair of a planar graph and its dual graph and breeds both

a minimum spanning tree of original graph and a maximum spanning tree of a dual graph.

In each iteration of our algorithm, either the number of edges decreases or a vertex of the

planar graph or its dual graph is deleted. By employing a simple bucket structure, we can

save the time complexity of every iteration to O(1):

2 Main Framework

In this section, we give some de�nitions and describe a main framework of our algorithm.

1

Let us consider an undirected graph G = (V;E) with the vertex set V and the edge

set E: For any vertex v of G; �G(v) denotes the set of edges in G incident to v: For

any edge subset E 0 � E; the graph (V; E0) is called a spanning subgraph of G: In this

paper, we present a spanning subgraph as its edge set. A spanning subgraph of G is called

a spanning forest of G when the graph does not contain any cycle. A spanning forest of G

is called a spanning tree when it is connected. A graph G contains a spanning tree if and

only if G is connected. Given a graph G and its edge e; Gne denotes the graph obtained

by deleting the edge e and G=e denotes the graph obtained by contracting e: For each

edge e 2 E; w(e) denotes the weight of the edge e: The weight of a spanning subgraph

F; denoted be w(F); is the sum of the weights of edges in F: A maximal spanning forest

F is called a minimum (maximum) weight spanning forest, when F minimizes (maximizes)

the weight w(F):

A graph is called planar if it can be drawn in the plane so that its edges intersect only

at their ends. Given a graph G = (V;E); a graph G� = (V �; E) with common edge set is

called a dual graph of G if it satis�es the condition that an edge subset C � E is a cycle

of G if and only if C is a cut-set of G�: If G� is a dual graph of G; then G is a dual

graph of G� (see [7, 10] for example). It is known that a graph is planar if and only if it

has a dual graph [12]. If we have a planar embedding of a graph G; it is easy to construct

a dual graph of G geometrically (see [7, 10]). In [8], Hopcroft and Tarjan proposed a linear

time algorithm for embedding a planar graph in the plane.

In this paper, we propose an algorithm for �nding a minimum (maximum) weight span-

ning forest of a planar graph G: Clearly, if the given graph is connected, this problem is

equivalent to the ordinary minimum (maximum) spanning tree problem. It is well-known

that an edge subset T � E is a maximal spanning forest of G if and only if E n T is

a maximal spanning forest of G�: It implies that an edge subset T � E is a minimum

weight spanning forest of G if and only if E n T is a maximum weight spanning forest of

G�: Thus, the problem for �nding a minimum weight spanning forest of G is essentially

the same with the problem for �nding a maximum weight spanning forest of G�:

Now we describe a main framework of our algorithm. Each iteration of the algorithm is

similar to that of Prim's Algorithm [11] for minimum (maximum) spanning tree problem.

Algorithm A

Input: A planar graph G = (V;E); a dual graph G� = (V �; E) of G and edge weights w:

2

Output: A minimum weight spanning forest T of G and a maximum weight spanning

forest T � of G�:

Step 0: Set G1 := G; G�

1
:= G�; T := ; and T � := ;:

Step 1: If both G1 and G�

1
are empty graph, then output (T; T �) and stop.

Step 2: Choose a vertex v in G1 or G�

1
:

If v is an isolated vertex, then delete the vertex and go to Step 1.

Else if v is a vertex of G1 and �G1
(v) contains a self-loop, then go to Step 3.

Else if v is a vertex of G1 and �G1
(v) contains no self-loop, then go to Step 4.

Else if v is a vertex of G�

1
and �G�

1
(v) contains a self-loop, then go to Step 5.

Else if v is a vertex of G�

1
and �G�

1
(v) contains no self-loop, then go to Step 6.

Step 3: (v is a vertex of G1 and �G1
(v) contains a self-loop)

Let f be a self-loop of G1 incident to v:

Set G1 := G1nf; G�

1
:= G�

1
nf and T � := T � [ffg: Go to Step 1.

Step 4: (v is a vertex of G1 and �G1
(v) does not contain any self-loops)

Find an edge e in �G1
(v) which attains the value minfw(e0) j e0 2 �G1

(v)g:

Set G1 := G1=e; G�

1
:= G�

1
ne and T := T [feg: Go to Step 1.

Step 5: (v is a vertex of G�

1
and �G�

1
(v) contains a self-loop)

Let f be a self-loop of G�

1
incident to v:

Set G1 := G1nf; G�

1
:= G�

1
nf and T := T [ffg: Go to Step 1.

