
Catamorphism-Based Transformation of Functional

Programs

Zhenjiang Hu � Hideya Iwasaki y Masato Takeichi z

Summary. Accumulations are operators on structured object that
proceed their computation on each element of the object keeping some
intermediate results. Accumulations are widely used in the design of
e�cient sequential and parallel programs. The purpose of this paper
is to deal with the transformation on accumulations so that more e�-
cient programs can be derived. We formulate accumulations by means
of higher order catamorphisms and propose a promotion theorem for
accumulations. Some examples are given to explain our method.

1 Introduction

Accumulations are operators on structured object that proceed their computation
on each element of the object keeping some intermediate results.

Accumulations have gained a wide interest in the design of both sequential
programs [1, 2] and parallel programs [4]. Especially in parallel programming,
accumulations are considered as one of basic parallel operators [3], and a special
hardware for scan accumulations has been installed in CM5 [5] recently.

The purpose of this paper is to deal with the transformation on accumulations
so that more e�cient programs can be derived. We have two problems here: one
is how to formulate accumulations and the other is how to perform transformation
on such accumulations.

For the �rst problem, it has been suggested that an accumulation can be ef-
�ciently described by the parameter accumulation whereby a speci�cation is gen-
eralized by the inclusion of an extra argument [1, 9, 10]. Because such parameter
accumulations can be of any style, it follows that the promotion strategy for pa-
rameter accumulations seems di�cult to �nd. To overcome this shortcoming, we
make restriction on the style of parameter accumulations, requiring that parame-
ter accumulations be speci�ed by function-valued catamorphisms (i.e. higher order

catamorphisms). With this restriction, the promotion on accumulations can be well
done while the descriptive power of higher order catamorphisms for accumulations
is not decreased.

� Department of Mathematical Engineering and Information Physics, Faculty of Engineering,

University of Tokyo. Email: hu@ipl.t.u-tokyo.ac.jp
y Educational Computer Centre, University of Tokyo. Email: iwasaki@rds.ecc.u-tokyo.ac.jp.
z Department of Mathematical Engineering and Information Physics, Faculty of Engineering,

University of Tokyo. Email: takeichi@takeichi.t.u-tokyo.ac.jp.

1 June 17, 1994, METR 94{06

2 Technical Report METR 94{06

After settling the �rst problem, the second problem only needs to �nd a proper
and powerful promotion strategy for the transformation of accumulations. Thanks
to the uniform style of our accumulations, the promotion theorem can be naturally
derived.

We adopt Bird-Meertens Formalism (BMF) as our algebraic framework. The
BMF was �rstly a calculus for the derivation of programs developed by Bird and
Meertens[2, 12], and then extended to be a more general theory on structured data
types based on category theory[11]. Besides its conciseness and higher degree of
abstraction, it places a heavy emphasis on the algebraic properties of data types,
resulting in a rich and powerful body of laws which show the close correspondence
between data structures and control structures. In BMF, there are two important
concepts: catamorphism and promotion. A catamorphism is, put simply, a unique
homomorphism from the speci�ed structured data type to another similar type,
while the promotion theorem is a general transformation strategy for the manipu-
lation of catamorphisms. If we could describe an accumulation by a catamorphism,
manipulation on accumulations would be reduced to that on catamorphisms. Un-
fortunately, there are few study on the transformation of accumulations as well as
higher order catamorphisms in BMF.

This paper is organized as follows. We introduce brie
y some BMF notational
conventions in Section 2. In section 3, we use some examples to show that higher
order catamorphisms can describe accumulations e�ectively. Section 4 proposes a
promotion theorem for our transformation. Two applications are given in Section
5, and �nally some discussions are described in Section 6.

2 Basic Notational Conventions

The notation we use is based on that of Bird [2, 11]. We denote the application of
function f to argument a with f a, and denote the functional composition with an
in�x dot (:) as (f : g) x = f (g x).

