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Abstract

The bandit problem consists of two factors, one being exploration or the collection of informa-

tion on the environment and the other being the exploitation or taking bene�t by choosing the

optimal action in the uncertain environment. It is necessary to choose only the optimal actions

for the exploitation, while the exploration or collection of information requires to take a variety

of (non-optimal) actions as trials. Hence, in order to obtain the maximal cumulative gain, we

need to compromise the exploration and exploitation processes. We treat a situation where our

actions change the structure of the environment, of which a simple example is formulated as the

lob-pass problem by Abe and Takeuchi. Usually, the environment is speci�ed by a �nite number of

unknown parameters in the bandit problem, so that the information collection part is to estimate

their true values. The present paper treats a more realistic situation of nonparametric estimation

of the environment structure which includes an in�nite number (a functional degrees) of unknown

parameters. The asymptotically optimal strategy is given under such a circumstance, proving

that the cumulative loss can be made of the order O(t�) where � is an arbitrarily small constant

(� > 0) and t is the number of trials, in contrast with the optimal order O(log t) in the parametric

case.
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stochastic approximation.
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I Introduction

It is desirable to choose the best decision or reaction in the stochastic environment on which our

knowledge is limited. A simple idea is �rst to collect information on the environment through our

actions and then to choose the best action based on the estimated structure of the environment.

In order to collect information e�ciently, it is more useful to choose a variety of actions than to

choose the single optimal action. Hence, we need to compromise the information collecting process

(exploration) and decision process (exploitation) in order to maximize the cumulative gain in the

long-run decisions. A typical problem combining these two is the classic two- or multi-armed bandit

problem [1][2][3]. This is regarded as an on-line learning problem of rational choice.

The situation may be a little more complex in the real world in the sense that the environment

is not �xed but changes depending on our actions [4]. The lob-pass problem formulated by Abe and

Takeuchi [5] is a simple but a typical example. They considered a model of tennis play in which

a player has two alternatives \lob" and \pass". The opponent is not in a �xed state but his state

changes depending on the player's action. Let s be the rate of lob in the past trials of the player. It

takes on the real value, 0 � s � 1. We assume that the opponent's strategy depends on s so that

his state is determined by s. The behavior of the opponent is characterized by two functions fL(s)

and fP (s) which are unknown to the player and are to be estimated through games. The fL(s) and

fP (s) are the probabilities that a lob and a pass, respectively, are successful to get a point when the

opponent is in state s.

Abe and Takeuchi [5] studied the problem from the point of view of computational learning

theory, where fL(s) and fP (s) are supposed to be linear functions including unknown parameters.

So exploration (information collection) is necessary to estimate the unknown parameters. The point

is that the best information collection is not derived from the best choice of alternatives. When the s

satis�es fL(s) > fP (s) [fL(s) < fP (s)], the instantaneous optimal strategy is to choose a lob [a pass].

However, this choice is not optimal for estimating the parameters of the unknown curves fL(s) and

fP (s). Abe, Takeuchi and Amari [6] proved that there exists a strategy for which the cumulative

loss grows in the order log t when the number t of trials is large. Such a strategy is also shown to be

realizable by a simple greedy algorithm [7]. This is the asymptotically optimal achievable strategy

in the sense of order, because the amount of the Fisher information is at most of order t. Hence, the

parameters can be estimated with an accuracy of O(1=
p
t) so that the instantaneous loss cannot be

made smaller than 1=t in order.

The present paper studies the nonparametric case where the functions fL(s) and fP (s) are com-

pletely unknown except that fL(s) [fP (s)] is a monotonically decreasing [increasing] smooth convex

function. This is a nonparametric estimation problem from the statistical point of view where the

unknown parameter specifying the environment has in�nite degrees (function degrees) of freedom.
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We show that the Fisher information degenerates in this case so that the ordinary asymptotic theory

of statistics cannot be applied. We construct a strategy of which the cumulative loss grows of order

O(t�) for an arbitrarily small � > 0. This is arbitrarily close to the theoretical lower bound O(log t)

in order. This is a best asymptotic result since the above O(log t) bound is not achievable in the

nonparametric case. We use a method similar to the stochastic approximation [8][9][10][11] in order

to overcome the di�culty arising from the nonparametric situation.

