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Abstract: In this paper, we discuss the adjacency structures of some classes of
0-1 polytopes including knapsack polytopes, set covering polytopes and 0-1 polytopes
represented by complete sets of implicants. We show that for each class of 0-1 poly-
tope, non-adjacency test problems are NP-complete. For equality constrained knapsack
polytopes, we can solve adjacency test problems in pseudo polynomial time.

1 Introduction

It seems that an adjacency criterion for a class of polyhedra could provide a basis of
an e�cient algorithm which uses some sorts of local search technique. For this purpose, it
is necessary to have an e�cient algorithm for checking adjacency. In [16], Papadimitriou
showed that the problem of checking non-adjacency on the travelling salesman polytope
is NP-complete. So, one cannot expect an e�cient edge-following type algorithm for the
travelling salesman problem. However, there exist some classes of combinatorial polytopes,
including matching polytopes [4, 6], vertex packing polytopes [17, 6], set partitioning poly-
topes [1, 2, 3] and set packing polytopes [12], such that we can decide the adjacency of two
given vertices in polynomial time.

In this paper, we show that for some well-known classes of combinatorial polytopes,
the non-adjacency test problems are NP-complete. We deal with the following classes of
polytopes (equality constrained) knapsack polytopes, set covering polytopes and 0-1 poly-
topes given by complete sets of implicants, In the last section, we show that the adjacency
test problems de�ned on equality constrained knapsack polytopes are solvable in pseudo
polynomial time.

2 Preliminaries

In this section, we describe some fundamental properties without proofs.
First, we describe a necessary and su�cient condition of non-adjacency.

Lemma 2.1 Let 
 � f0; 1gn be a set of 0-1 vectors and x1; x2 two vectors in 
: The
vertices x1 and x2 are non-adjacent on the convex hull of 
 if and only if there exists
a set of vectors fy1;y2; : : : ;ykg � 
 n fx1;x2g such that k � n and the line segment
connecting x1 and x2 intersects the convex hull of fy1; y2; : : : ; ykg:

Since k � n; the above lemma implies that the property of being non-adjacent is in NP.
Next, we give a necessary condition of non-adjacency.
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Lemma 2.2 Let 
 � f0; 1gn be a set of 0-1 vectors and x1; x2 two vectors in 
: If x1

and x2 are non-adjacent on the convex hull of 
; then there exists a vector y 2 
 such
that x1 6= y 6= x2 and

for each index j; either x1j � yj � x2j or x1j � yj � x2j : (2:1)

When a sequence � = (x1; y;x2) of distinct 0-1 vectors in f0; 1gn satis�es (2.1), we say
� is monotone.

At last of this section, we consider the equality constrained 0-1 polytope.

Lemma 2.3 Let 
 = fx 2 f0; 1gn j Ax = bg where A is an m � n matrix and b
is an m-dimensional vector. For any pair of 0-1 vectors x1;x2 2 
; the following three
statements are equivalent.
(1) Two vertices x1 and x2 are non-adjacent on the convex hull of 
:
(2) There exists a vector y 2 
 such that x1 6= y 6= x2 and (x1; y;x2) is monotone.
(3) There exists a pair of vectors y1;y2 2 
 n fx1;x2g satisfying x1 + x2 = y1 + y2:

The equality constrained 0-1 polytopes are discussed in [15, 14].

3 Knapsack Polytopes

In this section, we show that the following two problems are NP-complete.

EQUALITY KNAPSACK NON-ADJACENCY (EKN)

INSTANCE : An n-dimensional positive integer vector a; a positive integer b and a pair
of 0-1 vectors x1;x2 in 
EKN = fx 2 f0; 1gn j aTx = bg:

QUESTION : Are the vertices x1 and x2 non-adjacent on the convex hull of 
EKN ?

KNAPSACK NON-ADJACENCY (KN)

INSTANCE : An n-dimensional positive integer vector a; a positive integer b and a pair
of 0-1 vectors x1;x2 in 
KN = fx 2 f0; 1gn j aTx � bg:

QUESTION : Are the vertices x1 and x2 non-adjacent on the convex hull of 
KN ?

First, we discuss EKN.

Theorem 3.1 EKN is NP-complete.

