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1 Introduction

A quantum statistical model is a family of density operators py defined on
a certain separable Hilbert space H with finite-dimensional real parameters
§ = (0")7_, which are to be estimated statistically. In order to avoid sin-
gularities, the conventional quantum estimation theory [1][2] has been often
restricted to models that are composed of strictly positive density operators.
It was Helstrom [3] who successfully introduced the symmetrized logarithmic
derivatives for the one parameter estimation theory as a quantum counter-
part of the logarithmic derivative in the classical estimation theory. The
right logarithmic derivative is another successful counterpart introduced by
Yuen and Lax [4] in the expectation parameter estimation theory for quan-
tum gaussian models, which provided a theoretical background of optical
communication theory. Quantum information theorists have also kept away
from degenerated states, such as pure states, for mathematical convenience
[5]. Indeed, the von Neumann entropy cannot distinguish the pure states,
and the relative entropies diverge.

This is a companion to the paper [6] which try to construct an estimation
theory for pure state models. In Sec. 2, we give a brief summary of the
conventional quantum parameter estimation theory. In Sec. 3, we study a
multi-parameter quantum estimation theory based on the right logarithmic
derivative. The estimation theoretical significance of the coherent models
is also clarified. In order to demonstrate the results, some examples are
presented in Sec. 4.

2 Review of the conventional theory

Let 3 be a separable Hilbert space which corresponds to a physical system
with inner product (¢|¢), (¢,v € H), and L and L, be, respectively, the set
of all the (bounded) linear operators and all the self-adjoint operators on 3.
A quantum state is represented by a density operator p € L4, which satisfies
p>0and Trp=1. A state pis called pureif rank p = 1 or equivalently p* =
p. In order to handle joint probability distributions of possibly mutually
noncommuting observables, an extended framework of measurement theory
is needed [1, p. 53] [2, p. 50]. A generalized measurement {M(B)} g g on
a measurable space (2,5) is an operator valued set function which satisfy
the following axioms:

i

1. M(¢)=0, M(Q) =1,



2. M(B)=M(B)*>0, ("BeB),

3. M(U; Bj) = ¥; M(Bj), (for all at most countable disjoint sequence
{Bj} C9).

By fixing a state p and a measurement M, the outcomes of the measure-
ment form random variables, whose simultaneous distribution is given by
PM (B) = TrpM (B). In particular, a measurement M is called simple if it
%mqhes in addition to the above three axioms, M (B)%2 = M(B), ("B € B),
or equivalently M (By)M(By) =0, ("B1 N VBZ = ¢).

Given a statistical parametric model composed of strictly positive density
operators:

S={py; po=py>0 Trpp=1, 60O CR"}. (1)

Here, § = (8',---,6") is the parameter to be estimated statistically. An
estvmator for 6 is identified to a generalized measurement which takes values
on ©. The expectation vector with respect to the measurement M at the

/0 (db).

The measurement M is called unbiased if Eo[M] = 6 holds for all 8 € O,
le.,

state py is defined as

/éJ'POM(dé) =0, (j=1,.n) (2)

Differentiation yields

[0 b =5 k=1 (3)

If (2) and (3) hold at a certain 6, M is called locally unbiased at 6. Obviously,
M is unbiased iff M is locally unbiased at every 8 € ©. Letting M be a
locally unbiased measurement at 6, we define the covariance matrix Vy[M] =
[U;k] € R"*" with respect to M at the state py by

/= [ = 00)(8" — 6P ). ()

In order to obtain lower bounds for Vy[M], let us consider a quantum ana-
logue of the logarithmic derivative denoted by Ly:

Ipy

1 . |
507 §[P0L0,j + Lg ; po)- ()



For instance,

dpg _ 1, g s s G
20 5[/)0130,]‘ + Ly jpol, Ly; =Ly (6)

defines the symmetrized logarithmic derivative (SLD) Lg j introduced by
Helstrom [3], and

Ope R

207 P(?Le,j (7)
defines the right logarithmic derivative (RLD) Lf'j introduced by Yuen and
Lax [4]. Thus, (5) defines a certain family of logarithmic derivatives. Cor-
respondingly, we define the quantum analogue of Fisher information matrix
Jo = [(Lg,j, Lo ) py), where the inner product (-,-), on L is defined by

(A,B),=TrpBA". (8)

We also define another inner product on L as
1 * *
<A,B>p= §Trp(BA + A™B). 9)
Then, the following quantum version of Cramér—Rao theorem holds.