Step 6: (v is a vertex of G�

1
and �G�

1
(v) does not contain any self-loops),

Find an edge e in �G�

1
(v) which attains the value maxfw(e0) j e0 2 �G�

1
(v)g:

Set G1 := G1ne; G�

1
:= G�

1
=e and T � := T � [feg: Go to Step 1.

In the above algorithm, we can symmetrize Step 3 and Step 5, when we replace the

operation G�

1
:= G�

1
nf in Step 3 by G�

1
:= G�

1
=f and the operation G1 := G1nf in Step 5

by G1 := G1=f: However, the edge contraction procedure is time consuming. In addition,

to construct a linear time algorithm, we have to delete the edge f from both graphs in

Step 3 and Step 5. We will discuss this problem in the next section.

Now we show the correctness of the algorithm briey. It is well-known that for any edge

e 2 E; the graph Gne is a dual graph of G�=e and the graph G=e is a dual graph of

G�ne (see [10] for example). If e 2 E is a self-loop of the graph G; it is easy to show that

Gne is a dual graph of G�ne: This property directly implies the following.

3

Claim 1 Throughout the iterations of Algorithm A, G�

1
is a dual graph of G1:

Then we show the correctness of the algorithm.

Theorem 2 If Algorithm A terminates, it correctly �nds a minimum weight spanning forest

T of G and a maximum weight spanning forest T � of G�:

Proof. We only need to show that at the entrance of each iteration, (1) for any minimum

weight spanning forest T1 of G1; T1 [T is a minimum weight spanning forest of G and

(2) for any maximum weight spanning forest T �

1
of G�

1
; T �

1
[T � is a maximum weight

spanning forest of G�:

When an isolated vertex is chosen at Step 2, it is obvious. Consider the case that the

algorithm executes Step 3. Since f is a self-loop of G1; any spanning forest of G1 does

not contain the edge f: From the de�nition of the dual graph, ffg is a cut-set of G�

1
and

so, each spanning forest of G�

1
contains the edge f: When Step 4 is executed, the edge set

�G1
(v) is a cut-set of G1 and also a cycle of G�

1
: Let e be a minimum weight edge in

�G1
(v): Then it is easy to show that (i) there exists a minimum weight spanning forest of

G1 containing e and (ii) there exists a maximum weight spanning forest of G�

1
excluding

the edge e: The proof is similar to that of the correctness of Prim's algorithm for minimum

spanning tree problem (see [11] or [10] for example). We can show the correctness of Step 5

and Step 6 in the same way. //

In each iteration of Algorithm A, either a vertex or an edge is removed. It implies the

following result.

Claim 3 The number of iterations of Algorithm A is bounded by jV j+ jV �j+ jEj:

In the next section, we describe a technique to save the time complexity of each iteration

to O(1):

3 Linear Time Algorithm

For any vertex v of a graph G; dG(v) denotes the degree of the vertex of G (here we

assume that each self-loop is counted twice). The following property gives an idea to save

the time complexity of each iteration of Algorithm A to O(1):

Lemma 4 Let G = (V;E) be a planar graph and G� = (V �; E) a dual graph of G: Then

either G or G� contains a vertex whose degree is less than four.

4

Proof. From Euler's formula, jV j � jEj + jV �j = � + �� where � (��) denotes the

number of components of G (G�): It is enough to show that the mean value z of degrees

of the vertices in G or G� is less than four. From Euler's formula, it is obvious that

z = (
P

v2V dG(v) +
P

v2V � dG�(v))=(jV j+ jV �j) = 4jEj=(jEj+ �+ ��) < 4:==

In the rest of this section, we construct and discuss an algorithm which choses a vertex

whose degree is less than four at Step 2 of Algorithm A. At �rst, we show that by employing

the above strategy, the time complexity of each iteration of Algorithm A is bounded by

O(1): Next, we show that by employing a bucket technique, we can choose a desired vertex

at Step 2 of Algorithm A in O(1) time.

