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1 Introduction

In the classical estimation theory, geometrical methods have made great suc-

cess in clarifying the invariant nature of estmation together with in o�ering

some clear-cut methodologies. It was also found that it gives an impor-
tant application of the so-called dualistic geometry, a generalization of the
Riemannian geometry [1]. It is natural to ask whether some geometrical

methods are also useful in quantum estimation theory [2][3]. Indeed, many
authors have tried to �nd geometrical aspects of quantum estimation theory
[4][5][6][7][8]. We should notice, however, that there exist a variety of man-

ners to de�ne quantum counterparts of geometrical notions which played
essential roles in the classical estimation theory, such as logarithmic deriva-
tive, Fisher information, Cram�er{Rao inequality, etc. Moreover, only a few
of them have been proved crucial in solving concrete quantum estimation

problems so far [9][10][11]. Therefore, if we invoke an easy analogy of a
certain aspect of classical information geometry, we cannot expect fruitful
geometrical viewpoints. In order not to construct abundance of useless imi-
tations, we must stand upon a deeper understanding of inherent geometrical

aspects of quantum estimation theory. In this paper, we o�er a new geomet-
rical structure of quantum states and investigate its signi�cance in quantum
estimation theory.

In Sec. 2, we de�ne a dualistic geometrical structure of quantum states
based on the symmetric logarithmic derivatives. This structure has a non-
vanishing torsion �eld in general, so that there exists no divergence functions
on the quantum space. In Sec. 3, the autoparallelity of a quantum state

model is investigated in detail, which also clarify the di�erence between
classical and various quantum criterions of estimation. In Sec. 4, a condition

for a one-parameter unitary model to be autopallel, i.e., to have an e�cient
estimator, is derived. This condition indicates the importance of canonical

observables in an estimation theoretical viewpoint. Some examples are also
presented.

2 Dualistic structure on quantum states

For brevity, the readers are assumed familiar with some elementary knowl-
edge of classical information geometry [1]. LetH be a separable Hilbert space

which corresponds to a physical system with inner product h�j i; (�;  2
H). A quantum state is represented by a density operator � which satis�es
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� = �� � 0 and Tr � = 1. In this paper, we further assume � > 0 for sim-
plicity. Denote by P the totality of such strictly positive density operators.

Let us start with de�nitions of quantum analogues of some basic notions in
classical theory. We �rst de�ne the mixture representation of the tangent
vector @ by the isomorphism @ $ @� and call @� the m-tangent vector. De-

note their totality by T
(m)
� (P). On the other hand, as we mentioned in the

previous section, there exist a variety of candidates of the quantum coun-
terpart of the exponential representation of the tangent vector due to the
non-commutativity. Nevertheless, we here adopt the isomorphism @ $ L

de�ned by

@� =
1

2
[�L+ L�]; L = L�

as the exponential representation, since it gives the de�nition of the so-

called symmetric logarithmic derivative (SLD) which leads us to the most
informative Cram�er{Rao bound in the one parameter estimation theory [12].

Let us call L the e-tangent vector and denote their totality by T
(e)
� (P). These

isomorphisms are characterized by the following schemata:

� m-tangent vector

T�(P) ' T
(m)
� (P) = fG ; G = G�; TrG = 0g

@ ' G where @� = G

� e-tangent vector

T�(P) ' T
(e)
� (P) = fH ; H = H�; Tr �H = 0g

@ ' H where @� =
1

2
[�H +H�]; H = H�

Correspondingly, we de�ne two kinds of parallel translations:

� m-parallel translation

T�(P) ' T
(m)
� (P) 3 G

# # #
T�0(P) ' T

(m)
�0 (P) 3 G
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� e-parallel translation

T�(P) ' T
(e)
� (P) 3 H

# # #
T�0(P) ' T

(e)
�0 (P) 3 H �Tr�0H

These parallel translations naturally de�ne two a�ne connections r(m) and
r(e), which are called the mixture connection (m-connection) and the expo-
nential connection (e-connection). Further, by using the symmetrized inner
product hA;Bi� = 1