Our result is asymptotic in the sense that the number t of trials is very large. It is static, since we

assume the matching condition [5] which guarantees that a stationary strategy eventually gives the

optimal minimax solution in the asymptotic sense. Without this condition, a nonstationary strategy

can have a better performance. This is one of the interesting cases to be solved in future.

When the player knows that the number T of total trials is �xed and �nite, he needs to maximize

the cumulative loss until T and does not care after that. In this case, another interesting transient

situation arises. This transient case is studied by another paper [12] under the condition that fL(s),

fP (s) and T are known.

II Statement of the problem

The de�nitions, notations and conditions on the structure of the lob-pass problem are formally

given in this section. Let xt denote the choice of the player at time t (t = 1; 2; � � �), xt = 1 implying

that a \lob" is chosen and xt = 0 implying that a \pass" is chosen. The outcome of the trial at time

t is denoted by zt, zt = 1 implying that the player wins and zt = 0 implying that he loses at time t.

The state st of the opponent at time t is the past lob rate of the player,

st =
1

t� 1

t�1X
i=1

xi (t � 2); (1)

and s1 is arbitrary. The player determines xt, that is, a lob or a pass, based on the results of past

trials f(x1; s1; z1); � � � ; (xt�1; st�1; zt�1)g.
The outcome zt is a binomial random variable depending on xt and st,

zt =

8<
: 1; with probability fL(st)

0; with probability 1� fL(st)

when a lob is chosen (xt = 1), and

zt =

8<
: 1; with probability fP (st)

0; with probability 1� fP (st)

when a pass is chosen (xt = 0). The characteristic curves fL(s) and fP (s) are unknown except that

they satisfy regularity conditions to be stated soon (Figure 1). The goal is to choose xt, t = 1; 2; � � �,
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so as to maximize the expectation of the cumulative gain, that is, the number of wins,

Gt = E

tX
i=1

zi; (2)

where E denotes the expectation and t is assumed to be su�ciently large.

Let us de�ne

w(r; s) = rfL(s) + (1� r)fP (s); (3)

which is the expectation of z by the mixed strategy of taking a lob with probability r and a pass

with probability 1� r when the state is s. The expected cumulative gain is then written as

Gt = E

tX
i=1

w(xi; si): (4)

The following conditions are imposed on the curves fL(s) and fP (s).

Condition 1 (smoothness, monotone and nontriviality conditions) For 0 � s � 1, the func-

tions fL(s) and fP (s) are twice continuously di�erentiable and monotone,

f 0L(s) < 0; f 0P (s) > 0; (5)

satisfying

fL(0) > fP (0); fL(1) < fP (1) (6)

at the end points s = 0; 1.

Condition 2 (concavity condition) The two functions are concave,

f 00L(s) � 0; f 00P (s) � 0: (7)

The meaning of the monotone condition is clear: The winning probability fL(s) [fP (s)] by a

lob [pass] decreases [increases] as the player tries lobs more frequently in the past. The concavity

condition is also natural. To explain it, we de�ne the mixed strategy of choosing a lob with probability

r and a pass with probability 1� r. Then the concavity condition implies the following: Taking the

mixed strategy with lob probability r in 2T trials is better than dividing it into two parts of taking

the mixed strategy with probability r� a (0 < a < r) in the �rst T trials and then taking that with

probability r+ a in the second T trials, provided s is kept constant. The latter strategy is easier for

the opponent.

