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Abstract

The universal asymptotic scaling laws proposed by Amari et al. are studied
in large scale simulations using a CM5. Small stochastic multi-layer feed-
forward networks trained with back-propagation are investigated. In the
range of a large number of training patterns t, the asymptotic generalization
error scales as 1/t as predicted. For a medium range ¢ a faster 1/¢2 scaling
is observed. This effect is explained by using higher order corrections of the
likelihood expansion. It is shown for small ¢ that the scaling law changes
drastically, when the network undergoes a transition from ineffective to

effective learning.



1 Introduction

Recently a growing interest in learning curves, i.e. scaling laws for the asymptotic
behavior of the learning and generalization ability of neural networks has emerged
(Amari et al. 1993, Barkai et al. 1992, Baum et al. 1989, Haussler et al. 1994,
Murata et al. 1993, Opper et al. 1990 and 1995, Saad et al. 1995, Seung et
al. 1992, Sompolinski et al. 1990). Clearly, as soon as learning is applied, we
observe the characteristics and the performance of the learning algorithms in
terms of generalization and training error. Therefore, it is important to study
the bounds on how fast we can learn as a function of the number of parameters
in general. The large-scale simulations presented in this paper are addressing
the question of scaling laws for training and generalization errors in small muiti-
layer feed-forward networks with so far up to 256 parameters, trained on a finite
number of training samples of up to 32768 patterns.
We address the teacher-student situation, i.e. given a teacher network, a student
network of the same architecture learns from the examples generated by the
teacher.
So far a number of groups have used statistical mechanics and the replica trick
in order to find the scaling properties of the generalization ability, first for simple
perceptron systems, and recently for tree-like networks with hidden units {for
reviews see Heskes et al. 1991, Opper et al. 1995, Saad et al. 1995, Seung et al.
1992 and Watkin et al. 1993).
A further approach for estimating asymptotic learning curves is the computa-
tional one, where the VC dimension is used to measure the complexity of a given
problem (Baum et al. 1989, Haussler et al. 1994, Opper et al. 1991).
We would like to adopt the viewpoint of information geometry which provides
an alternative method for estimating the asymptotic behavior of learning based
on an asymptotic expansion of the likelihood of the estimating machines, always
assuming a maximum likelihood estimator (Amari et al. 1993, Murata et al.
1993).
In this paper we studied, whether the well-known universal asymptotic scaling
laws found by Amari et al. can be observed in a simulation of a finite continuous
network and a finite number of continuous training patterns. According to this
theory the scaling law m

€g = Ho+ 5 (1

holds for general stochastic machines (Amari et al. 1993, Murata et al. 1993).



The quantity ¢, denotes the averaged likelihood (generalization ability), m is
the number of parameters of the model (bias + weights) and { is the number
of training examples presented to the network. Emphasis is set to the issue of
evaluating, whether these asymptotic results have an impact on the practical user
of neural networks. Also the question, where asymptotics starts, is addressed.

A further point of interest is to get insights about the dynamics of the hidden
units during the learning process.

In our simulations we are using standard multi-layer continuous feed-forward
networks, trained with backpropagation and a conjugate gradient descent in the
Kullback-Leibler divergence.

The next section describes the model investigated. The technical details of our
simulations are given in section 3 and higher order corrections to Eq.(1) are
presented in section 4. Section 5 discusses the numerical scaling results and
finally a conclusion is given.

2 The Model

We use standard feed-forward classifier networks with N inputs, H sigmoid hid-
den units and M softmax outputs (classes). The output activity O; of the ith
output unit is calculated via the softmax squashing function

exp(h?)
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and where h? = > wf}s_,- ~ 99 is the local field potential. Each output O; codes

the a-posteriori probability of an input pattern being in class €y, Op denotes
a zero class for normalization purposes. The m network parameters consist of

Oa

biases ¥ = (97, 99) and weights ¥ = (@, %7). When Z = (z,...,2x) Is input,
the activity &= (s1,....84) is computed as
N
sj=[l+exp(— 3 whae — 97", j=1,...,H (3)
k=1

The input layer is connected to the hidden layer via # the hidden layer is
connected to the output layer via @°, but no short-cut connections are present.



