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1 Introduction

A quantum statistical model is a family of density operators �� de�ned on

a certain separable Hilbert space H with �nite-dimensional real parameters

� = (�i)ni=1 which are to be estimated statistically. In order to avoid sin-
gularities, the conventional quantum estimation theory [1][2] has been often
restricted to models that are composed of strictly positive density operators.

It was Helstrom [3] who successfully introduced the symmetrized logarithmic
derivatives for the one parameter estimation theory as a quantum counter-
part of the logarithmic derivative in the classical estimation theory. The

right logarithmic derivative is another successful counterpart introduced by
Yuen and Lax [4] in the expectation parameter estimation theory for quan-
tum gaussian models, which provided a theoretical background of optical
communication theory. Quantum information theorists have also kept away

from degenerated states, such as pure states, for mathematical convenience
[5]. Indeed, the von Neumann entropy cannot distinguish the pure states,
and the relative entropies diverge.

This is a companion to the paper [6] which try to construct an estimation

theory for pure state models. In Sec. 2, we give a brief summary of the
conventional quantum parameter estimation theory. In Sec. 3, we study a
multi-parameter quantum estimation theory based on the right logarithmic

derivative. The estimation theoretical signi�cance of the coherent models
is also clari�ed. In order to demonstrate the results, some examples are
presented in Sec. 4.

2 Review of the conventional theory

Let H be a separable Hilbert space which corresponds to a physical system

with inner product h�j i; (�;  2 H), and L and Lsa be, respectively, the set
of all the (bounded) linear operators and all the self-adjoint operators on H.
A quantum state is represented by a density operator � 2 Lsa which satis�es
� � 0 and Tr� = 1. A state � is called pure if rank � = 1 or equivalently �2 =

�. In order to handle joint probability distributions of possibly mutually
noncommuting observables, an extended framework of measurement theory
is needed [1, p. 53] [2, p. 50]. A generalized measurement fM(B)gB2F on

a measurable space (
;F) is an operator{valued set function which satisfy

the following axioms:

1. M(�) = 0; M(
) = I,
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2. M(B) =M(B)� � 0; (8B 2 B),
3. M(

S
j Bj) =

P
jM(Bj), (for all at most countable disjoint sequence

fBjg � F).

By �xing a state � and a measurement M , the outcomes of the measure-
ment form random variables, whose simultaneous distribution is given by

PM
� (B) = Tr�M(B). In particular, a measurement M is called simple if it

satis�es, in addition to the above three axioms, M(B)2 =M(B); (8B 2 B),
or equivalently M(B1)M(B2) = 0; (8B1 \ 8B2 = �).

Given a statistical parametric model composed of strictly positive density
operators:

S = f�� ; �� = ��� > 0; Tr�� = 1; � 2 � � Rng: (1)

Here, � = (�1; � � � ; �n) is the parameter to be estimated statistically. An
estimator for � is identi�ed to a generalized measurement which takes values

on �. The expectation vector with respect to the measurement M at the
state �� is de�ned as

E�[M ] =

Z
�̂PM

� (d�̂):

The measurement M is called unbiased if E�[M ] = � holds for all � 2 �,
i.e., Z

�̂jPM
� (d�̂) = �j; (j = 1; � � � ; n): (2)

Di�erentiation yieldsZ
�̂j

@

@�k
PM
� (d�̂) = �jk; (j; k = 1; � � � ; n): (3)

If (2) and (3) hold at a certain �,M is called locally unbiased at �. Obviously,

M is unbiased i� M is locally unbiased at every � 2 �. Letting M be a
locally unbiased measurement at �, we de�ne the covariance matrix V�[M ] =

[vjk� ] 2 Rn�n with respect to M at the state �� by

vjk� =

Z
(�̂j � �j)(�̂k � �k)PM

� (d�̂): (4)

In order to obtain lower bounds for V�[M ], let us consider a quantum ana-
logue of the logarithmic derivative denoted by L�:

@��
@�j

=
1

2
[��L�;j + L��;j��]: (5)