2Tr�(A
�B +BA�), we de�ne the Riemannian metric at

� by

g�(@i; @j) = hLi; Lji� = 1

2
Tr�(LiLj + LjLi):

Since the metric can be written as g�(@i; @j) = Tr (@i�)Lj , the two connec-
tions r(m) and r(e) are mutually dual with respect to the metric g in the
following sense: For arbitrary vector �elds X;Y;Z on P,

Xg(Y;Z) = g(r(m)
X Y;Z) + g(Y;r(e)

X Z)

holds. It is evident that both curvature tensors with respect to the connec-
tions r(m) and r(e) vanish, since the two parallel translations are de�ned
independently of the choice of the path connecting � and �0. The torsion
tensor with respect to the m-connection also vanishes, whereas the torsion

tensor T (e) with respect to the e-connection does not vanish in general since
it becomes (see Appendix A)

T (e)(@j ; @k)� =
1

4
[[Lj ; Lk]; �]:

From this fact, there does not exist divergence functions on P in general.

3 Autoparallelity in quantum estimation theory

In classical estimation theory, one of the most important geometrical notion
is the autoparallelity of a model with respect to the e-connection, which is an
equivalent condition for the existance of the e�cient estimator of the model

[1]. An e-autoparallel model is also called an exponential family which takes
the form

p�(x) = exp
h
�ifi(x)�  (�)

i
;
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where � = (�1; � � � ; �n) is the n-dimensional e-a�ne parameter to be esti-
mated statistically,  (�) the normalization factor, and the Einstein's sum-

mation convention �ifi(x) =
P

i �
ifi(x) is used. In this section, we investi-

gate in detail the quantum counterpart of this notion.
We �rst give a brief summary of the conventional quantum estimation

theory. For details, consult [2][3]. Suppose we are given a statistical para-

metric model composed of strictly positive density operators:

S = f�� ; �� = ��� > 0; Tr�� = 1; � 2 � � Rng: (1)

Here, � = (�1; � � � ; �n) is the parameter to be estimated statistically. An
estimator for � is identi�ed to a generalized measurement which takes values

on �. The expectation vector with respect to the measurement M at the
state �� is de�ned as

E�[M ] =

Z
�̂PM

� (d�̂):

The measurement M is called unbiased if E�[M ] = � holds for all � 2 �,
i.e., Z

�̂jPM
� (d�̂) = �j; (j = 1; � � � ; n): (2)

Di�erentiation yields

Z
�̂j

@

@�k
PM
� (d�̂) = �jk; (j; k = 1; � � � ; n): (3)

If (2) and (3) hold at a certain �,M is called locally unbiased at �. Obviously,
M is unbiased i� M is locally unbiased at every � 2 �. Letting M be a
locally unbiased measurement at �, we de�ne the covariance matrix V�[M ] =

[vjk� ] 2 Rn�n with respect to M at the state �� by

vjk� =

Z
(�̂j � �j)(�̂k � �k)PM

� (d�̂): (4)

A lower bound for V�[M ] is given by the following quantum Cram�er{Rao

inequality

V�[M ] � (J�)
�1; (5)

where J� is the SLD{Fisher information matrix whose i; j entry is identical
to the metric gij. When the model is one dimensional, the inequalities (5)

become scalar, and the corresponding lower bound can be attained by the
estimator T = �I +L�=J�, where I is the identity. Thus, the one parameter
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quantum estimation theory is quite analogous to the classical one as long as
the SLD is used. On the other hand, for the dimension n � 2, the matrix

equalities in (5) cannot be attained in general, because of the impossibility
of the exact simultaneous measurement of non{commuting observables. We
must, therefore, abandon the strategy of �nding the measurement that min-
imizes the covariance matrix itself. Rather, we often adopt another strategy

as follows: Given a non-negative de�nite real matrix G = [gjk] 2 Rn�n, �nd
the measurement M that minimizes the quantity

tr GV�[M ] =
X
jk

gjkv
jk
� : (6)

If there is a constant C such that tr GV�[M ] � C holds for allM , C is called
a Cram�er{Rao type bound or simply a CR bound, which may depend on
both G and �.

