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1 Introduction

A quantum statistical model is a family of density operators �� de�ned on

a certain separable Hilbert space H with �nite-dimensional real parameters

� = (�i)ni=1 which are to be estimated statistically [1][2]. For one parame-
ter case, it is rather easy to �nd the most informative lower bound of the
variance of measurement, since the Cram�er{Rao bound with respect to the

SLD is always locally attainable (global feature is another problem) [3][4].
On the other hand, for multi-parameter case, it has been an awkward prob-
lem to �nd attainable lower bound for the variance of measurement because

of non{commutativity of the SLD's. To the author's knowledge, there has
been only two remarkable results that derived explicit attainable bounds in
essentially non{commutative situations. The �rst one is the RLD bound for
quantum gaussian models derived by Yuen and Lax [5][2], which provided

a theoretical background of optical communication theory. Another one is
related to the spin 2� 2 matrix representation derived by Nagaoka [6][7][8].

In this paper, we study attainable lower bounds in the class of linear
random measurements and obtain an explicit form. This result is applied

to the multi-parameter estimation theory for pure state models.

2 Review of conventional theory

We �rst give a brief summary of the conventional quantum parameter esti-
mation theory.

2.1 Quantum measurement theory

Let H be a separable Hilbert space which corresponds to a physical system
with inner product h�j i; (�;  2 H), and L and Lsa be, respectively, the
set of all the (bounded) linear operators and all the self-adjoint operators

on H. A quantum state is represented by a density operator � 2 Lsa which
satis�es � � 0 and Tr � = 1. A state � is called pure if rank � = 1. In
order to handle simultaneous probability distributions of possibly mutually

non-commuting observables, an extended framework of measurement theory
is needed [1, p. 53] [2, p. 50]. A generalized measurement fM(B)gB2F on a
measurable space (
;F) is an operator-valued set function which satisfy the
following axioms:

1. M(�) = 0; M(
) = I,
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2. M(B) =M(B)� � 0; (8B 2 B),
3. M(

S
j Bj) =

P
jM(Bj), (for all at most countable disjoint sequence

fBjg � F).

By �xing a state � and a measurement M , the outcomes of the measure-
ment form random variables, whose simultaneous distribution is given by
PM
� (B) = Tr�M(B). In particular, a measurement M is called simple if it

satis�es, in addition to the above three axioms, M(B)2 =M(B); (8B 2 B),
or equivalentlyM(B1)M(B2) = 0; (8B1\8B2 = �). In the following, simple
measurement is denoted by E.

Here we give an example of generalized measurement, which is called the
random measurement [1, p. 70]. Given N measuring apparatuses, which

yield outcomes from the same �nite set whose elements being labeled with

the integers j. Suppose the nth apparatus is described by a simple mea-

surement fE(n)
j gj. Select an apparatus n (n = 1; 2; � � � ; N) with probability

�n and apply to the physical system. Then the probability for obtaining the

jth outcome is

P�(j) =
NX
n=1

�nTr�E
(n)
j = Tr�Mj ;

where

Mj =
NX
n=1

�nE
(n)
j

form a generally non-orthogonal measurement.

2.2 Statistical estimation theory

Let
S = f�� ; �� = ��� > 0; Tr�� = 1; � 2 � � Rng (1)

be the statistical parametric model composed of strictly positive density op-

erators. Here, � is the parameter to be estimated statistically. An estimator

for � is identi�ed to a generalized measurement which takes values on �.
The expectation vector with respect to the measurement M at the state ��
is de�ned as

E�[M ] =

Z
�̂PM

� (d�̂):
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The measurement M is called unbiased if E�[M ] = � holds for all � 2 �,
i.e., Z

�̂jPM
� (d�̂) = �j; (j = 1; � � � ; n): (2)

Di�erentiation yields

Z
�̂j

@

@�k
PM
� (d�̂) = �

j
k; (j; k = 1; � � � ; n): (3)

If (2) and (3) hold at a certain �,M is called locally unbiased at �. Obviously,
M is unbiased i� M is locally unbiased at every � 2 �. A locally unbiased
measurement is accompanied by n self-adjoint operators:

Xj =

Z
(�̂j � �j)M(d�̂); (j = 1; � � � ; n): (4)