We often use the symbols such as �,
, and etc. to denote in�x binary opera-
tors. These operators can be turned into unary functions by sectioning or partial
application:

(a�) b = a� b = (�b) a = (�) a b

A data type is constructed as the least solution of a recursive type equation and
determined by a type functor F with some type constructors �i (i = 1; � � � ; n). A
type functor is a function from types to types that has a corresponding action on
functions which respects identity and composition. For example, the type of the
cons list with elements of type a is de�ned by

Cons a ::= [] j a : Cons a;

and according to this type equation, F is de�ned as

For object: F X = 1 + a�X

For function: F f = id+ id� f

where 1 stands for some distinguished one-element set, id for the indentity function,
� for product and + for sum. In this case, two type constructors are [] and : .

Catamorphism-Based Transformation of Functional Programs 3

Central to this paper is the notion of catamorphisms which form important
functions over a given data type. They are the functions that promote through the
type constructors. The consequence of the de�nition of a type as the least solution
of a type equation is the unique existence of the catamorphism. For example,
for the cons list, given e and � , there exists a unique catamorphism, say cata,
satisfying the following equations.

cata [] = e
cata (x : xs) = x� (cata xs)

In essence, this solution is a relabeling: it replaces every occurrence of [] with e and
every occurrence of : with � in the cons list. Since e and � uniquely determine a
catamorphism, we are likely to use special braces to denote this catamorphism:

cata = ([e;�])

The catamorphisms are manipulatable in the sense that they obey a number of
promotion or distributivity laws that are useful for transformation.

3 Speci�cation with Higher Order Catamorphisms

The higher order catamorphism on a speci�ed data type T is a catamorphism
whose result of its application to a data of type T is still a function. Higher order
catamorphisms are more powerful than �rst order ones in that many accumula-
tions which cannot be described or cannot be e�ciently described by �rst order
catamorphisms can be e�ciently described by higher order catamorphisms.

The procedure to specify accumulations by higher order catamorphisms is sim-
ilar to the accumulational transformation [1]. The di�erence is that the �nal result
we obtain is of the style of higher order catamorphisms. Suppose that the initial
algorithm is speci�ed naively by

acc :: T ! C;

where T is determined by functor F with constructors �1; � � � ; �n. The accumula-
tional speci�cation using higher order catamorphisms is derived by the following
three steps:

1. De�ne a function acc0 by including a new parameter ac:

acc xs = acc0 xs ac

2. Find all gi's satisfying

acc0 : �i = gi : (F acc0) (i = 1; � � � ; n)

To see clearly about the above equation, we give an example of cons lists. It
turns out that

� T = Cons a

� �1 = [], �2 = :

� F acc0 = id + id� acc0

4 Technical Report METR 94{06

What we want to �nd are g (= g1) and � (= g2) that satisfy the following
equations.

acc0 [] = g

acc0 (x : xs) = x � xs

3. Re-express acc as
acc xs = ([g1; � � � ; gn]) xs ac

The correctness of the above transformation can be easily proved by induction on
the construction of the type T based on the theory of Malcolm [11] and Hagino [8].

The di�culty for such transformation is to �nd those gi's that meet the require-
ment. In BMF, this can be done by calculation. Let us see some examples.

Example 3.1 Considering a function computing the initial sum of a list, we can
de�ne it naively as follows.

isum [] = []
isum (x : xs) = x : ((x+) � (isum xs))

where � stands for the "map" operation over list. It is not e�cient because \(x+)�"
costs much, even though it is a catamorphism. Rather than perform transformation
from the initial ine�cient de�nition, we are likely to rewrite it �rst into accumula-
tional form and then perform other transformation. Let

isum xs = isum0 xs 0

and we �nd g1 = � and g2 = � where

� = �e:[]
x� p = �e:((e+ x) : p (e+ x))

It is not di�cult to check that

isum0 : �i = gi : (F isum0) (i = 1; 2)

holds, where �1 = [] and �2 = :. To this end, the function isum0 can be speci�ed
by ([�;�]) , a higher order catamorphism.