Let us de�ne

w�(r) = w(r; r) (8)

which is the eventual winning probability of the player when he takes the stationary mixed strategy

with probability r for long runs, since st converges to r in this case.
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Theorem 1 Under conditions 1 and 2, there is a unique s� such that the stationary strategy with s�

is optimal among all the stationary strategies, that is

w�(s�) � w�(r) (9)

for all r.

Proof: We have
d

dr
w�(r) = fL(r)� fP (r) + r(f 0L � f 0P ) + f 0P ;

d2

dr2
w�(r) = 2(f 0L � f 0P ) + rf 00L � (1� r)f 00P < 0;

where 0 denotes the di�erentiation. Hence, w�(r) is concave and dw�=dr(0) > 0, dw�=dr(1) < 0, so

that w�(r) has a unique maximum s�. 2

The present paper studies how the asymptotically optimal stationary strategy can be learned

under the uncertainty situation that fL and fP are unknown. To this end, we assume

Condition 3 (matching condition)

fL(s
�) = fP (s

�): (10)

This condition is also assumed in Abe and Takeuchi [5], and Kilian, Lang, and Pearlmutter [7].

We can show that, when the matching condition does not hold, there exists a non-stationary strategy

better than the optimal stationary strategy. For example, a mixed strategy whose lob-probability rt

is slowly oscillating around s� is better than the stationary strategy, when the amplitude and period

are adequately chosen.

If we could know the exact value of s�, the optimal strategy at t is to choose a lob when st � s�

and to choose a pass when st > s�. The asymptotic average winning probability by the optimal

stationary strategy is obviously w�(s�) = w(s�; s�). Hence, we de�ne the mean instantaneous loss of

a trial sequence f(xi; si; zi) ; i = 1; 2; � � �g by

li = w(s�; s�)� Ew(xi; si) (11)

and the cumulative loss by

Lt =
tX

i=1

li: (12)

Our purpose is to �nd the strategy which minimizes Lt. The problem is said to be parametric, when

the unknown functions fL and fP are speci�ed by an unknown �nite-dimensional vector parameter

�, fL(r) = fL(r;�), fP (r) = fP (r;�). In this case, an estimate ŝ�t of s� is obtained by using the

estimate �̂t obtained from the past t trials. In the parametric case, we can show by calculating the

Fisher information that the maximum likelihood estimator satis�es

k�̂t � �k � Op

�
1=
p
t
�

(13)
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where Op denotes the stochastic order. This implies that the best estimator ŝ�t is deviated from s�

by O(1=
p
t). On the other hand, the loss based on the estimate ŝ�t is of order

O (jŝ�t � s�j) = Op (1=t) ; (14)

because s� is the maximum of a convex di�erentiable function w�(s) and jŝ�t �s�j / k�̂t��k2. Hence,
we can choose a strategy satisfying

lt = O (1=t) (15)

for a large t, and we have a strategy with

Lt = O(log t) (16)

via statistical estimation (Abe and Takeuchi [5]) or by a greedy algorithm (Kilian, Lang, and Pearl-

mutter [7]). On the other hand, there are no strategies better than this, because such a better

strategy contradicts the Cram�er-Rao bound of statistical estimation.

The present nonparametric case is di�erent from the parametric case.

Theorem 2 For any strategy, the cumulative loss is strictly larger than log t in order,

Lt

log t
!1 (t!1): (17)

Sketch of the proof: There exists no
p
t-consistent estimators, that is, no estimators satisfying

Ej�̂t � s�j2 = O (1=t) (18)

in the present case. This is shown by calculating the e�ective Fisher information. As is shown in

Appendix B, the e�ective Fisher information degenerates in the present case. Statistical estimation

under such a case is studied in Kawanabe and Amari [13]. Refer to Amari and Kawanabe [14]

and Bickel et al.[15] for the nonparametric or semiparametric estimation. Since we have the strict

inequality lt > O (1=t) in order, we have Lt= log t!1 as t!1. 2

III Optimal strategy

The following main theorem shows that there exists a strategy whose cumulative loss is arbitrarily

close to the unachievable lower bound O(log t) in order.