The locally unbiasedness conditions (2) (3) are then re-expressed as

Tr��X
j = 0; Tr

@��
@�k

Xj = �jk; (j; k = 1; � � � ; n): (5)

Since these self-adjoint operators fXjg are usefully employed in the follow-

ing, we may call them locally unbiased operators. Letting M be a locally
unbiased measurement at �, we de�ne the covariance matrix V�[M ] = [vjk� ] 2
Rn�n with respect to M at the state �� by

vjk� =

Z
(�̂j � �j)(�̂k � �k)PM

� (d�̂): (6)

In order to obtain lower bounds for V�[M ], let us consider a quantum ana-
logue of the logarithmic derivative denoted by L�:

@��
@�j

=
1

2
[��L�;j + L��;j��]: (7)

For instance,
@��
@�j

=
1

2
[��L

S
�;j + LS�;j��]; LS�;j = LS��;j (8)

de�nes the symmetrized logarithmic derivative (SLD) LS�;j introduced by
Helstrom [3], and

@��
@�j

= ��L
R
�;j (9)
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de�nes the right logarithmic derivative (RLD) LR�;j introduced by Yuen and
Lax [5]. Thus, (7) de�nes a certain class of logarithmic derivatives. Corre-

spondingly, we de�ne the quantum analogue of Fisher information matrix
J� = [(L�;j; L�;k)�� ], where the inner product (�; �)� on L is de�ned by

(A;B)� = Tr�BA�: (10)

We also de�ne another inner product on L as

hA;Bi� = 1

2
Tr� (BA� +A�B): (11)

Then, the following quantum version of Cram�er{Rao theorem holds.

Theorem 2.1 For any locally unbiased measurement M , the following in-

equality holds:

V�[M ] � (ReJ�)
�1; (12)

where Re J� = (J� + J�)=2. In particular, for the SLD, JS� = ReJ� =h
hLS�;j; LS�;ki��

i
is called the SLD{Fisher information matrix. Moreover, for

the RLD,

V�[M ] � (JR� )
�1 (13)

holds, where JR� =
h
(LR�;j; L

R
�;k)��

i
is called the RLD{Fisher information

matrix.

When the model is one dimensional, the inequalities in the theorem
become scalar. In this case, it is shown that the lower bound (ReJ�)

�1 =
(J�)

�1 becomes most informative, i.e., it takes the maximal value, i� the

SLD is adopted, and the corresponding lower bound (JS� )
�1 = 1=Tr��(L

S
� )

2

can be attained by the estimator T = �I + LS� =J
S
� , where I is the identity.

Thus, the one parameter quantum estimation theory is quite analogous to
the classical one when the SLD is used.

On the other hand, for the dimension n � 2, the matrix equalities in (12)
and (13) cannot be attained in general, because of the impossibility of the
exact simultaneous measurement of non-commuting observables. We must,
therefore, abandon the strategy of �nding the measurement that minimizes

the covariance matrix itself. Rather, we often adopt another strategy as
follows: Given a positive de�nite real matrix G = [gjk] 2 Rn�n, �nd the
measurement M that minimizes the quantity

tr GV�[M ] =
X
jk

gjkv
jk
� : (14)
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If there is a constant C such that tr GV�[M ] � C holds for allM , C is called
a Cram�er{Rao type bound or simply a CR bound, which may depend on

both G and �. For instance, it is shown that the folowing two quantities are
both CR bounds [6].

CS = trG(JS� )
�1;

CR = trGRe (JR� )
�1 + tr absG Im (JR� )

�1:

Here, for a matrix X, ImX = (X�X)=2i and tr absX denotes the absolute
sum of the eigenvalues of X. Let us call these CR bounds, respectively,

the SLD{bound and the RLD{bound. The most informative CR bound is
the maximum value of such C for given G and �. Yuen and Lax [5] proved
that the above CR is most informative for the gaussian model, and they
explicitly constructed the optimum measurement which attains CR. Holevo

[2, p. 285] derived another CR bound which, though an implicit form, is
not less informative than CS and CR. Nagaoka [6] investigated in detail
the relation between these CR bounds. He also derived a new CR bound

for 2 dimensional models, which is not less informative than Holevo's one,
and obtained explicitly the most informative CR bound speci�c to the spin
1/2 model. The construction of the general quantum parameter estimation
theory for n � 2 is left to future study.