Although the network is completely deterministic, it is constructed to approxi-
mate class conditional probabilities (Finke et al. 1993). In this sense it is consid-
ered a stochastic machine randomly generating class labels for M different classes
given the input. Therefore, each randomly generated teacher Wr represents by
construction a multinomial probability distribution ¢(Ci|Z,wr) = Prob{z € C}
over the classes C) ({ = 1...M) given a random input ¥. We use the same
network architecture for teacher and student. Thus, we assume that the model
is faithful, i.e. the teacher distribution can be exactly represented by a student
¢(Ci|£) = p(Ci|Z, Br)-

A training and test set of the form § = {(2%,¢")|p = 1...t} is generated ran-
domly, by drawing samples of # from a uniform distribution and forward propa-
gating Z° through the teacher network. Then, according to the teachers’ outputs
¢(CP|2%) one output unit is set to one stochastically and all others are set to
zero leading to the target vector * = (0,...,1,...,0). A student network @ is
then trying to approximate the teacher given the example set S. For training the
student network W we use a backpropagation algorithm with conjugate gradient
descent to minimize our objective function: the Kullback-Leibler divergence

_q(GilT)
(Ci|E,d)

Here ¢(C;|%) denotes the class conditionals, respectively outputs of the teacher
and p(Ci|Z, &) are the class posteriors as approximated by the student network.
The Kullback-Leibler divergence is the natural objective function to measure
the degree of coincidence of the teacher and student distributions ¢ and p. To
measure the Kullback-Leibler divergence one has to know the stochastic source
underlying the data-set which can be decomposed into the input generating part
g(Z) and the output probability distribution ¢(C;|Z). In practical applications
there is typically no such knowledge. So in our training procedure only the log
likelihood
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will be available, using the empirical joint distribution
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to evaluate (4); c? refers to the correct class label associated to ZP.!

QOur results based on training with (5) have practical importance, since as men-
tioned above, in general practical problems only the empirical distribution is
known. On the test set we use a better approximation to the KL divergence by
sampling (4) for which all necessary ingredients are known

M
i ~ o
€ =—5——2_3_le(Cll&®) In p(Ci|2”, B) ~ ¢(Ci|Z*)In g(C1| ¥, B)}.  (6)
Ftest set ralyrd
So given a random uniformly distributed input, we can use the a-posteriori prob-
abilities g¢{C;|Z7), which are exactly the output values given by the teacher net-
works on the presentation of an input vector #*.
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Figure 1: Schematic picture of the weight vectors of the student and the teacher
{a) before and (b) after the transition from uncorrelated to correlated learning.

3 Order Parameters

For the committee machine several authors have observed a phase transition,
where the generalization error first scales as N/t in a so-called symmetric phase
whereas for more patterns a transition takes place and the system scales as N H /¢
in the symmetry broken phase (Barkai et al. 1992, Schwarze et al. 1993, Seung

!We use Eq.(5) instead of Eq.(4) because minimizing the KL divergence and minimizing
—fdi" 2::0 g(2)g{Ci{Z) In p(Ci| Z, &) difters only by a constant and is therefore equivalent. In
the learning situation, only the set of training examples is available, 8o we have to use Eq.(5).



et al. 1992, Kang et al. 1993, Saad et al. 1995). Below the transition all hidden
units learn uncorrelated to each other and to all the teacher hidden units (see
fig.1a). Above the transition every student hidden unit decides for one teacher
hidden unit and is maximally uncorrelated with the other teacher hidden units
(see fig.1b).

We would like to study whether this transition also occurs in continuous multi-
layer feed-forward networks being trained with continuous patterns. We therefore
define a set of order parameters which allow a more careful inspection of the
correlations between student and teacher than the Kullback-Leibler divergence.