We next consider some conditions relevant to the e�ciency of the esti-
mator. Let us �rst add some terminologies:

1. A locally unbiased measurement M is called locally e�cient at � if

V�[M ] � V�[M
0]

holds for every locally unbiased measurementM 0 at �. A measurement
M is called e�cient if M is locally e�cient for all �.

2. Given an arbitrary weight (real symmetric non-negative matrix) G, a
locally unbiased measurement M is called G{locally e�cient at � if

trGV�[M ] � trGV�[M
0]

holds for every locally unbiased measurement M 0 at �. Given an ar-
bitrary weight �eld G = fG� j � 2 �g, a measurement M is called G{
e�cient if M is G�{locally e�cient for all �. In particular, if G� � G

for all �, M is called G-e�cient.

There exist some evident relations between these notions, which are listed
in the following propositions to put the issues in order.

Proposition 1 The following conditions for a measurementM are equiv-

alent:

(i) M is locally e�cient at �.
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(ii) For all G > 0, M is G{locally e�cient at �.

(iii) For all v = (v1; � � � ; vn) 2 Rn, M is vTv{locally e�cient at �.

(iv) M is locally unbiased at � and V�[M ] = (J�)
�1 holds at �.

Proposition 2 The following conditions for a measurementM are equiv-

alent:

(i) M is e�cient.

(ii) For all G, M is G{e�cient.

(iii) For all G > 0, M is G{e�cient.

(iv) For all v = (v1; � � � ; vn) 2 Rn, M is vTv{e�cient.

(v) M is unbiased and V�[M ] = (J�)
�1 holds for all �.

Proposition 3 Given a model S = f�� j � 2 �g, consider the following

conditions:

(i) S has an e�cient measurement.

(ii) S has (possibly G-dependent) G{e�cient measurements MG for all G.
(iii) S has (possibly G-dependent) G{e�cient measurements MG for all

G > 0.

(iv) S has (possibly vTv-dependent) vTv{e�cient measurements MfvTvg

for all v = (v1; � � � ; vn) 2 Rn.

(v) There exists a certain G for which S has a G{e�cient measurement.

(vi) S is e-autoparallel, all the SLD's commute, and � is the m-a�ne co-

ordinate system.

In classical theory, all these conditions are equivalent. In quantum case,

however, only the following relations hold in general:

(i)() (vi); (i) =) (ii) =)

8><
>:

(iii)

(iv)
(v)
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Proposition 3 clari�es the di�erence between the classical and the quantum
estimation theories. Indeed, since the SLD's do not commute in general,

we cannot expect the existance of an e�cient estimator. We therefore have
adopted another strategy to minimize the weighted sum of the covariances
(6) instead of the classical minimization strategy of the covariance matrix
itself. Nevertheless, Proposition 3 also shows that there exist a variety of

strategies which are not mutually equivalent in general. Indeed, the relations
between the conditions (iii) (iv) (v) are not yet clear.

By the way, the condition (iv) in Proposition 3 is closely related to the

one parameter quantum estimation theory which is rather well-established
so far. Indeed, the restriction of the Cram�er{Rao inequality (5) in the v-
direction

vV�[M ]vT � v(J�)
�1vT (7)

gives explicitly the locally attainable lower bound for tr (vTv)V�[M ]. More
precisely, the following lemma holds.

Lemma 1 Given a model S = f�� ; � = (�1; : : : ; �n) 2 �g and an

arbitrary v 2 Rn, consider the di�erential equation

d�i

dt
= vjJ

ji; (8)

where J ij is the i; j entry of (J�)
�1, and denote by �(t) the solution of (8) for

an arbitrarily �xed initial condition �0 2 �. Then the restricted Cram�er{Rao

inequality (7) can be regarded as the one dimensional Cram�er{Rao inequality

for the one parameter sub-model ��(t).