3 Linear random measurement

Suppose we are given a two parameter model f�� ; � = (�1; �2) 2 R2g, the
corresponding SLD being fLS�;1; LS�;2g. In the following, we often drop the
subscript � for notational convenience since we only consider local properties
of the model. If LS1 and LS2 commute, then we can estimate the parame-

ters (�1; �2) in the same way as in the classical theory. Therefore, suppose
[LS1 ; L

S
2 ] 6= 0. If one of the two parameters, say �2, is �xed, then we obtain

a one parameter sub-model f��1�2 ; �2 = const:g. For this sub-model, we
have an optimum locally unbiased estimator T 1 = �1I + LS1 =(J

S)11 for the

parameter �1 as was mentioned in the previous section, where (JS)11 is the
(1; 1) component of the Fisher information matrix JS . Therefore it is nat-
ural to ask whether the optimum estimation for the original two parameter

model �� can be realized by a random measurement of two \observables"
LS1 and LS2 . More generally, let us investigate the in�mum of trGV [M ]
with respect to the random measurements M of linearly independent two
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observables A1; A2 in the linear span

LS = fa1LS1 + a2L
S
2 ; a1; a2 2 Rg:

Note that if we obtain the optimum measurement M for G = I, the cor-

responding locally unbiased operators being Xj, the solution for general
weight G is Y j =

Pn
k=1 f

j
kX

k, where
p
G = [fjk]. We then consider only

G = I case in the following without loss of generality.
Denote the dual basis by Li = J ijLSj where J ij is the (i; j) entry of in-

verse of the SLD{Fisher information matrix. A pair of self-adjoint operators
X1;X2 whose expectation vanish are locally unbiased with respect to the
parameters �1; �2 i� hLSi ;Xji = �ji because of (5), where h�; �i = h�; �i�� . This
condition is rewritten as hLi;Xji = hLi; Lji, which indicates that Lj is the
orthogonal projection of Xj with respect to h�; �i. We therefore restrict our-
selves to the case Xj = Lj ; (j = 1; 2). Further, let A1; A2 2 LS be linearly
independent observables which are to be measured at random, assuming

hAj; Aji = 1 without loss of generality. Their spectral decompositions are
written as

Aj =
X
�

aj(�)Ej(�): (15)

Let us construct their random measurement as follows. Select one of A1; A2

according to the probability p1; p2, respectively, and make an exact mea-

surement of it (in the sense of von Neumann). The corresponding resolution
of identity is de�ned by

Mj(�) = pjEj(�): (16)

When we selected an observable Aj and obtained an outcome aj(�), we

identify this result to a pair of real quantities b1j(�) and b2j(�), which are
connected to L1; L2 by

bkj (�) =
1

pj
hLk; Ajiaj(�); (j; k = 1; 2); (17)

where fA1; A2g is the dual basis of fA1; A2g in LS with respect to the inner
product h�; �i. Indeed, the following relation holds:

Lk =
2X

j=1

X
�

bkj (�)Mj(�): (18)
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Then, by comparing the resolution (18) to (4), we can evaluate the equi-
weighted trace of covariance matrix as

trV [M ] =
2X

j=1

X
�

��
b1j (�)

�2
+
�
b2j(�)

�2�
Tr�Mj(�)

=
X
j

1

pj

h
hL1; Aji2 + hL2; Aji2

i
: (19)

Our aim is to �nd the in�mum of (19) with respect to fpjg and fAjg.
Observing the fact that �1=p1 + �2=p2; (p1 + p2 = 1) takes its minimum

(
p
�1 +

p
�2)

2 when and only when pj =
p
�j=(

p
�1 +

p
�2), we have

min
fpjg

trV [M ] =

�q
hL1; A1i2 + hL2; A1i2 +

q
hL1; A2i2 + hL2; A2i2

�2
: (20)

The problem is then reduced to the minimization of (20) with respect to

A1; A2. The normalization conditions hA1; A1i = hA2; A2i = 1 impose the
following constraints on A1; A2,

hA1; A1i = hA2; A2i = 1

1� �2
; hA1; A2i = � �

1� �2
; (21)

where � = hA1; A2i.
Let us de�ne a linear transformation � : LS �! LS by

�(W ) = hL1;W iL1 + hL2;W iL2: (22)