Theorem 3 For any � > 0, there exists a strategy whose cumulative loss is of order O(t�),

Lt = O(t�): (19)
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We prove the theorem by constructing such a strategy. This strategy is similar to the Robbins-

Monro procedure in the stochastic approximation method [8]. A rough sketch of the strategy is like

this: The player tries to make his lob rate rt equal to the estimated optimal value ŝ�, where the

true s� satis�es the relation fL(s
�) = fP (s

�). When rt converges to s�, so does st. To this end,

he estimates the current error F (st) = fP (st) � fL(st) at st, and modi�es the estimate ŝ� of s�

depending on the above estimated error. Then he plays some trials with the new lob ratio ŝ�, and

these procedures are repeated.

Now we will describe the strategy formally. Let us divide a sequence of trials into sessions. Let

the number of trials in the n-th session be

Mn = dn�e; � > 0:5 (20)

where dn�e denotes the smallest integer not less than n� . Therefore, the �rst session consists of 1

trial, the second session consists of d2�e trials, and so on. The n-th session begins with the tn-th

trial in the whole sequence, where

tn = 1 +
n�1X
j=1

Mj = O(n�+1); (21)

and the n-th session ends with the t0n = (tn +Mn � 1)-th trial (Figure 2). The parameter � > 0:5 is

chosen arbitrarily, but it will be shown that, the larger � is, the better the asymptotic performance

of the strategy is.

The �rst session: The �rst session consists of only one trial t = 1. We choose a lob, x1 = 1.

Before the n-th session (n � 2) starts, we decide the lob rate Rn in the n-th session based on the

results in the (n� 1)-th session. It converges to the optimal value s� to be searched for. The initial

value R1 is arbitrary. Roughly speaking, Rn is an estimator of s� recursively determined from Rn�1

and the results in the (n� 1)-th session, to be shown soon.

The n-th session (n � 2): The n-th session consists of Mn = dn�e trials from t = tn to

t = t0n = tn + Mn � 1. Through this session, the player choose lobs dRnMne times and passes

Mn � dRnMne times. In order to avoid large 
uctuations, the distribution of these lobs and passes

should be uniform in Mn trials in the n-th session so that xt is decided as

xt =

8<
: 1; if

Pt�1
i=tn

xi < Rn(t� tn)

0; if
Pt�1

i=tn
xi � Rn(t� tn)

(22)

for tn � t � t0n.

The lob rate Rn+1 for the next session is decided as follows. Since the target value s� satis�es

F (s�) = 0, where

F (s) = fP (s)� fL(s); (23)
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we modify the current Rn to give a closer approximation to s�. To this end, we estimate the value

of F at the current st by

F̂n = f̂P;n � f̂L;n; (24)

where the estimates f̂P;n and f̂L;n are the empirical winning rates of lobs and passes in the n-th

session given by

f̂L;n =

P
Mn

xiziP
Mn

xi
; (25)

f̂P;n =

P
Mn

(1� xi)ziP
Mn

(1� xi)
: (26)

Here
P

Mn
means

Pt0n
i=tn

. By using this estimate, when F̂n is positive (negative), ~Rn+1 is put smaller

(larger) than Rn, as

~Rn+1 = Rn � anF̂n; (27)

where

an =
1

4C

Mn

t0n
� O(1=n): (28)

Here, the constant C needs to be chosen such that it satis�es

fP (s)� fL(s)

s� s�
� C; (29)

for all s 6= s�. The existence of such a C > 0 is guaranteed from the assumptions. When we do not

know such a C, we need to estimate it through trials. This is in the same situation as the stochastic

approximation method. In order to avoid the case that the number of lobs or passes are too small

to collect minimum required information about fL(st) and fP (st), when ~Rn+1 is too close to 0 or 1,

we modify ~Rn+1 as

Rn+1 =

8>>><
>>>:

(n+ 1)�0:5; when ~Rn+1 � (n+ 1)�0:5

~Rn+1; when (n+ 1)�0:5 < ~Rn+1 < 1� (n+ 1)�0:5

1� (n+ 1)�0:5; when ~Rn+1 � 1� (n+ 1)�0:5

(30)

for n � 4, and R2 = R3 = R4 = 1=2. This trick forces the player to choose both lobs and passes

at least bn��0:5c times in the n-th session (n � 5). Then the estimation error for F̂n is guaranteed

to converge to 0 as n increases. Note that the forced number of this \information collecting trials"

bn��0:5c is much smaller than the length of the whole sessionMn = dn�e if n is very large. Moreover,

this forced correction occurs with a probability tending to 0 since 0 < s� < 1 and Rn ! s�. So it

can be neglected practically.
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IV Analysis of the strategy

Theorem 3 is proved by analyzing the performance of the proposed strategy. First of all, we study

the behavior of the state st of the opponent under this strategy. Let us de�ne Sn to be the past lob

ratio st at the head of the n-th session t = tn,

Sn = stn : (31)

Then, in the n-th session,

st =
1

t� 1
((tn � 1)Sn + dRn(t� tn)e)

= Sn +
t� tn
t� 1

(Rn � Sn) +
�t

t� 1
(32)

for tn < t � tn+1, where �t is the term due to rounding o� Rn(t � tn) to an integer, satisfying

0 � �t � 1. In particular,

Sn+1 = Sn +
Mn

t0n
(Rn � Sn) +

�
(1)
n

t0n
; (33)

where �
(1)
n = �tn+1 satis�es 0 � �

(1)
n � 1. From (32), it is also proved that st never goes away more

than 2=(tn � 1) from the interval between Sn and Sn+1 for tn � t � tn+1,

st 2 In =

8>>>>><
>>>>>:

�
Sn � 2

tn � 1
; Sn+1 +

2

tn � 1

�
(if Sn � Sn+1)

�
Sn+1 � 2

tn � 1
; Sn +

2

tn � 1

�
(if Sn > Sn+1).

(34)

We will evaluate the mean square deviation of Rn and Sn from s� by

Vn = E
h
(Rn � s�)2 + (Sn � s�)2

i
(35)

and see how fast Vn converges to 0. To this end, we introduce the following recursive equation

0
@ Rn+1 � s�

Sn+1 � s�

1
A =

0
@ Rn � s�

Sn � s�

1
A + An

0
@ Rn � s�

Sn � s�

1
A

+ small error term;

where An is a matrix. This equation is derived by evaluating F̂n (See Appendix A). By evaluating

the eigenvalues of An, we have the following lemma whose proof is also given in Appendix A.

Lemma 1 Under the assumption of Theorem 3, the proposed strategy satis�es

Vn � O(n��) (36)

for large n.
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Then the following lemma is proved from Lemma 1.

Lemma 2 The cumulative loss Lt for the proposed strategy is not greater than O(t
1

�+1 ):

Lt = E
tX

i=1

n
w(s�; s�)� w(xi; si)

o
� O(t

1

�+1 ): (37)

Proof: The n-th session consists ofMn = O(n�) trials. Let us divide it again to O(n�=2) subsessions

so that each subsession consists of O(n�=2) trials.

First, we evaluate the scattering of the lob rate r and the state si in the subsession. Let us

consider the k-th subsession in the n-th session. This subsession contains mn;k = O(n�=2) trials. As

to r, the lob rate rn;k =
Pn;kxi=mn;k in the subsession satis�es

jrn;k � Rnj � O(n��=2) (38)

because of (22), where
Pn;k denotes the summation over the trials fig in the k-th subsession in the

n-th session. Hence

E(rn;k � s�)2 � O(n��) (39)

is obtained from Lemma 1. As to si, de�ne s
min
n;k and smax

n;k to be the minimum and maximum value

of si in this subsession. They satisfy

smax
n;k � smin

n;k � mn;k

tn
jRn � Snj+O

� 1
tn

�
(40)

from (32), and so

E[smax
n;k � smin

n;k ] � O

�
mn;k

tn

p
Vn

�
� O(n���1) � O(n��): (41)

Furthermore,

E(smin
n;k � s�)2 � O(n��) (42)

follows from (34) and Lemma 1.