As the result, the new program becomes as follows.

isum0 [] = �e:[]
isum0 (x : xs) = x� (isum0 xs)

where

x� p = �e:((e+ x) : p(e+ x))

2

Another example is somewhat di�erent in that the initial speci�cation can not
be written directly without an accumulational parameter.

Example 3.2 De�ne a function isub that computes the initial subtraction of a list,
e.g.

isub [5; 2; 1; 4]
= [5; 5� 2; 5� 2� 1; 5� 2� 1� 4]
= [5; 3; 2;�2]

Catamorphism-Based Transformation of Functional Programs 5

In fact, the function isub can not be speci�ed by a �rst order catamorphism on
cons list because the subtraction is not commutative. In other words, there exists
no such a binary operation � that makes

isub (x : xs) = x � (isub xs)

hold. However, with higher order catamorphisms it can be e�ectively speci�ed.
We show the result below, omitting the derivation procedure.

isub0 = ([�;�])
where � = �f:[]

x� p = �f:((f x) : (p ((f x)�)))

It is interesting to see that functions are used for accumulation.
2

So far, we have not talked about how to select a suitable extra parameter ac.
It should be noted that a program written by a higher order catamorphism is
not always e�cient, because it depends much on how to accumulate. To de�ne
an e�cient program by a higher order catamorphism, we need to �nd a suitable
accumulation parameter. As seen from the above, accumulation parameters can be
anything such as simple data or even functions depending on the problems.

If the initial f is con�ned to a certain kind, the extra accumulation parameter
can be easily derived. This will be studied in Section 4.

4 Manipulating Accumulations

As we have seen that many accumulational algorithms can be speci�ed by higher
order catamorphisms, transformation on accumulations is reduced to that on cata-
morphisms.

In the world of �rst order catamorphisms, the Promotion Theorem [11] tells us
that the composition of a homomorphism with a catamorphism is again a catamor-
phism.

Theorem 4.1 (First Order Promotion) Assume that ([�1; � � � ; �n]) is a �rst order
catamorphism with respect to the type functor F . For a given h, if there exist
 1; � � � ; n satisfying

h : �i = i : (F h) (i = 1; � � � ; n)

then
h : ([�1; � � � ; �n]) = ([1; � � � ; n])

2

As to our higher order catamorphisms, we have the similar promotion theorem.

Theorem 4.2 (Higher Order Promotion) Let ([�1; � � � ; �n]) ::L ! (A ! B) be a
higher order catamorphism on type L with respect to the functor F . If there exists
 1; � � � ; n satisfying

(h :) : �i = i : F (h :) (i = 1; � � � ; n)

6 Technical Report METR 94{06

then

h : (([�1; � � � ; �n])as) = ([1; � � � ; n]) as

2

Based on our promotion theorem together with other transformational rules,
many e�cient programs can be derived. To express the process of transformation,
we use Feijen's proof format that provides a clear method of laying out a calculation.
The calculation is displayed in the form of

P

= f hints as to why P = Q g

Q

= f hints as to why Q = R g

R

Let us see an example.

Example 4.1 Consider that we want to simplify the expression

ex xs = f � (isum0 xs 0):

Since
(f � : �) a

= f def. of � g

f � ((�e:[]) a)
= f application g

f � []
= f def. of map g

[]
= f abstraction g

(�e:[]) a
= f def. of � g

� a

and
(f � : (x� p)) a

= f def. of � in isum0 g

f � ((a+ x) : p (a+ x))
= f by the property of * g

f (a+ x) : f � (p (a+ x))
= f let (x
 p) a = f (a+ x) : p (a+ x) g

(x
 (f � : p))a

hold, we change the above two equations to those in variable free notation:

(f � :) : !� = � : id = � : F (f � :)
(f � :) :� =
 : (id� (f � :)) =
 : F (f � :)

Catamorphism-Based Transformation of Functional Programs 7

Based on the Promotion Theorem, we can simplify the original expression.

f � (isum0 xs 0)
= f composition and application g

(f � : (isum0 xs)) 0
= f the derived result and Promotion Theorem g

((f � :) : ([�;
])) xs 0
= f promote f� into catamorphism g

([�;
]) xs 0

The derived program is as follows.

ex xs = ex0 xs 0
ex0 [] = �e:[]
ex0 (x : xs) = x
 (ex0 xs)
where

x
 p = �e:(f (e+ x) : p (e+ x))

2

The example shows that transformations on higher order catamorphisms are as
direct as those on �rst order ones.