Proof Let Lj be the SLD for the parameter �j. For every locally unbiased
measurement M of �,

T (v) =

Z
vi�̂

iM(d�̂)

becomes a locally unbiased estimator of the parameter �(v) = vi�
i at � and

satis�es

hT (v)� �(v); Lji�� = ReTr��

Z
vi�̂

iM(d�̂)Lj

= viReTrLj��

Z
�̂iM(d�̂)

= viTr
@��
@�j

Z
�̂iM(d�̂)
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= vi
@

@�j
Tr��

Z
�̂iM(d�̂)

= vi
@

@�j
�i = vj:

Then the orthogonal projection of T (v)� �(v) onto the SLD{tangent space
span fLjgnj=1 with respect to the inner product h�; �i�� is S(v) = vjJ

jiLi
since, by expressing S(v) = ciLi,

vj = hT (v)� �(v); Lji�� = hS(v); Lji�� = cihLi; Lji�� = ciJij;

where Jij ; J
ij are the i; j entries of J�; (J�)

�1, respectively. Therefore, the
inequality

hT (v)� �(v); T (v)� �(v)i�� � hS(v); S(v)i��
characteristic of the projection is nothing but (7). Now, let us determine
the sub-model ��(t) whose Cram�er{Rao inequality becomes (7), i.e., whose
SLD is S(v). Observing

1

2
[S(v)��(t) + ��(t)S(v)] =

d��(t)

dt
=
@��
@�i

d�i

dt
=

1

2
[Li�� + ��Li]

d�i

dt
;

we have

S(v) = Li
d�i

dt
:

Therefore, the desired sub-model is determined by the following di�erential
equation

d�i

dt
= vjJ

ji; �(0) = �0:

Since
d

dt

h
vi�

i
i
= viJ

ijvj > 0;

we can take t = vi�
i, which proves the lemma. �

This lemma immediately leads us to the following theorem, which shows that
the condition (iv) in Proposition 3 is a su�cient condition for the model to

be totally e-geodesic.

Theorem 1 If a model S = f�� ; � = (�1; : : : ; �n) 2 �g has (possibly v-

dependent) vTv{e�cient measurements for all v = (v1; � � � ; vn) 2 Rn, then

S is totally e-geodesic and � is the m-a�ne coordinate system.
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Proof From the assumption, the restricted Cram�er{Rao bound (7) can
be attained by a certain �-independent measurement. Then, by invoking

Lemma 1, the sub-model ��(t) which is determined by v and �0 has an
e�cient estimator for t. Then ��(t) must be an e-geodesic and t is an m-
a�ne parameter. Since v is arbitrary, the model is totally e-geodesic and �
is m-a�ne. �

Theorem 1 asserts that the minimization strategy of trGV�[M ]; (G � 0)

is closely related to the geometric structure of the model. Indeed, if the
model is not totally e-geodesic (hence not e-autoparallel), we may not expect
the existance of G-e�cient measurement in general. Therefore the geodesic

nature of a model is an important notion in quantum estimation theory.
In general, an autoparallel submanifold is automatically a totally geodesic

submanifold. Conversely, a totally geodesic submanifold becomes an au-
toparallel submanifold if the enveloping manifold is torsion free [13, II, p.

53]. In this sense, the assumption of Theorem 1 may have little to do with
the condition for a model to be e-autoparallel. Though a necessary and
su�cient condition for a model to be e-autoparallel has been obtained by
Nagaoka [14], the relation between the assumption of Theorem 1 and the

e-autoparallelity of the model is not yet clari�ed so far.