3



For instance,
@��
@�j

=
1

2
[��L

S
�;j + LS�;j��]; LS�;j = LS��;j (6)

de�nes the symmetrized logarithmic derivative (SLD) LS�;j introduced by

Helstrom [3], and
@��
@�j

= ��L
R
�;j (7)

de�nes the right logarithmic derivative (RLD) LR�;j introduced by Yuen and
Lax [4]. Thus, (5) de�nes a certain family of logarithmic derivatives. Cor-

respondingly, we de�ne the quantum analogue of Fisher information matrix
J� = [(L�;j; L�;k)�� ], where the inner product (�; �)� on L is de�ned by

(A;B)� = Tr�BA�: (8)

We also de�ne another inner product on L as

hA;Bi� = 1

2
Tr� (BA� +A�B): (9)

Then, the following quantum version of Cram�er{Rao theorem holds.

Proposition 1 For any locally unbiased measurement M , the following in-

equality holds:

V�[M ] � (ReJ�)
�1; (10)

where Re J� = (J� + J�)=2. In particular, for the SLD, JS� = ReJ� =h
hLS�;j; LS�;ki��

i
is called the SLD{Fisher information matrix. Moreover, for

the RLD,

V�[M ] � (JR� )
�1 (11)

holds, where JR� =
h
(LR�;j; L

R
�;k)��

i
is called the RLD{Fisher information

matrix.

When the model is one dimensional, the inequalities (10) and (11) be-

come scalar. In this case, it is shown that the lower bound (ReJ�)
�1 =

(J�)
�1 becomes most informative, i.e., it takes the maximal value, i� the

SLD is adopted, and the corresponding lower bound (JS� )
�1 = 1=Tr��(L

S
� )

2

can be attained by the estimator T = �I + LS� =J
S
� , where I is the identity.

Thus, the one parameter quantum estimation theory is quite analogous to
the classical one as long as the SLD is used.

4



On the other hand, for the dimension n � 2, the matrix equalities in (10)
and (11) cannot be attained in general, because of the impossibility of the

exact simultaneous measurement of non{commuting observables. We must,
therefore, abandon the strategy of �nding the measurement that minimizes
the covariance matrix itself. Rather, we often adopt another strategy as
follows: Given a positive de�nite real matrix G = [gjk] 2 Rn�n, �nd the

measurement M that minimizes the quantity

tr GV�[M ] =
X
jk

gjkv
jk
� : (12)

If there is a constant C such that tr GV�[M ] � C holds for allM , C is called
a Cram�er{Rao type bound or simply a CR bound, which may depend on

both G and �. For instance, it is shown that the folowing two quantities are
both CR bounds [7].

CS = trG(JS� )
�1; (13)

CR = trGRe (JR� )
�1 + tr absG Im (JR� )

�1: (14)

Here, for a matrix X, ImX = (X�X)=2i and tr absX denotes the absolute
sum of the eigenvalues of X. Let us call these CR bounds, respectively, the

SLD{bound and the RLD{bound. The most informative CR bound is the
maximum value of such C for given G and �. Yuen and Lax [4] (see also
Holevo [2, p. 281] proved that the above CR is most informative for the
gaussian model, and they explicitly constructed the optimum measurement

which attains CR. Holevo [2, p. 285] derived another CR bound which,

though an implicit form, is not less informative than CS and CR. Nagaoka
[7] investigated in detail the relation between these CR bounds. He also
derived a new CR bound for 2 dimensional models, which is not less in-

formative than Holevo's one, and obtained explicitly the most informative
CR bound speci�c to the spin 1/2 model. The construction of the general
quantum parameter estimation theory for n � 2 is left to future study.

3 Multi{parameter pure state model estimation

theory

As was mentioned in the previous section, there is no prototype for general
theory of quantum multi-parameter estimation theory. So, let us restrict

ourselves here to seeking the estimation theory based on the RLD.
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We �rst note that the sesquilinear forms (�; �)� and h�; �i� de�ned by (8)
(9) become pre-inner products on L when � is degenerated. Denote by K(�)
the set of linear operators K 2 L satisfying (K;K)� = 0, which are called
the kernel of the pre-inner product (�; �)�. Also denote by Ksa(�) the set of
self-adjoint operators K 2 Lsa satisfying hK;Ki� = 0, which are called the
kernel of the pre-inner product h�; �i�. The following lemmas are fundamental

[6].