To derive an e�cient program for a complicated initial speci�cation, we proceed
by the following two steps.

� Step 1: We optimize the ine�cient simple functions in the speci�cation to
obtain a new speci�cation;

� Step 2: We derive an e�cient higher order catamorphism based on the pro-
motional transformation and other strategies.

It should be noted that Step 2 of our derivation can be automatic but Step
1 must be done by ourselves. Fortunately, Step 1 is not so di�cult, because the
functions we deal with are simple. For some cases, Step 1 can be made automatic
as shown in Theorem 4.3.

Theorem 4.3 (Generalization) Given a catamorphism f = ([�1; � � � ; �n]) , if for all
i, �i = i:Fi((
)) where
 is associative and has its unit element e, then

([�1; � � � ; �n]) xs = ([(
): 1; � � � ; (
): n]) xs e

Proof Scheme:

([�1; � � � ; �n]) xs
= f e is the unit element of
 g

(
)(([�1; � � � ; �n]) xs) e
= f composition and application g

((
):(([�1; � � � ; �n]) xs)) e
= f assumption and by corollary 4.2 g

([(
): 1; � � � ; (
): n])

2

8 Technical Report METR 94{06

By way of illustration of the Generalization Theorem, we trace the derivation
of an e�cient higher order catamorphism for the initial reverse = ([�1; �2]) which
reverses a cons list.

�1 = []
�2 a p = p++[a]

Since �1 = �():[]:F1(++) , �2 = (�a:�p:p:(a :)):F2(++) where ++ is associative and
has unit element [], we have

reverse xs = ([(++):[]; (++):�a:�p:p:(a :)]) xs []

the right hand side of which can be simpli�ed to

([id; �a:�p:p:(a :)]) xs []:

This is the same e�cient program as that in [10].

5 Some Applications

5.1 Downwards tree accumulations

The initial motivation for us to associate higher order catamorphisms with accumu-
lations is to �nd a method to formulate downwards tree accumulations which are
both e�cient and manipulatable. Gibbons[7] proposed this problem and claimed
that some restrictions on the initial downwards tree accumulations are necessary.
However, his complicated discussion leaded us to seek another simpler and more
concise method. Using higher order catamorphisms to specify downwards tree ac-
cumulations, we not only solve the problem, but also make Gibbons' restrictions
unnecessary.

Downwards tree accumulations, depending on three operations f , � and
, are
de�ned on the tree type of

Tree a ::= Leaf a j Node a (Tree a) (Tree a)

as:

da(f;�;
) (Leaf a) = f a

da(f;�;
) (Node a x y) = Node (f a) (da(((f a)�);�;
) x) (da(((f a)
);�;
) y):

Many tree algorithms are described by them. For example, the application of
da(id;+;+) to the tree of

Node 1 (Leaf 2 (Node 3 (Leaf 4) (Leaf 5)))

will produce the tree of

Node 1 (Leaf 3 (Node 4 (Leaf 8) (Leaf 9)))

as shown Figure 1.
It is clear that da(f;�;
) may be implemented in parallel by allocating one pro-

cessor for each node in the tree. Unfortunately, such de�nition is not manipulatable,
because it is not a catamorphism.

Gibbons claimed that only under some conditions could downwards tree accu-
mulation be expressed as a catamorphism. In fact, the catamorphism he referred to

Catamorphism-Based Transformation of Functional Programs 9

1

2 3

4 5

1

3 4

8 9

Fig. 1 Computation of da(id;+;+)

is �rst order catamorphism. If we use higher order catamorphisms for description,
many problems can be solved.