Proposition 1 For any locally unbiased measurement M , the following in-
equality holds:
Vy[M] > (Re Jy) ™', (10)

where Re Jy = (Jy + Jp)/2. In particular, for the SLD, Jg = ReJy =

[(ng, L3k>ﬂa] 1s called the SLD Fisher information matriz. Moreover, for
the RLD,
VolM] > (J5H)™ (11)

holds, where Jé{ = [(Lé'fj,Lgk)pﬂ] 1s called the RLD-Fisher information
matriz. '

When the model is one dimensional, the inequalities (10) and (11) be-
come scalar. In this case, it is shown that the lower bound (Re.Jy)™! =
(Jg)~! becomes most informative, i.e., it takes the maximal value, iff the
SLD is adopted, and the corresponding lower bound (J5)~! = 1/Tr py(L3)?
can be attained by the estimator T = 61 + L‘g / Jf, where [ is the identity.
Thus, the one parameter quantum estimation theory is quite analogous to
the classical one as long as the SLD is used.



On the other hand, for the dimension n > 2. the matrix equalities in (10)
and (11) cannot be attained in general, because of the impossibility of the
exact simultaneous measurement of non-commuting observables. We must,
therefore, abandon the strategy of finding the measurement that minimizes
the covariance matrix itself. Rather, we often adopt another strategy as
follows: Given a positive definite real matrix G' = [g;i] € R"*", find the
measurement M that minimizes the quantity

tr GVy[M] = Egjkqjék. (12)
ik

If there is a constant C' such that tr GVy[M] > C holds for all M, C' is called
a Cramér-Rao type bound or simply a CR bound, which may depend on
both G and 6. For instance, it is shown that the folowing two quantities are

both CR bounds [7].

c’ = wG(J)), (13)
Cf = wGRe(Jf)™ +trabs GIm (JJH) 7. (14)

Here, for a matrix X, Im X = (X — X)/2¢ and tr abs X denotes the absolute
sum of the eigenvalues of X. Let us call these CR bounds, respectively, the
SLD bound and the RLD bound. The most informative CR bound is the
maximum value of such C for given G and 6. Yuen and Lax [4] (see also
Holevo [2, p. 281] proved that the above C'* is most informative for the
gaussian model, and they explicitly constructed the optimum measurement
which attains C*. Holevo [2, p. 285] derived another CR bound which,
though an implicit form, is not less informative than C* and C'. Nagaoka
[7] investigated in detail the relation between these CR bounds. He also
derived a new CR bound for 2 dimensional models, which is not less in-
formative than Holevo’s one, and obtained explicitly the most informative
CR bound specific to the spin 1/2 model. The construction of the general
quantum parameter estimation theory for n > 2 is left to future study.

3 Multi—parameter pure state model estimation
theory
As was mentioned in the previous section, there is no prototype for general

theory of quantum multi-parameter estimation theory. So, let us restrict
ourselves here to seeking the estimation theory based on the RLD.

Ut



We first note that the sesquilinear forms (-,-), and (), defined by (8)
(9) become pre-inner products on £ when p is degenerated. Denote by K(p)
the set of linear operators K € L satisfying (K, K), = 0, which are called
the kernel of the pre-inner product (-,-),. Also denote by KCsq(p) the set of
self-adjoint operators K € L, satistying (K, K), = 0, which are called the
kernel of the pre-inner product (-, ) ,. The following lemmas are fundamental

[6].

Lemma 1  Suppose p is pure. Then the following 3 conditions for linear
operators K € L are equivalent.

(1) (K7 K)p = 0:
(ii) pK =0,
(iii) TrpK =0 and pK + K*p=20.

Lemma 2 Suppose p is pure. Then the following 3 conditions for self-
adjoint operators K € L, are equivalent.

(i) (K, K), =0,
(i) pK =0,
(ii) pK + Kp=0.

These lemmas are usefully employed in the pure state estimation theory. For
instance, the SLD, also defined by (6), is determined up to the uncertainty
of K € Ksu. Let us denote the totality of such SLD’s by 7°(p). Then
it is proved that for a pure state model py, the SLD-Fisher information

matrix J&q = [(LgJ,LoSJ\) pe] is uniquely determined on the quotient space

T%(p9)/Ksalpp), and its (j, k) entry is given by
(73 )jre = 2T (9;9)(Orpo), (15)

where 0; = /067, see [6]. Therefore, we may call the quotient space
T (pp)/Ksalpp) the SLD-tangent space.