Now we will evaluate the cumulative loss in the subsession. By the de�nition of w(r; s) (3) and

the monotone condition (5),

w(xi; si) � w(xi; s
min
n;k )� f 0L;max(s

max
n;k � smin

n;k ) (43)

for the trial i in the subsession, where f 0L;max is a constant de�ned as

f 0L;max = max
r

jf 0L(r)j <1: (44)

This implies Xn;k
w(xi; si) � mn;k

n
w(rn;k; s

min
n;k )� f 0L;max(s

max
n;k � smin

n;k )
o

(45)
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because w(r; s) is a linear function for r. From the Taylor's theorem, there exists a constant W such

that

jw(r; s)� w(s�; s�)j �W
n
(r � s�)2 + (s� s�)2

o
(46)

for arbitrary r,s since w(s�; s�) is an extremum of the function w(r; s). Therefore the cumulative loss

in the subsession is evaluated as

Xn;k
li =

Xn;k
E
h
w(s�; s�)� w(xi; si)

i
� mn;kE

h
w(s�; s�)� w(r; smin

n;k ) + f 0L;max(s
max
n;k � smax

n;k )
i

� O(n��=2) (47)

because of (39) (41) (42) (46).

The n-th session consists of O(n�=2) such subsessions. Thus the cumulative loss ~Ln in the n-th

session is

~Ln =

t0nX
i=tn

li � O(1): (48)

Then we get

Lt0n �
nX

k=1

~Lk � O(n): (49)

Since Lt is monotone increasing in t and n = O(t
1

�+1 ) for tn � t < t0n,

Lt � Lt0n � O(n) = O(t
1

�+1 ): (50)

2

Theorem 3 is immediately proved by putting � = (1=�)� 1 in Lemma 2.

V Conclusion

The asymptotically optimal strategy of the lob-pass problem is presented under the nonparametric

environment. The nonparametric (or semiparametric) estimation is a most attractive area in modern

statistics. The Fisher information in this situation degenerates to 0, so that the ordinary asymptotic

theory of parametric or nonparametric statistics cannot be applied to this problem. Nevertheless,

we proved that the cumulative loss of the proposed strategy is of order O(t�) for an arbitrarily small

� > 0, which is as close as O(log t) of the parametric case. The best strategy is attained by a

stationary mixed strategy under the matching condition which we assumed.

Many interesting problems remain to be studied in future. One is to study an oscillatory strategy

of cheating the opponent to obtain a larger cumulative gain. Another one is to obtain the maximum

cumulative gain when the game ends in a �xed �nite time T . The problem can also be generalized

in a various way where the computational e�ciency might play an important role.
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Appendices

A

In this appendix we give the proof of Lemma 1. Through the n-th session (n � 5), the player

is forced to choose lobs at least bn��0:5c times. Since the estimator f̂L;n is the arithmetic mean

of independent binomial random variables taking values 0 and 1, and since the variance of such a

variable is not greater than 1/4 in general, the variance of f̂L;n is bounded as

Var[f̂L;njDn�1] � 1

4

1

n��0:5 � 1
: (51)

Here Dn = f(x1; s1; z1); � � � ; (xt0n ; st0n ; zt0n)g, and Var[ � jDn�1] denotes the conditional variance that

the data Dn�1 of past trials is known. Similarly

Var[f̂P;njDn�1] � 1

4

1

n��0:5 � 1
(52)

is satis�ed for passes. Thus

Var[F̂njDn�1] � 1

2

1

n��0:5 � 1
: (53)