As usual, we rewrite downwards tree accumulations into a higher order cata-
morphism. Let

da(f;�;
) tr = da0(f;�;
) tr f

and we get
da0(f;�;
) = ([�g: Leaf (g a) ; dnode])

where
dnode a u v = �g:Node (g a) (u ((g a)�)) (v ((g a)
))

The new de�nition of the downwards tree accumulation may also be e�ciently
implemented both in sequential and parallel. Moreover, based on our promotion
theorem, transformation on such accumulation can be performed, and as the result,
many e�cient parallel tree algorithms are derived.

5.2 Finding palindromic words

Consider that we want to derive an e�cient program for the problem of �nding all
the words that are palindromes in a given character list.

5.2.1 The speci�cation

The problem can be solved by three steps:

1. De�ne the function fields to break up a line (represented as a list of charac-
ter) into a list of words. It may be de�ned as follows.

fields [] = []
fields (c : l) = fields l; if c == Space

= word [c] l; otherwise

word w (c : l) = word (w ++[c]) l; if c 6= Space

word w l = w : (fields l); otherwise

2. Construct another word list in which all words obtained in step 1 are reversed.

reverse� : fields

3. Compare two word lists in step 1 and 2 and select the words that have the
same spelling.

cs = �1� : eq w / : zip

10 Technical Report METR 94{06

where
eq w [] [] = True

eq w (x : xs) (y : ys) = False; if x 6= y

= eq w xs ys; otherwise

and
zip ([]; []) = []
zip (x : xs ; y : ys) = (x; y) : zip (xs; ys)
p / [] = []
p / (x : xs) = x : (p / xs); if p x

= p / xs; otherwise
�1 (x; y) = x

To summarize, the initial speci�cation for the problem is

pw xs = (cs : pl) xs

where
pl xs = (fields xs ; (reverse� : fields) xs):

It is a quadratic program, which is not so e�cient.

5.2.2 The derivation

The derivation starts from the local optimization of fields, and then performs
promotional transformation repetitly to �nd the optimized program for the whole
speci�cation.

For simplicity, we assume that each word in the given character list is followed
by a single space.

Making fields linear

As usual, by adding an extra accumulational parameter, we transform fields into
fields0 to be a higher order catamorphism. At the �rst glance, the accumulational
parameter might be de�ned as a list holding parts of the scanning word and being
concatenated to its end with the currently scanning character. But this is not
enough because the concatenating operation (++) costs too much. Therefore, we
use Hughes' idea [10], which represents the list xs = [x1; x2; � � � ; xn�1; xn] by the
following function composition.

f = (x1 :) : (x2 :) : � � � : (xn�1 :) : (xn :)

To get xs from f , we have only to apply the empty list to f . By this representation,
concatenating a character to the end of a list can be performed in constant time.

The following is the result of rewriting fields into an e�cient higher order
catamorphism. Let

fields xs = fields0 xs id

and de�ne fields0 in which w is for the use of the word accumulation.

fields0 = ([�;])
where
� w = []
(x	 p) w = p (w : (x :)); if x 6= Space

= (w[]) : (p id); otherwise

Catamorphism-Based Transformation of Functional Programs 11

The transformed fields is a linear program.

Promoting reverse � into fields

Since we have got an e�cient program for fields, we hope to derive an e�cient
program for reverse� : f ields by promoting reverse � into fields. With the similar
procedure as in Exercise 4.1, � and
 can be derived satisfying

(reverse� :) : � = �

(reverse� :) :	 =
 : (id� (reverse� :))

where
� w = []
(x
 p) w = p ((x :) : w); if x 6= Space

= (w[]) : (p id); otherwise:

The details of this derivation are not addressed here, but it should be noted
that during the derivation we have to use the following property.

reverse ((ws : w) []) = (w : reverse : ws) []

Based on the promotion theorem, we get

reverse� : (fields0 xs) = ([�w:[] ;
]) xs

So the whole transformation becomes:

(reverse� : fields) xs
= f new de�nition of �elds g

reverse� (fields0 xs id)
= f functional composition g

(reverse� : (fields0 xs)) id
= f result above g

([�w:[] ;
]) xs id

The derived program is an e�cient linear program.