Meanwhile, the Holevo’s commutation operator ® on Ly, [2] is defined
by

i(Ap—pA) = 5 (DA)p+p(DA). A DAL (1)

This is an anti-symmetric super-operator such that (4,0B), = —(DA, B),
holds for all A, B € L,.



Lemma 3  Suppose p is pure. Then D is regarded as a super operator on
the quotient space Lsq/Ksa(p), and is defined by

(DX)p=20(X — TrpX)p, (X € Laa/Kualp)). (17)

Proof Let us denote two distinct images of A € L, by (DA) and (DAY,
then K = (DA) — (DA) € L, satisfies Kp+ pK = 0 and, from Lemma 2,
K € Kqa(p). Further, observing (DK, DK), = (-D°K, K),, K € K.l(p)
implies DK € Kyq(p). Therefore, D is regarded as a super—operator on
Lso/Ksa(p). Further, re-expressing (16) as

*

X X «
+ ‘(X - TI'[)X)] + [:DT +1:(X —TrpX)| p=0,

P

and using Lemma 1 together with the identity Tr p(0X) = 0, we have an
equivalent equation (17). |

Let us return to the subject, i.e., the estimation theory based on the
RLD. It may sound strange since the RLD defined by (7) does not exist for
degenerated states. However, it is essential to notice that what we need is
not the RLD itself but the inverse of the RLD Fisher information matrix,
as is understood by (11).

We start with the following theorem, which is a modification of the
Holevo’s result originally obtained in the strictly positive case [2, p. 280].
Hereafter, the subscripts 8 of the SLD’s are omitted for simplicity.

Theorem 1  Given a pure state model py. Let {py(e) ; € > 0} be a family
of strictly positive density operators py(e) having a parameter e which satisfy
lime g pg(e) = py. and denote the corresponding RLD by Li(e). If the SLD
tangent space T (pg)/Ksa(po) is D-invariant, then

() = () 500 ()

holds, where Jf(e) = [(Lf(g),Lf(g))pe(g)] and D = [i TI‘pg[L?L? ]
Proof Observing the identities

o _ 1. 5 .5 R\

905 = 3oLy + Ljpe) = (L;’) o
and

(A,B),=(A,(I+ %@)BM

7



we have, for all X € L,
(L] X)pp = (Lj', X)py = (I + ;DILT, X),.
Then L]5 =+ %@)Lﬁ and

e = (5@ 1+ DN B e |-

Since I + %@(6) is symmetric with respect to (-,-),,, the following lemma
immediately leads us to (18), by setting V' = Ly, z;(c) = L‘f(e), and
Ae) =T+ iD(e). [ |

Lemma 4  LetV be ad-dimensional linear space (possibly d = oo ). Given
a family of n(< d) linearly independent vectors {x;(e)}i_y in V', a family of
inner products {-,-)., and a family of symmetric operators A(e) on V with
respect to the inner product, having a parameter ¢ > 0. Suppose U(e) is
invertible for € > 0 but 2(0) is not. Further, the linear span of {x;(0)}7_,
is A(0)-invariant in V. Denote n X n matrices
Jie) = [(ej(e), A @mn(@)e] . Jle) = (wj(e), mnle))..

Then ]

—1
lim ((e)) = J710) [{2;(0), A(0)21(0))o] T (0). (19)

£]0

Proof Let us denote, by W (e), the orthogonal complement of W(e) =
span {z;(¢)}7_; with respect to the inner product (-,-). in V. Further, let
{y; (6)}?:n+1 be a basis of W () and construct a basis {z; (c)};izl of V by
combining them as

(oY — $j(5), J=1--,n,
ZJ(C)—{ _), j:n—l—l,'-',d-

Consider enlarged d x d matrices
3 = [z, A Eze))] . ) = [z(e) 2 (@)l

Since V = W(e) ® W (e) is, of course, A(e)-invariant, the inverse of J%(e)
is explicitly given as

(3%@) " = 374 [z1(e). W) zr(e))] 34 e).