On the other hand, from the mean value theorem and the range of st shown in (34), E[F̂njDn�1] is

decomposed into three terms,

E[F̂njDn�1] = F (Sn) + F 0max

Mn

t0n
(Rn � Sn)�

(2)
n

+ F 0max

2

tn � 1
�(3)n ;

where

F 0max � max
0�s�1

F 0(s) <1; (54)

0 � �
(2)
n � 1;

�1 � �
(3)
n � 1:

(55)

Putting

�n =
q
2(n��0:5 � 1)(F̂n � E[F̂njDn�1]); (56)
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we get E[�njDn�1] = 0 and Var[�njDn�1] � 1. The estimator F̂n of F (Sn) is then rewritten as

F̂n = F (Sn) + F 0max
Mn

t0n
(Sn �Rn)�

(2)
n

+F 0max

2

tn � 1
�(3)n +

1q
2(n��0:5 � 1)

�n: (57)

From the smoothness condition, there exists two constants C, C 0 such that

0 < C � C 0 <1; (58)

C � F (s)

s� s�
� C 0 (for all s 6= s�): (59)

We de�ne

Cn �

8><
>:

F (Sn)

Sn � s�
(for Sn 6= s�)

F 0(s�) (for Sn = s�):
(60)

Then Cn satis�es

C � Cn � C 0 (for n = 1; 2; : : :): (61)

With these symbols, the renewal of (Rn; Sn) is written as

0
@ ~Rn+1 � s�

Sn+1 � s�

1
A =

0
@ Rn � s�

Sn � s�

1
A+An

0
@ Rn � s�

Sn � s�

1
A

+

0
BBB@

�anF 0max

2

tn � 1
�(3)n � an

�nq
2(n��0:5 � 1)

1

t0n
�(1)n

1
CCCA ; (62)

where

An =

0
BB@

anF
0
max

Mn

t0n
�(2)n �an

�
Cn + F 0max

Mn

t0n
�(2)n

�
Mn

t0n
�Mn

t0n

1
CCA : (63)

Since an =Mn=(4Ct
0
n) = O(1=n), the eigenvalues �+n and ��n of An is

��n =
1

2

Mn

t0n

�
�1�

q
1� (Cn=C)

�
+ o

�
Mn

t0n

�
(64)

for large n.

Note that Rn is always closer to s� than ~Rn is for su�ciently large n, because the strict inequality

0 < s� < 1 is obtained from the nontriviality condition (6), and the restricted bounds n�0:5 and

1� n�0:5 for Rn converges to 0 and 1 respectively when n is large. Thus we get

Vn+1 � j1 + �+n j2Vn +
2(1 + 2anF

0
max�

(3)
n )

tn � 1
j1 + �+n j

p
Vn

+
1 + (2anF

0
max�

(3)
n )2

(tn � 1)2
+

a2n
2(n��0:5 � 1)
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�
 
j1 + �+n j2 +

(1 + 2anF
0
max�

(3)
n )

tn � 1
j1 + �+n j

!
Vn

+

 
1 + 2anF

0
max�

(3)
n

tn � 1
+

1 + (2anF
0
max�

(3)
n )2

(tn � 1)2
+

a2n
2(n��0:5 � 1)

!
: (65)

Here

j1 + �+n j2 � 1� Mn

t0n
+ o

�
Mn

t0n

�
; (66)

because
p
1� (Cn=C) is an imaginary number. Omitting higher order terms,

Vn+1 � (1� Mn

t0n
)Vn +

1

tn
(67)

is obtained, where Mn=t
0
n = O(1=n) and tn = O(n�+1). This inequality implies the conclusion

Vn � O(n��). (See the technique of Remark 2.5.1 in [9]. Consider Un = 'n = n���Vn, where � > 0

is an arbitrary small number.) 2

B

In this appendix we calculate the e�ective Fisher information to prove Theorem 2. When the

conditions 1, 2, 3 are satis�ed, we rewrite functions fL(s) and fP (s) in the following form by singling

out linear terms,

fL(s; s
�) = �� �(1� s�)(s� s�) + kL(s� s�); (68)

fP (s; s
�) = �+ �(s�)(s� s�) + kP (s� s�): (69)

Here, the two curves intersect at s = s�, so that s� is the unknown parameter which is of interest.