Since � is symmetric and positive de�nite, it has positive eigenvalues �1; �2
and unit eigenvectors U1; U2, satisfying

�(Uj) = �jUj; (j = 1; 2): (23)

By expanding as Ai = aijUj, the problem to be solved is written in the form

minimize
A1;A2

�q
hA1; �(A1)i+

q
hA2; �(A2)i

�2

= minimize
A1;A2

�q
�1(a11)2 + �2(a12)2 +

q
�1(a21)2 + �2(a22)2

�2
:

The constraints (21) become

(a11)2+(a12)2 = (a21)2+(a22)2 =
1

1� �2
; (a11)(a21)+(a12)(a22) = � �

1� �2
:
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Introduce another parametrization by

a11 =
1p

1� �2
cos �; a12 =

1p
1� �2

sin �;

a21 =
1p

1� �2
cos'; a22 =

1p
1� �2

sin':

Then the remaining third constraint becomes cos(��') = ��, and we have
the constraint free minimization problem as

minimize
�;';�

1

1� �2

�q
�1 cos2 � + �2 sin

2 � +
q
�1 cos2 '+ �2 sin

2 '

�2

= minimize
�;'

1

sin2(� � ')

hp
a+ b cos 2� +

p
a+ b cos 2'

i2
;

where a = (�1 + �2)=2; b = (�1 � �2)=2. By using the inequality (see
Appendix B)

1

sin(� � ')

hp
a+ b cos 2� +

p
a+ b cos 2'

i
�
p
a+ b+

p
a� b; (24)

which hold for 0 < � � ' < �, we obtain the desired in�mum

min
fAjg

min
fpjg

trV [M ]

=
hp

�1 +
p
�2
i2

= hL1; L1i+ hL2; L2i+ 2
q
hL1; L1ihL2; L2i � hL1; L2i2: (25)

The last equality follows from the fact that the trace �1 + �2 and the de-
terminant �1�2 of the linear transformation � is independent of the choice
of the basis which represents � in a matrix form. Since the equality in (24)
is satis�ed on a sinusoidal periodic curve, there exist continuous potency of

optimum measurements that attain the minimum (25). The lower bound
(25) is �rst appeared in [7][8], although its meaning is not clearly stated.

4 Applications

In this section, we give two applications to demonstrate the results obtained
in the previous section.
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4.1 Gaussian models

A quantum Gaussian model is a model for the state of coherent lights with
thermal noise [2, Chap. V]. The SLD's are

LSq =
1

�2q
(Q� q); LSp =

1

�2p
(P � p);

where �2q = hQ� q; Q� qi and �2p = hP � p; P � pi are their variances [2, p.
277]. Then,

JS =

"
1=�2q 0

0 1=�2p

#
; (JS)�1 =

"
�2q 0

0 �2p

#
;

and
Lq = Q� q; Lp = P � p:

Therefore, the bound (25) becomes

trV [M ] = �2q + �2p + 2�q�p:

This is greater than the most informative bound

trV [M ] = �2q + �2p + �h

unless �q�p = �h=2, i.e., unless the system is in a minimum uncertainty
state. Still more, even in the pure coherent state case, it is an open question
whether the covariant measurement

M(p; q) = U [p; q]j0ih0jU�[p; q];

which attain the above most informative bound, can be constructed directly

from the continuous combination of random measurements.

4.2 Pure coherent models

In this section, we derive the RLD{bound for quantum coherent models [9]
and show that it is attainable by random measurements. The prerequisites
are summarized in Appendix A. A straightforward calculation leads to the

following proposition.

Proposition 4.1 The RLD{bound for a coherent model �� is

CR = CS +

p
detG

detJS

���Tr��[LS1 ; LS2 ]��� : (26)

10



Since the identity ���Tr��[LS1 ; LS2 ]��� = TrAbs ��[L
S
1 ; L

S
2 ]:

holds for any pure state models, the above CR{bound is in identical form
to the Nagaoka's bound which is most informative when �� is represented

in 2� 2 matrix [6].
We derive here another results which holds not only in 2 � 2 matrix

representation but also in arbitrary representation.