-1
This matrix is well-defined even for ¢ = 0. Decompose (JR’(S)) into

blocks:
P O A B P O | | PAP PBQ
0 Q C D O Q| | QCcpr QDQ |’
where the three matrices in the left-hand side correspond to 3! (€), z(e), Ae)zk(e))e],
and 31 (¢), respectively, P, A are n xn matrices, and Q, D are (d—n) x (d—n)
matrices. Further, it is easy to see that B = C' = O for ¢ = 0, since W(0)
. ) —1
is %(0)-invariant and 2(0) is symmetric. Then lim. g (3R(c)) becomes a

block diagonal matrix, and the limit of the first n xn block PAP approaches

(19). [ ]

Note that Tr pg [Lf , L;j ] in Theorem 1 also independent of the uncertainty
of the SLD. Therefore, Theorem 1 asserts that the inverse of the RLD—
Fisher information matrix can be obtained directly from the SLD, without
using the diverging RLD—Fisher information matrix itself. Then, it may be
important to investigate the condition for the SLD-tangent space to be 2-
invariant. The following theorem characterizes the structure of ®-invariant
SLD-tangent space.

Theorem 2 The D-invariant SLD-tangent space T°(pg)/Ksa(pp) has an
even dimension and is decomposed into direct sum of 2-dimensional 3 -
invariant subspaces. Moreover, by taking an appropriate basis of T (pg) /Ksa(po),
the operation of ® can be written in the form

LY ] ro 2 11 L7 ]
L3 —2 0 L§
L3 0 2 L3
o L |= —2 0 Ly |, o
Lkgg'mfl 0 2 L"ggm'fl
Lg‘m . n _2 O' L Lgﬂl

Proof Since Trp(®X) = 0 holds for all X € L,/Ksq, (17) is rewritten
as

[—4(X — TrpX)]p = 21[DX — Tr p(DX)]p.
Comparing this equation to (17) with X replaced by DX, we have

DX = —4(X — TrpX).



In particular, ©%X = —4X holds for every X which satisfies Tr pX = 0. We
may, therefore, write this relation as D? = —4 on the SLD—tangent space
T%(pp)/Ksalpy) for short.

Take an arbitrary element e; of the SLD-tangent space T (pg)/Ksa(po),
and let es = Dey. Then from the assumption, es € T°(pp)/Ksalpp), and
Dey = —dey since D% = —4. Therefore, Sj(py) = span{ep,es} is a D-
invariant subspace of T(pg)/Ksa(pp) and

T%(po)/Ksalpo) = Si(pa) & Si(ps) ™,

where 81 (pg)* is the orthogonal complement of Sy (py) with respect to (-, Y pe-
Repeating the same procedure to Sy (pg)*

T (09)/Ksalps) = S1(py) & Salpy) & -+ & Smlpy).

In particular, dim[7 (pg)/Kea(ps)] = 2m.
We next investigate the structure of 2-dimensional -invariant subspace

, we have

Si(py) = span {e1, e2}. Expressing the operation of ® in a matrix form

of]-[r2][n] wasen

and using D? = —4, we have
2 ryz=—4, yle+w)=0, zlz+w)=0, w’+yz=—4

These equations do not contradict the identities (€1, Dey), = (€2, Dea), =0
iff t4+w=0,y+#0, z+#0. In this case

er | T ) C1
S[EQ ] N [ — (22 +4)/y —1:] [62]'

Furthermore, the transformation of the basis

LY | | 2/y 0] e
I?S S|y 1 €9

yields o
ol |0 2]]L
LS| | -2 0||L§

Repeating the same procedure to other invariant subspaces, we have the
theorem. [ |
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Definition 1 The basts {Ef}?g‘l of the SLD~tangent space T (pg)/Ksa(po)
which is subject to the transformation law (20) is called py symplectic.

From Theorem 2, it is sufficient to consider a 2-dimensional -invariant SLD
tangent space. The following theorem gives the condition for the model to
have a 2-dimensional ®-invariant SLD—tangent space at py.

Theorem 3  For the pure state model {pg = |0){(0|}. the following two
conditions are equivalent.

(i) {L‘?}jzlﬁg s a |0)(0| symplectic basis.
(i) (LY +iL3))8) = 0.
The linear span of such basis Span{if , i% }is ®-invariant.

Proof We first assume (i). Letting X = L{ in (17), we have
N i
(L7 + §©Lf)p0 = 0.

Then, DL; = 2L5 yields (ii). i i
Next we assume (ii). Since (L} +iL5)pp = 0,

215 py = 20 L7 py, —2L7 py = 2 L3 py.
Comparing these equations to (17), we have (i). m

Since the condition (ii) in Theorem 3 is similar to the definition of the
coherent states in quantum theory [9], we shall make the following definition.