Lemma 1 Suppose � is pure. Then the following 3 conditions for linear

operators K 2 L are equivalent.

(i) (K;K)� = 0,

(ii) �K = 0,

(iii) Tr�K = 0 and �K +K�� = 0.

Lemma 2 Suppose � is pure. Then the following 3 conditions for self-

adjoint operators K 2 Lsa are equivalent.

(i) hK;Ki� = 0,

(ii) �K = 0,

(iii) �K +K� = 0.

These lemmas are usefully employed in the pure state estimation theory. For

instance, the SLD, also de�ned by (6), is determined up to the uncertainty
of K 2 Ksa. Let us denote the totality of such SLD's by T S(�). Then
it is proved that for a pure state model ��, the SLD{Fisher information

matrix JS� =
h
hLS�;j; LS�;ki��

i
is uniquely determined on the quotient space

T S(��)=Ksa(��), and its (j; k) entry is given by

(JS� )jk = 2Tr (@j��)(@k��); (15)

where @j = @=@�j, see [6]. Therefore, we may call the quotient space
T S(��)=Ksa(��) the SLD{tangent space.

Meanwhile, the Holevo's commutation operator D on Lsa [2] is de�ned

by

i(A�� �A) =
1

2
((DA)�+ �(DA)) ; A; DA 2 Lsa: (16)

This is an anti-symmetric super-operator such that hA;DBi� = �hDA;Bi�
holds for all A;B 2 Lsa.

6



Lemma 3 Suppose � is pure. Then D is regarded as a super{operator on

the quotient space Lsa=Ksa(�), and is de�ned by

(DX) � = 2i(X � Tr�X)�; (X 2 Lsa=Ksa(�)): (17)

Proof Let us denote two distinct images of A 2 Lsa by (DA) and (DA)0,
then K = (DA)� (DA)0 2 Lsa satis�es K�+ �K = 0 and, from Lemma 2,

K 2 Ksa(�). Further, observing hDK;DKi� = h�D2K;Ki�, K 2 Ksa(�)
implies DK 2 Ksa(�). Therefore, D is regarded as a super{operator on
Lsa=Ksa(�). Further, re-expressing (16) as

�

�
DX

2
+ i(X �Tr�X)

�
+

�
DX

2
+ i(X �Tr�X)

��
� = 0;

and using Lemma 1 together with the identity Tr�(DX) = 0, we have an

equivalent equation (17). �

Let us return to the subject, i.e., the estimation theory based on the
RLD. It may sound strange since the RLD de�ned by (7) does not exist for
degenerated states. However, it is essential to notice that what we need is
not the RLD itself but the inverse of the RLD{Fisher information matrix,

as is understood by (11).
We start with the following theorem, which is a modi�cation of the

Holevo's result originally obtained in the strictly positive case [2, p. 280].

Hereafter, the subscripts � of the SLD's are omitted for simplicity.

Theorem 1 Given a pure state model ��. Let f��(") ; " > 0g be a family

of strictly positive density operators ��(") having a parameter " which satisfy

lim"#0 ��(") = ��, and denote the corresponding RLD by LR� ("). If the SLD{
tangent space T S(��)=Ksa(��) is D-invariant, then

lim
"#0

�
JR(")

��1
=
�
JS
��1

+
i

2

�
JS
��1

D
�
JS
��1

(18)

holds, where JR(") =
h
(LRj ("); L

R
k ("))��(")

i
and D =

h
iTr��[L

S
j ; L

S
k ]
i
.