Making pl as a catamorphism

According to the above transformation, the de�nition of pl becomes as follows.

pl xs = (([�;]) xs id ; ([�;
]) xs id)

It will be shown that pl can be transformed into a higher order catamorphism.
This transformation will make it easier for the next step of transformation.

For notational convenience, we de�ne

(f jj g) (x; y) = (f x ; g y)

and unzip which is an inversion of zip, e.g.

unzip [(1; a); (2; b); (3; c)] = ([1; 2; 3]; [a; b; c])

Now expressing pl by jj, we have

pl xs = pl0 xs (id; id)

12 Technical Report METR 94{06

where

pl0 xs = (([�;]) xs jj ([�;
]) xs):

The derivation of a higher order catamorphism for pl0, say ([
;�]) , is shown
below.

First, we �nd
.

pl0 [] (w1; w2)
= f def. of pl0 g

(([�;
]) [] jj ([�;
]) []) (w1; w2)
= f def of catamorphism g

(� jj�) (w1; w2)
= f de�ne
 = (� jj�) g

 (w1; w2)

Next we �nd �.

pl0 (x : xs) (w1; w2)
= f def. of pl0 g

(([�;
]) (x : xs) jj ([�;
]) (x : xs)) (w1; w2)
= f def of catamorphism g

((x	 (([�;])xs)) jj (x
 (([�;
])xs))) (w1; w2)
= f jj and def. of 	 and
 g

(([�;]) xs (w1:(x :)) ; ([�;
]) xs ((x :):w2));
ifx 6= Space

(w1[] : (([�;]) xs id); (w2[] : (([�;
]) xs id)))
otherwise

= f jj g

(([�;]) xs jj ([�;
]) xs) (w1:(x :); (x :):w2);
ifx 6= Space

unzip ((w1[]; w2[]) :
((([�;]) xs jj ([�;
]) xs) (id; id)));

otherwise

= (x� (pl0 xs)) (w1; w2)
where
(x� p) (w1; w2)
= p (w1:(x :); (x :):w2); ifx 6= Space

= unzip ((w1[]; w2[]) : p (id; id)); otherwise

To this end, we have reached our result.

pl xs = ([
;�]) xs (w1; w2)

Promoting cs into pl

The last step of our derivation is to promote cs into pl to get a tight program.
We show only the �nal result, because the derivation procedure is similar to that

Catamorphism-Based Transformation of Functional Programs 13

discussed already.

(cs : pl) xs
= f def. of cs and pl g

((�1 : eq w / : zip):(pl
0 xs)) (w1; w2)

= f promote �1:eq w / :zip into pl0 g

([k;�]) xs (w1; w2)
where
k = �w:[]
(x� p) (w1; w2)
= p (w1:(x :); (x :):w2); ifx 6= Space

= w1[] : p (id; id); if eq w (w1[]) (w2[])
= p (id; id); otherwise

The last derived result is linear. This ends our whole derivation.

6 Discussions

Accumulation strategies for program optimization is very powerful [1]. However,
it seems suitable for small problems. To derive e�cient programs for complicated
problems, we formulate accumulations with higher order catamorphisms to make
accumulations manipulatable. Through the derivations for some non-trivial prob-
lems, it turned out to be promising.

Our work concerning about higher order catamorphisms is related to Fokkinga
and Meijer's speci�cation of attribute grammar with catamorphisms [6]. However,
their main interest is in speci�cation, while we are interested in manipulation. In
[13], Meijer proposed the following promotion theorem for higher order catamor-
phisms.