Proof. Lemma 2.1 implies that the problem is in NP. We shall now transform the following
NP-complete problem to EKN.

PARTITION [8, 13]

INSTANCE : A k-dimensional positive integer vector c = (c1; c2; : : : ; ck):

QUESTION : Let L be the sum of the elements of c: Does there exist a 0-1 vector
z 2 f0; 1gk satisfying cTz = L=2 ?
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Put a = (c1; : : : ; ck; L=2; L=2) and 
EKN = fx 2 f0; 1gk+2 j aTx = Lg: Let
x1;x2 2 f0; 1gk+2 be the pair of vectors

x1 = (1; 1; : : : ; 1; 0; 0)T and x2 = (0; 0; : : : ; 0; 1; 1)T :

Clearly, x1;x2 2 
EKN : We shall show that x1 and x2 are non-adjacent on the convex
hull of 
EKN if and only if there exists a 0-1 vector z 2 f0; 1gk satisfying cTz = L=2:
Lemma 2.2 shows that when the pair is non-adjacent, there exists a 0-1 vector y 2 
EKN

such that x1 6= y 6= x2: Since c is a positive vector, it is clear that exactly one of the
last two elements of y is 1. Thus the 0-1 vector z 2 f0; 1gk corresponding to the �rst k
elements of y satis�es the equality cTz = L=2: The converse implication is easy. 2

From the above theorem, it is easy to show that KN is also NP-complete.

Corollary 3.2 KN is NP-complete.

Proof. Clearly, KN is in the class NP. Let 
EKN = fx 2 f0; 1gn j aTx = bg: Then the
convex hull of 
EKN is a face of the convex hull of 
KN : It implies that for any pair of
vectors x1;x2 in 
EKN ; x1 and x2 are adjacent on the convex hull of 
EKN if and
only if x1 and x2 are adjacent on the convex hull of 
KN : Thus EKN is polynomially
reducible to KN and so, KN is NP-complete. 2

4 Set Covering Polytopes

In this section, we show that the following three problems are NP-complete. In the rest
of this paper, the d-dimensional all one vector is denoted by 1d:

EQUALITY INTEGER PROGRAMMING NON-ADJACENCY (EIPN)

INSTANCE : An m� n 0-1 matrix A; an m-dimensional positive integer vector b and a
pair of 0-1 vectors x1;x2 in 
EIPN = fx 2 f0; 1gn j Ax = bg:

QUESTION : Are the vertices x1 and x2 non-adjacent on the convex hull of 
EIPN ?

INTEGER PROGRAMMING NON-ADJACENCY (IPN)

INSTANCE : An m� n 0-1 matrix A; an m-dimensional positive integer vector b and a
pair of 0-1 vectors x1;x2 in 
IPN = fx 2 f0; 1gn j Ax � bg

QUESTION : Are the vertices x1 and x2 non-adjacent on the convex hull of 
IPN ?

SET COVERING NON-ADJACENCY (SCN)

INSTANCE : An m � n 0-1 matrix A; and a pair of 0-1 vectors x1;x2 in the set

SCN = fx 2 f0; 1gn j Ax � 1mg:

QUESTION : Are the vertices x1 and x2 non-adjacent on the convex hull of 
SCN ?

First, we show the following theorem.

Theorem 4.1 EIPN is NP-complete. The problem remains NP-complete, even if each row
of the matrix A contains exactly four 1's and the right-hand-side vector is the all two vector.
If each row of the matrix A contains at most three 1's, we can decide whether given two
vertices are adjacent or not in polynomial time.

Proof. We know that EIPN is in NP. Hence it will su�ce to show that the following
problem polynomially transforms to EIPN.
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SET PARTITIONING [8, 13]

INSTANCE : A p� q 0-1 matrix M:

QUESTION : Does there exist a 0-1 vector in fz 2 f0; 1gq jMz = 1pg ?

This problem remains NP-complete, even if the matrix M satis�es the condition that each
row of M contains exactly three 1's [8, 13]. (Here we note that the problem is di�erent
from the well-known EXACT THREE COVER problem.) Given such a 0-1 matrix M;
we construct a (p+ 5q)� (6q + 3) 0-1 matrix A as follows.