Proof Observing the identities

@��
@�j

=
1

2
(��L

S
j + LSj ��) =

�
LRj

��
��

and

(A;B)� = hA; (I + i

2
D)Bi�;
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we have, for all X 2 L,

hLSj ;Xi�� = (LRj ;X)�� = h(I + i

2
D)LSj ;Xi�� :

Then LSj = (I + i
2D)LRj and

JR(") =

�
hLSj ("); (I +

i

2
D("))�1LSk (")i��(")

�
:

Since I + i
2D(") is symmetric with respect to h�; �i�� , the following lemma

immediately leads us to (18), by setting V = Lsa, xj(") = LSj ("), and

A(") = I + i
2D("). �

Lemma 4 Let V be a d-dimensional linear space (possibly d =1). Given

a family of n(< d) linearly independent vectors fxj(")gnj=1 in V , a family of

inner products h�; �i", and a family of symmetric operators A(") on V with

respect to the inner product, having a parameter " � 0. Suppose A(") is

invertible for " > 0 but A(0) is not. Further, the linear span of fxj(0)gnj=1
is A(0)-invariant in V . Denote n� n matrices

JR(") =
h
hxj(");A�1(")xk(")i"

i
; J(") = hxj("); xk(")i":

Then

lim
"#0

�
JR(")

��1
= J�1(0) [hxj(0);A(0)xk(0)i0] J�1(0): (19)

Proof Let us denote, by W?("), the orthogonal complement of W (") =
span fxj(")gnj=1 with respect to the inner product h�; �i" in V . Further, let

fyj(")gdj=n+1 be a basis of W?(") and construct a basis fzj(")gdj=1 of V by
combining them as

zj(") =

(
xj("); j = 1; � � � ; n;
yj("); j = n+ 1; � � � ; d:

Consider enlarged d� d matrices

J
R(") =

h
hzj(");A�1(")zk(")i"

i
; J(") = [hzj("); zk(")i"] :

Since V =W (")�W?(") is, of course, A(")-invariant, the inverse of JR(")
is explicitly given as�

J
R(")

��1
= J�1(") [hzj(");A(")zk(")i"]J�1("):
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This matrix is well-de�ned even for " = 0. Decompose
�
J
R(")

��1
into

blocks: "
P O
O Q

# "
A B
C D

# "
P O
O Q

#
=

"
PAP PBQ
QCP QDQ

#
;

where the three matrices in the left-hand side correspond to J�1("); [hzj(");A(")zk(")i"],
and J�1("), respectively, P;A are n�nmatrices, andQ;D are (d�n)�(d�n)
matrices. Further, it is easy to see that B = C = O for " = 0, since W (0)

is A(0)-invariant and A(0) is symmetric. Then lim"#0

�
J
R(")

��1
becomes a

block diagonal matrix, and the limit of the �rst n�n block PAP approaches

(19). �

Note that Tr��[L
S
j ; L

S
k ] in Theorem 1 also independent of the uncertainty

of the SLD. Therefore, Theorem 1 asserts that the inverse of the RLD{
Fisher information matrix can be obtained directly from the SLD, without
using the diverging RLD{Fisher information matrix itself. Then, it may be
important to investigate the condition for the SLD{tangent space to be D-

invariant. The following theorem characterizes the structure of D-invariant
SLD{tangent space.

Theorem 2 The D-invariant SLD{tangent space T S(��)=Ksa(��) has an

even dimension and is decomposed into direct sum of 2-dimensional D-

invariant subspaces. Moreover, by taking an appropriate basis of T S(��)=Ksa(��),

the operation of D can be written in the form

D

2
666666666664

~LS1
~LS2
~LS3
~LS4
...

~LS2m�1
~LS2m

3
777777777775
=

2
66666666664

0 2
�2 0

0 2

�2 0
. . .

0 2

�2 0

3
77777777775

2
666666666664

~LS1
~LS2
~LS3
~LS4
...

~LS2m�1
~LS2m

3
777777777775
: (20)

Proof Since Tr�(DX) = 0 holds for all X 2 Lsa=Ksa, (17) is rewritten

as
[�4(X �Tr�X)]� = 2i[DX �Tr�(DX)]�:

Comparing this equation to (17) with X replaced by DX, we have

D
2X = �4(X �Tr�X):
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In particular, D2X = �4X holds for every X which satis�es Tr�X = 0. We
may, therefore, write this relation as D2 = �4 on the SLD{tangent space
T S(��)=Ksa(��) for short.