4 Autoparallelity in unitary models

Since a model �� is represented, in general, by a spectral decomposition

�� =

Z
p�(x)E�(dx);

the parameter change is composed of two parts: eigenvalue part (classical

part) and unitary part (purely quantum part). One extreme case is a model
where E� is �-independent (classical statistical model). Let us call another
extreme a unitary model where p� is �-independent. Owing to group the-

oretical symmetry of the physical system, we often encounter such unitary
models. Therefore, it is expected that the study of unitary models may bring
us some important suggestions toward the construction of general quantum
estimation theory. In this section, we investigate the geodesic nature of

unitary models.
Since Theorem 1 indicates the importance of the decomposition of the

model into foliation of one-dimensional submanifolds, we consider here one-
dimensional unitary models and derive a necessary and su�cient condition
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for the model to be an e-geodesic. Let us consider a one parameter unitary
model of the form

�t = eif(t)A�0e
�if(t)A; (9)

where A is a self-adjoint generator, �0 a strictly positive initial density opera-

tor, f(t) a real monotonic odd function with one dimensional real parameter
t. Let us recall the commutation operator D introduced by Holevo [3]. For
an arbitrary state � and a self-adjoint operator X, D is de�ned by

i(X�� �X) =
1

2
((DX)�+ �(DX)); (DX)� = DX:

Lemma 2 Denoting by Dt the commutation operator with respect to the

unitary model �t, then

DtA = eif(t)A(D0A)e
�if(t)A;

holds, and the SLD becomes

Lt = f 0(t)eif(t)A(D0A)e
�if(t)A:

Proof

d�t
dt

= if 0(t)[A�t � �tA]

= if 0(t)eif(t)A[A�0 � �0A]e
�if(t)A

= f 0(t)eif(t)A
1

2
[�0(D0A) + (D0A)�0]e

�if(t)A

= f 0(t)
1

2

h
�te

if(t)A(D0A)e
�if(t)A + eif(t)A(D0A)e

�if(t)A�t
i
:

This lead to the lemma. �

Lemma 3 The unitary model (9) becomes an e-geodesic i� there exists a

real function J(t) such that the self-adjoint operator

T =
f 0(0)

J(0)
D0A

satis�es the following relation

eif(t)ATe�if(t)A =
f 0(0)J(t)

f 0(t)J(0)
(T � t):

In this case, T becomes the e�cient estimator of the parameter t, and J(t)
becomes the SLD{Fisher information of the model.
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Proof In general, a one-parameter model �t has an e�cient estimator T
of the parameter t i� there exists a real function J(t) such that

Lt = J(t)(T � t)

holds. Comparing this and Lemma 2, we have

f 0(t)eif(t)A(D0A)e
�if(t)A = J(t)(T � t):

Setting t = 0, we have the de�nition of T , which immedietly leads to the
lemma. �

Lemma 4 Suppose we are given self-adjoint operators A; B, and real

functions f(t); g(t) such that f(�t) = �f(t); g(0) = 1. The equality of the
form

eif(t)ABe�if(t)A = g(t)(B � t) (10)

holds i� there exists a non-zero real number � such that

f(t) =
t

�
; g(t) = 1; [A;B] = i�:

Proof The su�ciency follows immedietly from the expansion formula

eitA=�Be�itA=� = B +
it

�
[A;B] +

1

2!

�
it

�

�2

[A; [A;B]] + � � � :

We show the necessity. Since the left-hand side of (10) is a equi-spectrum

deformation, the right-hand side is also so only when B has continuous
spectrum, so that the Hilbert space H on which B acts must be in�nite
dimensional. Denoting the eigen-equation for B by

Bjbi = bjbi; ( jbi 2 H; b 2 R ): (11)

Then, from (10), we have

eif(t)ABe�if(t)Ajbi = g(t)(b� t)jbi;

or
Be�if(t)Ajbi = g(t)(b� t)e�if(t)Ajbi;
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which indicates that e�if(t)Ajbi is an eigenvector of B with eigenvalue g(t)(b�
t). On the other hand, operating eif(t)A to (11) from the left, and using (10),

we have

eif(t)ABe�if(t)Aeif(t)Ajbi = b eif(t)Ajbi
= g(t)(B � t)eif(t)Ajbi;

which leads to

Beif(t)Ajbi =
�

b

g(t)
+ t

�
eif(t)Ajbi:

This indicates that eif(t)Ajbi is an eigenvector of B with eigenvalue (b=g(t)+
t). Now, e�if(t)Ajbi and eif(t)Ajbi are one-parameter family of eigenvectors
of B which start from a common eigenvector jbi and, since f(t) is assumed

odd, these eigenvectors must be related by

e�if(t)Ajbi = eif(�t)Ajbi:

Therefore, the corresponding eigenvalues must be identical:

g(t)(b� t) =

�
b

g(�t) � t

�
;

or

b

�
g(t)� 1

g(�t)
�
� tfg(t)� 1g = 0:

Since this relation must hold for any b and t, we have g(t) = 1. In this case,

(10) is reduced to
eif(t)ABe�if(t)A = B � t:

Expanding the left-hand side as

B + if(t)[A;B] +
fif(t)g2

2!
[A; [A;B]] + � � � = B � t;

and di�erentiating by t and setting t = 0, we have [A;B] = i=f 0(0), since

f(0) = 0. Substituting this commutation relation into the above expansion,
we see f(t) = f 0(0)t. Setting � = 1=f 0(0), we have the conditions in the
lemma. �

These lemmas immedietly lead us to the following main theorem.
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Theorem 2 The one parameter unitary model (9) becomes e-geodesic i�

there exist non-zero reals � and J such that

f(t) =
t

�
; [A;D0A] = i�2J

holds. In this case, T =D0A=�J is the e�cient estimator of the parameter

t, and J is the SLD{Fisher information of the model.

Proof From Lemma 4, the conditions derived in Lemma 3 are rewritten

as

f(t) =
t

�
;

J(t)

J(0)
= 1; [A; T ] = i�; T =

1

�J(0)
D0A:

Setting J = J(0), we have the theorem. �

This theorem shows that, only when the generator is a canonical ob-
servable, the one parameter unitary model becomes an e-geodesic, i.e., it
has an e�cient estimator. Note that this fact is strongly indebted to the

assumption where the model is strictly positive. For instance, this condition
can be considerably loosened for pure state models, see [15].

Let us further determine �0 which satisfy the relationD0A = �JB; ( [A;B] =

i� ). Taking the non-commutative Fourier transformation (see Appendix B)
of the identity

�0A�A�0 =
i

2
�J [�0B + B�0];

we have

�xFx;kf�0g = �2J
@

@x
Fx;kf�0g:

Integrating this under the condition F0;0f�0g = 1, we have

Fx;kf�0g = exp(� x2

2�2J
)F (k);

where F (k) is an arbitrary function which satis�es F (0) = 1 and some

regularity conditions. Then �0 is written in the Weyl representation as

�0 =

Z
exp(� x2

2�2J
)F (k) exp

�
� i

�
(kA+ xB)

�
dxdk

2��
: (12)
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For instance, it becomes a quantum Gaussian state if we take F (k) as Gaus-
sian. Here, the quantum Gaussian state of Boson with one degree of freedom

is de�ned by the Glauber-Sudershan's P-representation as

�� =
1

�

Z
'�(z)jzihzj d2z; (13)

where � = (q + ip)=
p
2�h is the parameter with q; p being the expectation

of position and momentum, respectively, jzi the Bozon coherent state with
z 2 C, and

'�(z) =
1

hNi exp
"
�jz � �j2

hNi

#
; (14)

with hNi a quantity which is related to the system temperature [3, Chap.
V]. It can also be written in the form

�� = U��0U
�
� ; U� = exp

�
i

�h
(pQ� qP )

�
:

With a help of Proposition 4 in Appendix B, the corresponding quantum
characteristic function becomes

Fx;kf��g = Tr�� exp

�
i

�h
(kQ+ xP )

�

= exp

�
i

�h
(kq + xp)� 1

2�h2
(�2Qk

2 + �2
Px

2)

�
; (15)

where

�2
Q = �h

�
hNi+ 1

2

�
; �2P = �h

�
hNi+ 1

2

�
(16)

are the variances of position Q and momentum P which satisfy

�Q�P = �h

�
hNi+ 1

2

�
:

Corollary 1 Quantum Gaussian model is e-autoparallel.