First, we prepare three arti�cial variables x00; x
1
0 and x20: For each variable zj of the

SET PARTITIONING instance, we prepare six variables x1j ; x
2
j ; : : : ; x

6
j and construct

following �ve constraints;

x10 + x20 +x3j +x4j = 2;
x10 + x20 +x4j +x5j = 2;
x10 + x20 +x5j +x6j = 2;
x10 + x20 +x3j +x6j = 2;

x1j + x2j +x3j +x5j = 2:

For each constraint of the SET PARTITIONING instance, we construct one constraint as
follows. If the SET PARTITIONING instance contains the constraint zi + zj + zk = 1;
where the indices satisfy i < j < k; we construct the constraint x00 + x1i + x4j + x4k = 2:

Here, we give an example. Assume that we have the following SET PARTITIONING-
ING instance,

fz 2 f0; 1g4 j z1 + z2 + z3 = 1; z2 + z3 + z4 = 1g:

Then, by the above procedure, we obtain the matrix A illustrated in Fig.1.
Let 
EIPN = fx 2 f0; 1g(6q+3) j Ax = 2(p+5q)g where 2(p+5q) denotes the (p + 5q)-

dimensional all two vector.
If x 2 
EIPN and x10 = x20 = 1; then the vector x is uniquely determined as

xji =

8><
>:

1 if i = 0;
1 if i 6= 0; j = 1; 2;
0 if i 6= 0; j = 3; 4; 5; 6:

(4:1)

In the case that x 2 
EIPN and x10 = x20 = 0; the vector x is uniquely determined as

xji =

8><
>:

0 if i = 0;
0 if i 6= 0; j = 1; 2;
1 if i 6= 0; j = 3; 4; 5; 6:

(4:2)

Let x0 2 
EIPN be the vector satisfying the condition (4.1) and x00 2 
EIPN the
vector satisfying the condition (4.2). Now we show that x0 and x00 are non-adjacent on
the convex hull of 
EIPN if and only if the set fz 2 f0; 1gq jMz = 1pg is non-empty.

Assume that x0 and x00 are non-adjacent. Then Lemma 2.3 implies that there exists

a vector ex 2 
EIPN satisfying fx10 6= fx20 and fx00 = 1: Then it is clear that ex satis�es the

condition that for each index i (6= 0); fx1i = fx2i = fx4i = fx6i 6= fx3i = fx5i : Let ez 2 f0; 1gp be

the vector satisfying ezi = fx1i : Since fx00 = 1; ez is contained in fz 2 f0; 1gq jMz = 1pg:
Now consider the case that 9ez 2 fz 2 f0; 1gq jMz = 1pg: Let ex 2 f0; 1g(3+6q) be the

vector satisfying

f
xji =

8>>>>><
>>>>>:

1 if i = 0; j = 0
1 if i = 0; j = 1
0 if i = 0; j = 2ezi if i 6= 0; j = 1; 2; 4; 6
1� ezi if i 6= 0; j = 3; 5:
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3 x14 x

2
4 x

3
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4
4 x

5
4 x

6
4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

Figure 1: The matrix A:

Then it is obvious that x0 6= ex 6= x00; ex 2 
EIPN and (x0; ex;x00) is a monotone sequence.
Thus, Lemma 2.3 implies that x0 and x00 are non-adjacent.

From the above discussions, it is clear that EIPN remains NP-complete, even if each
row of the matrix A contains exactly four 1's and the right-hand-side vector is the all two
vector.

Lastly, we show that if each row of the matrix A contains at most three 1's, we
can decide whether given two vertices x1;x2 are adjacent or not in polynomial time.
Since each row of A contains at most three 1's, we can assume that b 2 f1; 2gm:
Let I1 be the set of indices satisfying x1j = x2j = 1; I0 the set of indices with

x1j = x2j = 0 and I = f1; 2; : : : ; ng n (I1 [ I0): Set 
EIPN = fx 2 f0; 1gn j Ax = bg: and


0 = fx 2 
EIPN j 8j 2 I1; xj = 1 and 8j 2 I0; xj = 0g: It is clear that x1 and x2 are
adjacent on conv(
EIPN ) if and only if x1 and x2 are adjacent on conv(
0):