Definition 2 The pure state model {py = |0)(0|} which satisfy the con-
dition i Theorem 3 is called coherent.

Thus the ®-invariancy is equivalent to the coherency of the model. The next
fact, a straightforward consequence of Theorem 3, characterizes a global
structure.

Corollary 1 Consider the pure state model of the form py = UppoUy where
{Uy} forms a projective unitary group. This model is coherent iff T (po)/Kea(po)
18 D -invariant, i.e., the model has a py symplectic basis. Indeed, if{L’]S}j:Lg

s a po—symplectic basis, then {Ugfjng}j:m becomes a pg—symplectic basis.

11



Now we investigate the RLD bound for coherent models. From Theorem
2, it is sufficient to consider a two parameter coherent model. In this case,
the RLD—bound can be explicitly obtained by substituting (18) into (14) as

VvdetG

R _ ~S
= e

Tr ol L7, L] (21)

It is also shown that the above CR-bound is most informative, i.e., we can
construct explicitly the generalized measurement that attains this bound [8].
Thus, the coherent model has a nice property from an estimation theoretical
viewpoint.

4 Examples

In this section, we give two examples of coherent model. The first one is
the family of canonical coherent states p, = |z)(z| in a one dimensional
harmonic oscillator with frequency w, where z = (wq + ip)/2h € C, see
[10][11][12]. This can be regarded as a 2-parameter pure state model which
has real parameters ¢ and p. It is shown that the representative elements of
SLD are

=2 -q, Li=7(P-p)
and , ‘ , 5
DLy =2wLy, DLy =--L.
Letting
L=l1i=w@-0. L="21=P-p
we have

DLS =208, DLS = 2Lf.

This indicates that {f,,j , I:; } forms a p,—symplectic basis. Therefore, from
Theorem 3,

TS .78
(L, +:L;,)

z) = [w(Q — q) + (P = p)]

z)y =0,

which is nothing but the definition of canonical coherent states. Further-
more, from Theorem 1, we obtain

o2 ih/2
(']R)il = l N r 2 9
—ih/2  op

12



where O'% = hw/2, (7% = h/2w, and the corresponding RLD bound

gpVp[M]+ goVo[M] > gpo? + 9@0629 +\/9pP9Q

is identical to the pure state limit of the most informative CR bound ob-
tained by Yuen and Lax [4] [2, p. 281].

Another example is the family of spin coherent states [13][14]. Let (6, ¢)
be the polar coordinates where the north pole is § = 0 and z—axis corre-
sponds to ¢ = 0. The spin coherent state |0, ¢) is defined as

0. 0) = R[0. ¢]|j) = exp[10( ], sinp — J, cos p)]|5).

where |j) is the highest occupied state in the spin j system. It is shown
that the SLD at the north pole in the direction of ¢ = 0 and ¢ = 7/2
are, respectively, 2.J,, 2.J, and the operation of ® becomes DJ, = 2J,,
©DJ, = —2J,. Therefore, L{ = J, and L§ = Jy form a |j)(j|-symplectic
basis and from Theorem 3

(L7 +iL5) 13y = T4li) =0,

where J. = J, +4J, is the spin creation operator. This is nothing but
the definition of the terminal state |j). From this fact, we can immediately
conclude that the model which comprises the totality of the spin coherent
states

0,9)(0, | = R[0.¢]|j)(j|R[O, o] *

has ®-invariant SLD tangent space at every point on the sphere. Indeed,
since R[6, ¢] form a compact Lie group, Corollary 1 asserts that

PO =

{ R0, Q1LT RO 0] . RO, Q]S RO, 0] '}

form a |0, ){(0, ¢
model has ®-invariant SLD tangent space and

(JR)*1 _ 1 l sin?f —isinf ] |

—symplectic basis. In particular, a 2-parameter spin 1/2

Sin2 6| 2sin6 1
The corresponding CR bound is

Yo + 2
sin?f = sinfV 969

This bound is identical to the pure state limit of the most informative CR
bound obtained by Nagaoka [7].

9oVolM ] + g,V [M] > go +

13



5

Conclusions

A statistical multi—parameter estimation theory for the pure state models
was presented. We first considered the possibility of the estimation the-
ory based on the right logarithmic derivatives. We next investigated 2—
invariancy of the SLD-tangent space, which lead us to the notion of coherent

models, and derived explicitly the RLD bound. Some examples were also

given. The construction of the general quantum multi-parameter estimation
theory is left to future study, as is the strictly positive model case.
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