Proof Recall that for a Gaussian model, SLD's with respect to the real
parameters q; p are [3, p. 277]

Lq = (Q� q)=�2q ; Lp = (P � p)=�2
p ;

the commutation operator is [3, p. 250]

DQ = �h(P � p)=�2p; DP = ��h(Q� q)=�2q ;

15



and the SLD Fisher metric becomes [3, p. 277]

J =

"
1=�2

p 0

0 1=�2
q

#
:

The restricted one-dimensional sub-model in the direction v = (vq; vp) is
then determined by the SLD

S = vjJ
jiLi = vq(Q� q) + vp(P � p) =

1

�h
DR;

where R = �vq�2
qP + vp�

2
pQ. Note R is independent on q and p. The

sub-model is therefore written also in the form

�t = eiRt=�h�0e
�iRt=�h:

Observing

[R;D0R] = i�h2
�
v2q�

2
q + v2p�

2
p

�
we can conclude, with the help of Theorem 2, that the sub-model is an

e-geodesic. Since v is arbitrary, a Gaussian model is proved to be totally e-
geodesic. Then it is also e-autoparallel since the torsion of the model vanish.
�

Here we give another example in the spin 2 � 2 representation. An e-
geodesic (quantum exponential family) which has an e�cient estimator �z
is [12]

�t = e
1

2
[t�z�(t)] �0 e

1

2
[t�z�(t)]; (t) = log[Tr�0e

t�z ]: (17)

If we set

�0 =
1

2

"
1 x0
x0 1

#
; �1 � x0 � 1

without loss of generality, then (17) becomes

x(t) =
x0

cosh t
; y(t) = 0; z(t) = tanh t

in the Stokes' representation, i.e., �t =
1
2 (I + x(t)�x + y(t)�y + z(t)�z). It

indicates that the e-geodesic is an ellipse of the form�
x(t)

x0

�2

+ fz(t)g2 = 1;

which connects the north and south poles. Therefore, it cannot be an unitary
model unless x0 = �1, i.e., �0 is a pure state, since the equi-eigenvalue
surfaces are spherical shells centered at the origin.
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5 Conclusions

An information geometrical aspects of quantum statistical models were stud-

ied. We �rst introduced a natural dualistic structure on the quantum state

space based on the symmetric logarithmic derivatives. We next investigated
the autoparallelity and clari�ed the di�erence between the classical and the
quantum estimation theory. The importance of canonical observables in

quantum estimation theory was also stressed.
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A Torsion of the e-connection

We �rst construct two e-parallel vector �elds X1 and X2 by translating two
arbitrarily �xed tangent vectors @1; @2 at �0 with respect to the e-connection.

Then
r(e)
X1
X2 = r(e)

X2
X1 = 0;

and the torsion becomes

T (e)(X1;X2) = r(e)
X1
X2 �r(e)

X2
X1 � [X1;X2] = �[X1;X2]:

Letting the e-representation of the tangent vector @j (j = 1; 2) at �0 be Lj,
the e-representation of the tangent vector (Xj)� becomes

(Xj)� ' (X
(e)
j )� = Lj � Tr�Lj;

which acts on � as

Xj� =
1

2

h
�(X

(e)
j )� + (X

(e)
j )��

i
=

1

2
[ (�Lj + Lj�)� 2�Tr�Lj ] : (18)

Since the quantuty X2X1� describe the change of X1� when � is slightly
moved along X2-direction,