Let A0 be the submatrix of A consists of the column vectors of A indexed by I and
b0 = b � b00 where b00 is the sum of the column vectors of A indexed by I1: Then it
is clear that the adjacency structure of conv(
0) is equivalent to that of conv(
00) where

00 = fy 2 f0; 1gI j A0y = b0g: The de�nition of b0 directly implies that b0 2 f0; 1; 2gm:

From the de�nition of A0 and b0; it is clear that for each row vector aT of A0;
either aT contains exactly two 1's or aT is the zero-vector. Then the convex hull of 
00

is essentially equivalent to a face of a stable set polytope. Thus the adjacency test problem
is polynomially solvable (see [6] for example). 2

We can show the following in a similar way with Corollary 3.2.

Corollary 4.2 IPN is NP-complete. It remains NP-complete, even if each row of the given
matrix A contains exactly three 1's and the right-hand-side vector is the all two vector. If
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each row of matrix A contains at most two 1's, we can decide whether given two vertices
are adjacent or not in polynomial time.

Proof. Clearly, IPN is in the class NP. Let 
EIPN = fx 2 f0; 1gn j Ax = bg: Then
the convex hull of 
EIPN is a face of the convex hull of 
IPN : It implies that IPN is
NP-complete.

Now we show the case that each row of A contains exactly three 1's. Theorem 4.1 implies
that both EIPN and IPN are NP-complete even if each row of the matrix A contains
exactly four 1's and the right-hand-side vector is the all two vector. For each inequality
constraint

xh + xi + xj + xk � 2 (4:3)

of the IPN instance, we construct four constraints

xh + xi + xj � 2; xi + xj + xk � 2; xj + xk + xh � 2; xk + xh + xi � 2: (4:4)

Then, it is clear that a 0-1 vector satis�es the constraint (4.3) if and only if it satis�es (4.4).
Thus, IPN is NP-complete even if each row of the given matrix A contains exactly three
1's and the right-hand-side vector is the all two vector.

When each row of A contains at most two 1's, the system of constraints is essentially
equivalent to that of a stable set problem. So, we can decide the adjacency in polynomial
time (see [6] for example). 2

At the last of this section, we discuss the set covering polytope. In [7], Etcheberry pro-
posed a su�cient (but not necessary) conditions for the adjacency on set covering polytopes.
His conditions are discussed in [10] (see Chapter 1, Theorem 1.4.11 and Theorem 1.4.12).
However, the following theorem indicates that we cannot expect an appropriate necessary
and su�cient condition for adjacency on set covering polytopes.

Theorem 4.3 SCN is NP-complete even if each row of the given matrix A contains
exactly three 1's. If each row of matrix A contains at most two 1's, we can decide whether
given two vertices are adjacent or not in polynomial time.

Proof. Clearly, SCN is in the class NP.
Now we discuss the relation between SCN and IPN. Let A be a 0-1 matrix satisfying

each row of the given matrix A contains exactly three 1's. Put


IPN = fx 2 f0; 1gn j Ax � 2mg and 
SCN = fx 2 f0; 1gn j Ax � 1mg

where 2m be the m-dimensional all two vector. Then it is clear that for any 0-1 vector
x 2 f0; 1gn; x 2 
SCN if and only if 1n�x 2 
IPN : So, given two vertices x1;x2 2 
SCN

are adjacent on conv(
SCN ) if and only if 1n � x1 and 1n � x2 in 
IPN are adjacent
on conv(
IPN ): Corollary 4.2 implies that SCN is NP-complete even if each row of A
contains exactly three 1's.

When each row of A contains at most two 1's, Corollary 4.2 also implies that the
adjacency test problem is polynomially solvable, 2

5 Implicant Systems

In [9, 10], Hausmann and Korte introduced a implicant system for representing a system
of subsets. Let E be a �nite set and S � 2E a system of subsets of E: An implicant on
E is an ordered pair (I+; I�) of disjoint subsets I+; I� of E: We say (I+; I�) is an
implicant of S when for any F � E;

if I+ � F; I� \ F = ;; then F 62 S:
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For any implicant (I+; I�); we say that the size of the implicant is jI+j + jI�j: A set of
implicants of S is called a complete set of implicants of S when it satis�es the condition that
for all subset F 62 S; there exists an implicant (I+; I�) satisfying I+ � F; I� \ F = ;:
Clearly, any system of subsets S has a complete set of implicants f(F ;E n F ) j F 62 Sg:

Let 
 � f0; 1gE be the set of characteristic vectors corresponding to the subsets in
S � 2E : Then it is clear that, a pair (I+; I�) is a implicant of S if and only if the
inequality X

i2I+

xi �
X
j2I�

xj � jI+j � 1

is a valid inequality of 
: In this paper, we say that an inequality aTx � b is an implicant
type inequality when it satis�es the conditions that a is a f0; 1;�1g-vector and b is
equivalent to the number of 1's in a minus 1. When I is a complete set of implicants of a
system of subsets S � 2E ; we denote the set of characteristic vectors corresponding to the
subsets in S by 
(I):

For many well-known combinatorial polytope, e.g., stable set polytopes, partial ordering
polytopes, complete sets of implicants for the feasible solutions can easily be obtained (see
[9, 10, 11]). In this section, we discuss the adjacency relation of a 0-1 polytope represented
by a complete set of implicants.

IMPLICANT NON-ADJACENCY (IN)

INSTANCE : A �nite set E; a set I of implicants on E and 0-1 vectors x1;x2 2 
(I):

QUESTION : Are the vertices x1 and x2 non-adjacent on the convex hull of 
(I) ?

In [9, 10], Hausmann and Korte showed that when the size of each implicant is equal to
two, we can decide the adjacency of two given vectors in 
(I) in polynomial time. In [11],
Ikebe and Tamura discussed a system of subset represented by a set of implicants with size
2.

Theorem 5.1 IN is NP-complete even if the size of each implicant is equal to three.

Proof. We know that IN is in NP. Here we show that IPN polynomially transforms to IN.
Corollary 4.1 showed that IPN is NP-complete even if each row of given matrix contains

exactly three 1's and the right-hand-side vector is the all two vector. In such a case, each
constraint is an implicant type inequality. So, IPN is polynomially reducible to IN such
that the size of each implicant is equal to three. 2

6 Equality Constrained 0-1 Polytopes

Lastly, we discuss the relation between the adjacency test problems and the optimization
problems de�ned on the equality constrained 0-1 polytopes.

Theorem 6.1 Let A be an m � n matrix and b an m-dimensional vector. The set
of 0-1 vectors fx 2 f0; 1gn j Ax = b g is denoted by 
: If the optimization problem
maxfcTx j x 2 
g is polynomially solvable for any n-dimensional vector c; then we can
decide whether two given vectors x1;x2 2 
 are adjacent or not in polynomial time.

Proof. Let x1;x2 be a pair of distinct vectors in fx 2 f0; 1gn j Ax = bg: Without loss
of generality, we can assume that there exists an index j such that x1j = 1 and x2j = 0:
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Let c be the cost vector satisfying

ci =

8>>>>><
>>>>>:

(n+ 1)4 if x1i = x2i = 1;
�(n+ 1)3 if x1i = x2i = 0;
(n+ 1)2 if i = j;
�1 if x1i = 1; x2i = 0; i 6= j;
1 if x1i = 0; x2i = 1:

We shall show that the optimal value of the problem maxfcTx j Ax = b; x 2 f0; 1gng is
greater than cTx1 if and only if x1 and x2 are non-adjacent. Clearly, cTx1 > cTx2:
Lemma 2.3 implies that when x1 and x2 are not adjacent, there exists a vector y 2 fx 2
f0; 1gn j Ax = bg such that x1 6= y 6= x2; (x1; y;x2) is a monotone vertex sequence
and yj = 1: Then it is clear that cTy > cTx1: Thus the optimal value of the problem

maxfcTx j Ax = b; x 2 f0; 1gng is greater than cTx1: The inverse implication is now
clear.

Thus, by solving the problem maxfcTx j Ax = b; x 2 f0; 1gng; we can test the
adjacency of given two vertices. 2

The above proof says that we can test the adjacency of two vertices on equality con-
strained 0-1 polytope by solving an optimization problem de�ned on the given polytope.
Since there exists a pseudo-polynomial time algorithm for the equality constrained knapsack
problem [5], we can check the adjacency of two vertices on an equality constrained knapsack
polytope in pseudo-polynomial time.
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