Now assume that Algorithm A choses a vertex v whose degree is less than four at Step

2. In the rest of this section, we assume that we maintain two graphs G1 and G�

1
by

corresponding adjacency lists. Clearly, both Step 1 and Step 2 require constant time. Since

we maintain each graph by an adjacency list, we can delete an edge in constant time. Thus,

the time complexities of Step 3 and Step 5 are O(1): Consider the case that Algorithm A

executed Step 4. Since the degree of v is less than four, we can �nd a minimum weight

edge e in �G1
(v) in constant time. If we contract the edge e connecting two vertices v

and u; it requires O(minfdG1
(v); dG1

(u)g) time (see [2] for example). Since dG1
(v) < 4;

the edge contraction procedure in Step 4 requires O(1) time. Similarly, we can show that

the time complexity of Step 6 is O(1):

The above discussion implies that when we can choose a vertex v whose degree is less

than four at Step 2, the time complexities of Steps 1-6 are O(1): Next, we show how to

choose such a vertex in constant time. We prepare a bucket which contains all the vertices

whose degrees are less than four. Then, we can choose a desired vertex from the bucket at

Step 2 in constant time. In the following, we describe a method to update the bucket.

When an edge e is deleted from a graph, the degrees of two end vertices of e decrease

by 1 and degrees of other vertices do not change. So, in the worst case, we have to throw

two vertices into the bucket. Now consider the case that an edge e is contracted. The

new vertex obtained by identifying two ends of e is denoted by r: At �rst we remove the

end vertices of e and if the degree of the new vertex r is less than four, we throw the

vertex into the bucket. The degrees of other vertices do not change. From the above, in

each iteration of Algorithm A, we remove at most two vertices from the bucket and throw

at most four vertices into the bucket in each iteration. So, we can update the bucket in

constant time.

5

By employing the above bucket technique, we can save the time complexity of each

iteration of Algorithm A to O(1) time. Claim 3 shows that the number of iterations is

bounded by jV j+ jV �j+ jEj: Clearly, Step 0 requires O(jV j+ jV �j+ jEj) time and when

we start the algorithm we can calculate the degrees of all vertices and set-up the bucket in

O(jV j+ jV �j+ jEj) time. Thus, the overall time complexity is O(jV j+ jV �j+ jEj):

4 Discussions

In this paper, we proposed a liner time algorithm for the minimum weight spanning forest

problem on a planar graph. In each iteration, our algorithm picks a vertex whose degree

is less than four and executes Prim's algorithm. Lemma 4 shows the existence of such an

vertex.

Similarly to Lemma 4, we can prove the following property easily.

Lemma 5 Let G = (V;E) be a planar graph and G� = (V �; E) a dual graph of G: Then

either G has a vertex whose degree is less than six or G� has a vertex whose degree is less

than three.

If we employ this lemma, we can construct another linear time algorithm. Now assume

that we maintain the original graph as a planar embedding and its the geometric dual graph.

If the degree of a vertex of the dual graph is one, unique adjacent edge corresponds to a

facial self-loop of the planar embedding of the original graph. When the degree of a vertex

of the dual graph is two, we can identify the pair of emanating edges as a facial parallel

edges of the planar embedding. So, it is possible to describe the algorithm without using

the notion of dual graphs. However, in that case, we have to maintain the face structure of

the planar embedding of original graph.

Acknowledgements

I am grateful to Takao Nishizeki for many useful suggestions.

References

[1] D. Cheriton and R.E. Tarjan. Finding minimum spanning trees. SIAM J. Computing,
5, pp.724{742, 1976.

[2] N. Chiba, T. Nishizeki, and N. Saito. E�cient algorithms for graph alterations (in
Japanese). Trans. IECE, J64-D, pp.934{939, 1981.

6

[3] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1, pp.269{271, 1959.

[4] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization problems. J. of ACM, 34, pp.596{615, 1987.

[5] H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan. E�cient algorithms for �nding
minimum spanning trees in undirected trees in undirected and directed graphs. Com-
binatorica, 6, pp.109{122, 1986.

[6] R.L. Graham and O. Hell. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7, pp.43{57, 1985.

[7] F. Harary. Graph Theory. Addison-Wesley, 1972.

[8] J. E. Hopcroft and R.E. Tarjan. E�cient planarity testing. J. of ACM, 21, pp.549{568,
1974.

[9] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. American Math. Society, 2, pp.48{50, 1956.

[10] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and
Winston, New York, 1976.

[11] R. C. Prim. Shortest connection networks and some generalizations. Bell System Tech.
J., 36, pp.1389{1401, 1957.

[12] H. Whitney. On the abstract properties of linear dependence. Amer. J. Math., 57,
pp.509{533, 1935.

[13] A. Yao. An O(jEj log log jV j) algorithm for �nding minimum spanning trees. Informa-
tion Processing Letters, 4, pp.21{23, 1975.

7