X2X1� =
1

2

h
(X

(e)
2 �)(X

(e)
1 )� + (X

(e)
1 )�(X

(e)
2 �)

i

=
1

2
[ ((X2�)L1 + L1(X2�))� 2(X2�)Tr�L1 � 2�Tr (X2�)L1 ] :

17



Substituting (18) into the above equation, we have

X2X1� =
1

4
(�L2L1 + L1L2�) + f symmetric terms with respect to L1; L2 g:

We can evaluate X1X2� in the same way, yielding

T (e)(X1;X2)� = [X1;X2]� =
1

4
[[L1; L2]; �]:

Now, since �0 is arbitrary, the torsion at any point � 2 P becomes

T (e)(@j ; @k)� =
1

4
[[Lj ; Lk]; �]; (19)

where Lj is the e-representation of the tangent vector @j at �. For an

arbitrary submanifold M , the torsion T
(e)
M is obtained by projecting T (e)

onto the tangent space of M with respect to the Riemannian metric.

B Non-commutative Fourier transform

In this appendix, we give a brief summary of the Weyl representation of
Hilbert-Schmidt operators and the non-commutative Fourier transforms un-

der the Fock space representation. For details, see [3, p. 223][16, p. 178].
For an arbitrary Hilbert-Schmidt operator A, de�ne

Fx;kfAg = TrA exp

�
i

�h
(kQ+ xP )

�
= a(x; k); (20)

where [Q;P ] = i�h, then

A =

Z
a(x; k) exp

�
� i

�h
(kQ+ xP )

�
dxdk

2��h
(21)

holds. (20) is called the non-commutative Fourier transform of A, and (21)
is called the Weyl representation of A. In particular, the non-commutative
Fourier transform of a density operator Fx;kf�g is called the quantum char-

acteristic function. With a help of Baker{Hausdor� formula, we have

Fx;kf�g = Tr� exp

�
i

2�h
kx

�
exp

�
i

�h
kQ

�
exp

�
i

�h
xP

�

= Tr� exp

�
� i

2�h
kx

�
exp

�
i

�h
xP

�
exp

�
i

�h
kQ

�
:
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Di�erentiating these equations, we have useful formulae. For instance,

@

@k
Fx;kf�g = Tr�

�
i

2�h
x+

i

�h
Q

�
exp

�
i

2�h
kx

�
exp

�
i

�h
kQ

�
exp

�
i

�h
xP

�

=
i

2�h
xFx;kf�g+ i

�h
Fx;kf�Qg;

yields

Fx;kf�Qg =
�
�x
2
� i�h

@

@k

�
Fx;kf�g:

In the same way,

Fx;kfQ�g =
�
+
x

2
� i�h

@

@k

�
Fx;kf�g

Fx;kf�Pg =
�
+
k

2
� i�h

@

@x

�
Fx;kf�g

Fx;kfP�g =
�
�k
2
� i�h

@

@x

�
Fx;kf�g:

Then we obtain the following formulae

Fx;kf�Q�Q�g = �xFx;kf�g; Fx;kf�Q+Q�g = �2i�h @
@k
Fx;kf�g

Fx;kf�P � P�g = +kFx;kf�g; Fx;kf�P + P�g = �2i�h @
@x
Fx;kf�g

The next formula is also useful, which translates the Weyl representation
into the Glauber-Sudarshan's P-representation, and vice versa [16, p. 178].

Proposition 4 The two representations of a trace class operator T

T =

Z
t(x; k) exp

�
� i

�h
(kQ+ xP )

�
dxdk

2��h

=

Z
'(p; q)jp; qihp; qjdpdq

2��h

are related by

~'(x; k) = t(x; k) exp[
1

4�h
(x2 + k2)]:

where ~'(x; k) is the Fourier transform of '(p; q), i.e.,

~'(x; k) =

Z
'(p; q) exp

�
i

�h
(kq + xp)

�
dpdq

2��h
:
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