Take an arbitrary element e1 of the SLD{tangent space T S(��)=Ksa(��),

and let e2 = De1. Then from the assumption, e2 2 T S(��)=Ksa(��), and
De2 = �4e1 since D2 = �4. Therefore, S1(��) = span fe1; e2g is a D-
invariant subspace of T S(��)=Ksa(��) and

T S(��)=Ksa(��) = S1(��)� S1(��)?;
where S1(��)? is the orthogonal complement of S1(��) with respect to h�; �i�� .
Repeating the same procedure to S1(��)?, we have

T S(��)=Ksa(��) = S1(��)� S2(��)� � � � � Sm(��):
In particular, dim[T S(��)=Ksa(��)] = 2m.

We next investigate the structure of 2-dimensional D-invariant subspace
S1(��) = span fe1; e2g. Expressing the operation of D in a matrix form

D

"
e1
e2

#
=

"
x y
z w

# "
e1
e2

#
; (x; y; z; w 2 R)

and using D2 = �4, we have
x2 + yz = �4; y(x+ w) = 0; z(x+w) = 0; w2 + yz = �4:

These equations do not contradict the identities he1;De1i� = he2;De2i� = 0

i� x+ w = 0; y 6= 0; z 6= 0. In this case

D

"
e1
e2

#
=

"
x y

�(x2 + 4)=y �x

# "
e1
e2

#
:

Furthermore, the transformation of the basis"
~LS1
~LS2

#
=

"
2=y 0
x=y 1

# "
e1
e2

#

yields

D

"
~LS1
~LS2

#
=

"
0 2
�2 0

# "
~LS1
~LS2

#
:

Repeating the same procedure to other invariant subspaces, we have the
theorem. �
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De�nition 1 The basis f~LSj g2mj=1 of the SLD{tangent space T S(��)=Ksa(��)
which is subject to the transformation law (20) is called ��{symplectic.

From Theorem 2, it is su�cient to consider a 2-dimensionalD-invariant SLD
tangent space. The following theorem gives the condition for the model to
have a 2-dimensional D-invariant SLD{tangent space at ��.

Theorem 3 For the pure state model f�� = j�ih�jg, the following two

conditions are equivalent.

(i) f~LSj gj=1;2 is a j�ih�j{symplectic basis:

(ii) (~LS1 + i~LS2 )j�i = 0:

The linear span of such basis spanf~LS1 ; ~LS2 g is D-invariant.

Proof We �rst assume (i). Letting X = ~LS1 in (17), we have

(~LS1 +
i

2
D~LS1 )�� = 0:

Then, D~LS1 = 2~LS2 yields (ii).

Next we assume (ii). Since (~LS1 + i~LS2 )�� = 0,

2~LS2 �� = 2i~LS1 ��; �2~LS1 �� = 2i~LS2 ��:

Comparing these equations to (17), we have (i). �

Since the condition (ii) in Theorem 3 is similar to the de�nition of the

coherent states in quantum theory [9], we shall make the following de�nition.

De�nition 2 The pure state model f�� = j�ih�jg which satisfy the con-

dition in Theorem 3 is called coherent.

Thus theD-invariancy is equivalent to the coherency of the model. The next
fact, a straightforward consequence of Theorem 3, characterizes a global
structure.

Corollary 1 Consider the pure state model of the form �� = U��0U
�
� where

fU�g forms a projective unitary group. This model is coherent i� T S(�0)=Ksa(�0)

isD-invariant, i.e., the model has a �0{symplectic basis. Indeed, if f~LSj gj=1;2
is a �0{symplectic basis, then fU� ~LSj U�

� gj=1;2 becomes a ��{symplectic basis.
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Now we investigate the RLD{bound for coherent models. From Theorem
2, it is su�cient to consider a two parameter coherent model. In this case,

the RLD{bound can be explicitly obtained by substituting (18) into (14) as

CR = CS +

p
detG

detJS

���Tr��[LS1 ; LS2 ]��� : (21)

It is also shown that the above CR{bound is most informative, i.e., we can
construct explicitly the generalized measurement that attains this bound [8].
Thus, the coherent model has a nice property from an estimation theoretical

viewpoint.