According to the common usage of symbols in statistics, we rewrite s� as � in the following. The

constants � > 0, � > 0 are unknown but we have no interest in their values. Such parameters are

called nuisance parameters. The higher-order terms kL and kP are smooth functions satisfying

kL(0) = kP (0) = 0;

k0L(0) = k0P (0) = 0; (70)

k00L(0) < 0; k00P (0) < 0:

Let q(x) be the probability of choosing x = 0; 1. Then, the joint probability of (x; z) depends on the

state s of the opponent and functions fL and fP , or equivalently the parameters �, �, � = s�, kP ,

kL. We write the logarithm of the probability P (x; z j s; �; �; �; kL; kP ) as

l(x; z j s; �; �; �; kL; kP ) = logP (x; z j s; �; �; �; kL; kP ): (71)

14



This is calculated as

l(x; z) = log q(x)

+�1(x)fz log fL + (1� z) log(1� fL)g
+�0(x)fz log fP + (1� z) log(1� fP )g; (72)

where

�i(x) =

8<
: 0; x 6= i;

1; x = i:
(73)

The family of probability distributions fP (x; z) j s; �; �; �; kL; kP g is called semiparametric, be-

cause it is speci�ed by the parameter � of interest and by the nuisance parameters �, �, kL, kP . The

nuisance parameters include unknown functions kL and kP so that their dimensions are in�nite or of

function degrees of freedom. It is only recently that e�cient estimation in the semiparametric model

is fully analyzed [14][15]. Its asymptotic property is given by the e�cient Fisher information which

is the covariance matrix of the score of the parameter of interest projected to the orthogonal com-

plement of the scores of the nuisance parameters. The score is the derivative of l(x; z) with respect

to parameters. Since kL and kP are functions, the derivatives with respect to these parameters are

operators given by the Frech�et derivatives.

Let us put

AL = � 1

1� fL
; AP = � 1

1� fP
;

BL =
1

fL(1� fL)
; BP =

1

fP (1� fP )
:

(74)

The �-score is given by

@

@�
l(x; z) = cL(AL + zBL)�1(x)

+cP (AP + zBP )�0(x) (75)

where

cL = �(1 + s� 2�)� k0L(s� �); (76)

cP = �(s� 2�)� k0P (s� �): (77)

In order to calculate the nuisance scores, we put

kL(s; t) = kL(s) + taL(s); (78)

kP (s; t) = kP (s) + taP (s) (79)

where aL and aP are variations of kL and kP . Then, the nuisance scores in the directions of aL and

aP are given by

@

@t
l

����
t=0

= aL(s� �)fAL + zBLg�1(x)
+aP (s� �)fAP + zBP g�0(x): (80)
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Since aL and aP are arbitrary functions satisfying aL(0) = aP (0) = a0L(0) = a0P (0) = 0, we can

conclude that the �-score is included in the linear space spanned by the nuisance scores, except at

the point s = �. Since we do not know �(= s�), the Fisher information is degenerate. This implies

that there exist no estimators �̂t which have
p
t-consistency, that is, which satisfy

lim
t!1

tE
h
(�̂t � �)2

i
<1: (81)

Theorem 2 is thus proved. 2
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List of Figure Captions

Figure 1 is refered in the section II. Figure 2 is refered in the section III.

� Figure 1: characteristic curves fL(s) and fP (s) (with matching condition)

� Figure 2: the proposed strategy
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