F (�g)a = F (f�)b) �a � g = f � b

f � (([])xs) = ([�])xs � g

Comparing with Corollary 4.2, it has too many free parameters which make deriva-
tion di�cult. In fact, the above theorem can be obtained by performing promotion
transformation for (f�) � ([]) and (�g) � ([�]) according to Corollary 4.2.

It is also related to Sheard's work [14] where he discussed to some extent about
transformation of higher order catamorphisms. However, his second-order promo-
tion theorem is restricted in the sense that it only concerns the transformation
from (g�) � ([�]) to (�g) � ([]) .

Hughes' representation of data structure with functions [10] suggested us to use
functions as accumulation parameters in our higher order catamorphisms.

One of our future work is to apply our method to the derivation of correct
parallel programs. It has been shown that accumulations are becoming more and
more important in parallel programs. Blelloch [3] and many others argued that
the accumulations could be regarded as a basic parallel operators and many useful
parallel programs can be constructed by them. We hope that our study will be
useful for the development of e�cient parallel programs based on accumulations.

Another future work that seems interesting is to �nd how to derive e�cient
parallel programs by manipulating accumulations of parallel data structures (e.g.

14 Technical Report METR 94{06

trees, arrays and etc.). It is said that parallel data structures are of great important
in parallel programming. It has been shown in the paper that the downwards
tree accumulation becomes manipulatable by using higher order catamorphism
without losing its e�ciency in parallel implementation. Based on this result, we
will undertake to derive e�cient parallel programs for tree problems.

Acknowledgement

The authors would like to thank Dr. Oege de Moor for reading the draft and
making a number of helpful remarks. We would also like to thank Dr. Xu for many
enjoyable discussions.

References

[1] R. Bird, The promotion and accumulation strategies in transformational programming,
ACM Transactions on Programming Languages and Systems 6 (1984), no. 4, 487{504.

[2] , An introduction to the theory of list, Logic of Programming and Calculi of
Discrete Design (M. Broy, ed.), Springer-Verlag, pp. 5{42.

[3] G. Blelloch, Scans as primitive parallel operations, Proceedings of the International
Conference on Parallel Processing, pp. 355{362.

[4] G.E. Blelloch, Vector models for data-parallel computing, MIT Press, 1990.

[5] C.E. Leiserson et al, The network architecture of the connection machine cm-5, Tech.
Report Technique Report, Thinking Machine Corporation, 1992.

[6] M. Fokkinga, J. Jeuring, L. Meertens, and E. Meijer, A translation from attribute
grammers to catamorphisms, Squiggolist (1990), 1{6.

[7] J. Gibbons, Upwards and downwards accumulations on trees, Mathematics of Program
Construction (LNCS 669), Springer-Verlag, pp. 122{138.

[8] T. Hagino, A typed lambda calculus with categorical type constructors, Category The-
ory and Computer Science (D.H. Pitt, A. Poign�e, and D.E. Rydeheard, eds.), Springer
Lecture Notes in Computer Science, 283, pp. 140{157.

[9] P. Henderson, Functional programming : Application and implementation, Prentice
Hall International, 1980.

[10] R. J. M. Hughes, A noval representation of lists and its application to the function of
reverse, Information Processing Letters 22 (1986), no. 3, 141{144.

[11] G. Malcolm, Homomorphism and promotability, Mathematics of Program Construc-
tion (J.L.A. van de Snepscheut, ed.), Springer-Verlag, pp. 335{347.

[12] L. Meertens, Algorithmics { towards programming as a mathematical activity, Pro-
ceedings of CWI Symposium on Mathematics and Computer Science, North-Holland,
1986, pp. 289 { 334.

[13] E. Meijer, Calculating compilers, PhD thesis, University of Nijmegen, Toernooiveld,
Nijmegen, The Netherlands, 1992.

[14] T. Sheard and L. Fegaras, A fold for all seasons, Proc. Conference on Functional
Programming Languages and Computer Architecture (Copenhagen), pp. 233{242.