De�nition 4.1 The parameter � of a model �� is called �0{canonical if
the SLD{Fisher information matrix with respect to � is in diagonal form at

�0.

This condition is not restrictive since, by a certain transformation of coordi-

nate system, we can always diagonalize the SLD{Fisher information matrix.

Theorem 4.1 Suppose the parameter � of the coherent model �� is �0{

canonical. Then the corresponding RLD{bound is attainable at �0 by a cer-

tain random measurement.

Proof Some calculation lead us to another form of the RLD{bound (26)
as

CR = hL1; L1i+ hL2; L2i+
���Tr��[L1; L2]

��� ; (27)

where we set G = I. On the other hand, from the assumption, there exists

non{zero real numbers c1; c2 and normalized �0{symplectic basis f~LS1 ; ~LS2 g
such that LSj = cj ~L

S
j . Then L

j = ~LSj =cj and

(c1L
1 + ic2L

2)�0 = 0;

which is nothing but the minimum uncertainty condition in the Heisemberg's

uncertainty relation. Then

hL1; L1ihL2; L2i = 1

4

���Tr�0[L1; L2]
���2 ; hL1; L2i = 0: (28)

Comparing (25) (27) and (28), we have the theorem. �

This proof is deeply owed to the special choice of the coordinate system.
It is not yet clear whether CR can be attained in an arbitrary coordinate
system.
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Here we give an example of a two parameter coherent model which have
non-diagonal SLD{Fisher information matrix, called the photon squeezed

state model. Throughout this example, adjoint operators and complex con-
jugate numbers are denoted by y and �, respectively, according to the con-
vention in physics. A photon squeezed state jzi� is de�ned as

jzi� = D(z)S(�)j0i;
D(z) = exp(zay � z�a);

S(�) = exp[
1

2
(�ay

2 � ��a2)];

where z; � are complex numbers, a and ay are the annihilation and creation

operators of a boson satisfying [a; ay] = 1; [a; a] = [ay; ay] = 0, and j0i is the
Fock vacuum with respect to a. Letting z = (q + ip)=

p
2, we may regard

the family of density operators

�z = jzi��hzj = D(z)�0D
�(z); �0 = j0i��h0j

as a quantum parametric model which is parametrized by two real numbers
q and p. The pre-inner products with respect to the position operator Q =
(a+ ay)=

p
2 and the momentum operator P = (a� ay)=i

p
2 are"

(Q;Q)�z (Q;P )�z
(P;Q)�z (P;P )�z

#
=

1

2

"
(cosh 2s+ cos � sinh 2s) (sin � sinh 2s+ i)

(sin � sinh 2s� i) (cosh 2s� cos � sinh 2s)

#
:

Noting Tr�zL
A
j = 0 (j = q; p), the ALD are readily obtained as

LAq = 2i(P � p); LAp = �2i(Q� q):

Further, we observe the relation

bjzi� = �jzi�;
where � = sei� and

b = S(�)aS�1(�) = a cosh s� ayei� sinh s;

� = z cosh s� z�ei� sinh s:

Then we immediately have a normalized �z{symplectic basis as

~LSq =
p
2[(Q� q)(cosh s� cos � sinh s)� (P � p) sin � sinh s];

~LSp =
p
2[(P � p)(cosh s+ cos � sinh s)� (Q� q) sin � sinh s]:
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On the other hand, from (29), the SLD is given as LSj = D(�LAj =2i); (j =
q; p). Then, by expanding fLAj g into linear combinations of f~LSj g, and using

the relations D~LSq = �2~LSp and D~LSp = 2~LSq , we have

LSq = 2[(Q� q)(cosh 2s� cos � sinh 2s)� (P � p) sin � sinh 2s];

LSp = 2[(P � p)(cosh 2s+ cos � sinh 2s)� (Q� q) sin � sinh 2s]:

Then the SLD{Fisher information matrix becomes

JS =

"
hLSq ; LSq i�z hLSq ; LSp i�z
hLSp ; LSq i�z hLSp ; LSp i�z

#

= 2

"
cosh 2s� cos � sinh 2s � sin � sinh 2s

� sin � sinh 2s cosh 2s+ cos � sinh 2s

#
:

This is, up to a constant factor, identical to the Fubini{Study metric [10],
and is also identical to the real part of the complex ALD{Fisher information
matrix