4 Examples

In this section, we give two examples of coherent model. The �rst one is
the family of canonical coherent states �z = jzihzj in a one dimensional

harmonic oscillator with frequency !, where z = (!q + ip)=2�h 2 C, see
[10][11][12]. This can be regarded as a 2-parameter pure state model which
has real parameters q and p. It is shown that the representative elements of
SLD are

LSq =
2!

�h
(Q� q); LSp =

2

�h!
(P � p);

and

DLSq = 2!LSp ; DLSp = � 2

!
LSq :

Letting

~LSq =
�h

2
LSq = !(Q� q); ~LSp =

�h!

2
LSp = P � p;

we have

D~LSq = 2~LSp ; D~LSp = �2~LSq :
This indicates that f~LSq ; ~LSp g forms a �z{symplectic basis. Therefore, from
Theorem 3,

(~LSq + i~LSp )jzi = [!(Q� q) + i(P � p)]jzi = 0;

which is nothing but the de�nition of canonical coherent states. Further-
more, from Theorem 1, we obtain

(JR)�1 =

"
�2P i�h=2

�i�h=2 �2Q

#
;
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where �2P = �h!=2, �2Q = �h=2!, and the corresponding RLD{bound

gPVP [M ] + gQVQ[M ] � gP�
2
P + gQ�

2
Q + �h

p
gP gQ

is identical to the pure state limit of the most informative CR bound ob-
tained by Yuen and Lax [4] [2, p. 281].

Another example is the family of spin coherent states [13][14]. Let (�; ')

be the polar coordinates where the north pole is � = 0 and x{axis corre-
sponds to ' = 0. The spin coherent state j�; 'i is de�ned as

j�; 'i = R[�; ']jji = exp [i�(Jx sin'� Jy cos')] jji;
where jji is the highest occupied state in the spin j system. It is shown
that the SLD at the north pole in the direction of ' = 0 and ' = �=2
are, respectively, 2Jx, 2Jy and the operation of D becomes DJx = 2Jy,

DJy = �2Jx. Therefore, ~LS1 = Jx and ~LS2 = Jy form a jjihjj{symplectic
basis and from Theorem 3�

~LS1 + i~LS2

�
jji = J+jji = 0;

where J+ = Jx + iJy is the spin creation operator. This is nothing but
the de�nition of the terminal state jji. From this fact, we can immediately

conclude that the model which comprises the totality of the spin coherent
states

��;' = j�; 'ih�; 'j = R[�; ']jjihjjR[�; ']�1

has D-invariant SLD tangent space at every point on the sphere. Indeed,
since R[�; '] form a compact Lie group, Corollary 1 asserts thatn

R[�; ']~LS1R[�; ']
�1; R[�; '] ~LS2R[�; ']

�1
o

form a j�; 'ih�; 'j{symplectic basis. In particular, a 2-parameter spin 1/2
model has D-invariant SLD tangent space and

�
JR

��1
=

1

sin2 �

"
sin2 � �i sin �
i sin � 1

#
:

The corresponding CR bound is

g�V�[M ] + g'V'[M ] � g� +
g'

sin2 �
+

2

sin �

p
g�g':

This bound is identical to the pure state limit of the most informative CR
bound obtained by Nagaoka [7].

13



5 Conclusions

A statistical multi{parameter estimation theory for the pure state models

was presented. We �rst considered the possibility of the estimation the-

ory based on the right logarithmic derivatives. We next investigated D{
invariancy of the SLD{tangent space, which lead us to the notion of coherent
models, and derived explicitly the RLD{bound. Some examples were also

given. The construction of the general quantum multi-parameter estimation
theory is left to future study, as is the strictly positive model case.
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