JA =

"
(LAq ; L

A
q )�z (LAq ; L

A
p )�z

(LAp ; L
A
q )�z (LAp ; L

A
p )�z

#

= 2

"
cosh 2s� cos � sinh 2s � sin � sinh 2s+ i
� sin � sinh 2s� i cosh 2s+ cos � sinh 2s

#
;

see also [11]. This result indicates that the coordinate system (q; p) is a non-
orthogonal one. Let us change the coordinate system (q; p) into another one
(q0; p0) such that the corresponding SLD LSq0 ; L

S
p0 are orthogonal at �z with

respect to the pre-inner product h�; �i�z . For instance, the transformation of
coordinate system

q0 = q(cosh s� cos � sinh s)� p sin � sinh s

p0 = p(cosh s+ cos � sinh s)� q sin � sinh s

lead to LSq0 =
p
2~LSq ; L

S
p0 =

p
2~LSp . Then, according to Theorem 4.1, there

exist random measurements that attain the RLD bound with respect to
(q0; p0).

5 Conclusions

We �rst derived an explicit in�mum of trV [M ] with respect to the linear
random measurement M in the linear span of SLD's. The corresponding
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lower bound is attainable by in�nitely many (continuous potency) measure-
ments. The RLD{bound for pure coherent models is also studied, and found

to be most informative.
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Appendix

A Multi-parameter pure state model estimation

theory

We present here a minimum of multi-parameter estimation theory based on
the RLD. The sesquilinear form h�; �i� de�ned by (11) become a pre-inner
product on L when � is degenerated. Denote by Ksa(�) the set of self-adjoint
operators K 2 Lsa satisfying hK;Ki� = 0, which are called the kernel of

the pre-inner product h�; �i�. The SLD, also de�ned by (8), is determined up
to an uncertainty of K 2 Lsa. Let us denote the totality of such SLD's by
T S(�). Then the following theorem holds.

Theorem A.1 Suppose �� is pure. Then the SLD{Fisher information

matrix JS� =
h
hLS�;j; LS�;ki��

i
is uniquely determined on the quotient space

T S(��)=Ksa(��), the SLD{tangent space, and its (j; k) entry becomes

(JS� )jk = 2Tr (@j��)(@k��);

where @j = @=@�j . This metric is identical, up to a constant factor, to the

Fubini{Study metric.

In the same way, the Holevo's commutation operator D on Lsa [2] de�ned
by

i(A�� �A) =
1

2
((DA)�+ �(DA)) ; A;DA 2 Lsa (29)

is regarded as a super-operator on Lsa=Ksa(�).
It may sound strange to speak of the pure state estimation theory based

on the RLD, since the RLD de�ned by (9) does not exist for degenerated
states. However, it is important to notice that what we need is not the RLD
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itself but the inverse of the RLD{Fisher information matrix, as is understood
by (13). The following lemma directly leads us to the inverse of the RLD{

Fisher information matrix, which is a modi�cation of the Holevo's result
originally obtained in the strictly positive case [2, p. 280].

Lemma A.1 Given a pure state model ��. Let f��(") ; " > 0g be a

family of strictly positive density operators ��(") having a parameter " which
satisfy lim"#0 ��(") = ��, and denote the corresponding RLD by LR� ("). If

the SLD{tangent space T S(��)=Ksa(��) is D-invariant, then

lim
"#0

�
JR(")

��1
=
�
JS
��1

+
i

2

�
JS
��1

D
�
JS
��1

holds, where JR(") =
h
(LRj ("); L

R
k ("))��(")

i
and D =

h
iTr��[L

S
j ; L

S
k ]
i
.

From this lemma, the inverse of the RLD{Fisher information matrix can
be calculated directly from SLD, without using the diverging RLD{Fisher
information matrix itself. Then, it may be important to investigate the con-
dition for the SLD{tangent space to be D-invariant. The following theorem

characterizes the structure of D-invariant SLD{tangent space.

Theorem A.2 The D-invariant SLD{tangent space T S(��)=Ksa(��) has

an even dimension and is decomposed into direct sum of 2 dimensional D-

invariant subspaces. Moreover, by taking an appropriate basis of T S(��)=Ksa(��),
the operation of D can be written in the form

D

2
666666666664

~LS1
~LS2
~LS3
~LS4
...

~LS2m�1
~LS2m

3
777777777775
=

2
66666666664

0 2

�2 0
0 2

�2 0
. . .

0 2
�2 0

3
77777777775

2
666666666664

~LS1
~LS2
~LS3
~LS4
...

~LS2m�1
~LS2m

3
777777777775
: (30)

De�nition A.1 The basis f~LSj g2mj=1 of the SLD{tangent space T S(��)=Ksa(��)
which is subject to the transformation law (30) is called ��{symplectic.

From Theorem A.2, it is su�cient to consider a 2-dimensional D-invariant
SLD tangent space. The following theorem gives the condition for the model
to have a 2-dimensional D-invariant SLD{tangent space at ��.
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Theorem A.3 For the pure state model f�� = j�ih�jg, the following two

conditions are equivalent.

(i) f~LSj gj=1;2 is a j�ih�j{symplectic basis:

(ii) (~LS1 + i~LS2 )j�i = 0:

The linear span of such basis spanf~LS1 ; ~LS2 g is D-invariant.

The condition (ii) is nothing but the de�nition of the coherent states in
quantum theory. Thus the D-invariancy is equivalent to the coherency of

the model.

De�nition A.2 The pure state model f�� = j�ih�jg which satisfy the

condition in Theorem A.3 is called coherent.

B Proof of the inequality

Denote the right-hand side of (24) by f(�; '), and set b = 1 without loss of

generality, i.e.,

f(�; ') =
1

sin(� � ')

hp
a+ cos 2� +

p
a+ cos 2'

i
; (a > 1): (31)

Extremizing conditions @f=@� = 0 and @f=@' = 0 lead to�
a+ cos 2� +

q
(a+ b cos 2�)(a+ b cos 2')

�
cot(� � ') + sin 2� = 0; (32)

and�
a+ cos 2'+

q
(a+ b cos 2�)(a+ b cos 2')

�
cot(� � ')� sin 2' = 0; (33)

respectively. Subtracting these two equalities, we have

(cos 2� � cos 2') cot(� � ') + sin 2� + sin 2' = 0;

but this is an identity. So the equalities (32) and (33) are the same. In other

words, (32) is the only extremizing condition for (31). On the other hand,
adding the equalities (32) and (33), we have,

cos(� � ') = � 2

f2(�; ')
cos(� + '); (34)
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which is also equivalent to either (32) or (33). We show that, under the
condition 0 < � � ' < �, (34) have a unique globally connected solution.

Suppose (34) have possibly disconnected solutions (curves) labeled by Cn.
Note that f(�; ') is constant on each Cn since @f=@� = @f=@' = 0 along
the curve. Let us denote the corresponding constant value of 2=f2(�; ') on
Cn by An. Furthermore, let us change the coordinate system as � � ' =

�=2� �; � + ' = �=2� x. Then

f(�; ') = f̂(x; �) =
1

cos �

�q
a+ cos(x� �) +

q
a� cos(x+ �)

�
; (a > 1):

(35)
and the extremizing condition (34) becomes

sin � = �An sinx; (��
2
< � <

�

2
): (36)

Therefore, we can regard Cn as the connected component of the solution
of (36) which crosses the x-axis at x = n� (n = 0;�1; � � �). Since An is

constant on each curve Cn, we can evaluate its value at the x-intercepts as

An =
2

f̂2(n�; 0)
=

2

(
p
a+ 1 +

p
a� 1)2

:

In particular, An does not depend on n and is less than unity. Therefore,

the extremizing condition (36), which is rewritten as

sin � = � 2

(
p
a+ 1 +

p
a� 1)2

sinx;

has a unique globally connected solution

� = � arcsin

"
2

(
p
a+ 1 +

p
a� 1)2

sinx

#
: (37)

In other words, all the Cn's are identical with each other. It is evident that
f̂(x; �) takes its minimum along the curve (37). Therefore,

f(�; ') � f̂(0; 0) =
p
a+ 1 +

p
a� 1:
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