3.1 Angle Based Order Parameters

In the committee machine the overiap
L&y oy Loy o op
Ry = N Z WripWik = ware. t W
k=1

and the self-overlap describe the dynamics of the hidden units during learning,
where we used the abreviation wi,, = (wl,,...,wHy). To have only one pa-
rameter we consider all permutations ¢ of the hidden units in the multi-layer
perceptron case to make the overlap independent of the actual permutation. In
our case the weights have to be normalized, since our system is not binary. Let
w,, and wf{,.). be the vectors of all weights from the input layer into hidden unit
i for teacher and student respectively, and let w@,; and w?a{:-) denote the weight
vectors from hidden unit ¢ to all output units. Based on this notation we define
two measures for the correlation of the weight vectors

1}’{
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where max, is the maximum over all possible permutations o of the hidden units.
In other words, we consider the overlap of the hidden units given a permutation
such that the weights of the hidden units of the teacher and the student are
maximally correlated. A transition from uncorrelated to correlated learning, as
mentioned above, would be detected as a change of the angles between teacher
and student vectors.



3.2 Length Based Order Parameters

The order parameters introduced in the last section essentially measure the angle
between teacher and student machine. Now we have to take into account that we
do not deal with binary weights, which are nicely normalized, but with students
who can change the Jengths of their parameter vectors quite drastically in the
dynamics of the learning process. We therefore introduce a new set of order
parameters based on the ratio between the teacher and student weights

”wlﬂ'(J (8)

ratio H = max — Z” "(’}'“ and ratio O = max — Z TSR
7 Te;

lfw,all

3.3 Correlation Based Order Parameters

Since the hidden units implement functions, we measure additionally the func-
tional £? norm, which corresponds to the correlations between the hidden units
activities

L 5™ (o7 @) - s5(8)) (9)

Act H;; = ——
YT fftest set >

The sum is taken over the test set and sp; denotes the activity of the sth hidden
unit of the teacher while s; is the student’s activity at hidden unit j (cf. Eq. 3}.
A value of Act H;; ~ 0 corresponds to a maximal correlation between student
and teacher. This parameter gives a very clear picture of the dynamics of the
functional distance between teacher and student hidden units during learning.

3.4 Output Measure

As a last order parameter we consider the extremality of the output activities

Ext = #setZ me{l—oi )R (0o(#) - 0)7). (10)

The sum over p is taken either over the training or the test set and we normalize
over the cardinality of the respective set (denoted by #set). The quantity Ext
measures how strongly the network fits the extreme values of the targets, so if
the network outputs are close to either 0 or 1 we obtain Ext ~ 0. In this sense
Ext is a measure of overfitting, assuming a smooth posterior ¢(C,|&,wr) of the
teacher. As Ext takes non-zero values the student network starts to provide a
smooth estimate of the a-posteriori distribution of the teacher.



4 The Simulation

The simulations were performed on a parallel computer (CM5). Every curve in
the figures takes about 3-5h of computing time on a 128 respectively 256 partition
of the CM5. This setting enabled us to do the statistics for a single teacher over
128-512 samples (different training sets). The exact conditions under which our
simulations were performed are

1. A teacher network @y is chosen at random, where weights and biases are
normally distributed with zero mean and variance 1.

2. Then a random training set of size t and test set with fixed size 100000
is drawn by choosing P from a uniform distribution of appropriate width.
The output distribution ¢(C)|Z, @r) is generated by the previously chosen
teacher wr and the 1 out of M class target vectors i are generated stochas-
tically.

3. A student  is initialized randomly or as the teacher configuration @r.
Conjugate gradient learning with linesearch on the log likelihood (5) is
applied. Given the student has reached a local minimum of the training
error (5) we assess the different order parameters of Eq. (7)-(10).

4. Furthermore the generalization ability of the student is measured on the
test set via Eq. {(6).

5 Higher Order Corrections

To obtain the asymptotic theory for the learning curve of the student networks
15 we have to expand the likelihood function (KL divergence) around the teacher
wr {ollowing (Amari 1985, Amari et al. 1993, Murata et al. 1993, Akahira et al.
1981). We now give the results for the higher order corrections to the asymptotic
expansion yielding a refined scaling law, not only consisting of eq.{1), but of
higher order terms, responsible for the deviations seen in the simulation.

A
€ = Ho+ g + m + higher order terms. (11)

The 1/1? corrections have a prefactor A, which is very complicated and unfor-
tunately strongly model dependent. The first m/2¢ term is model independent.



The variance of the first order term in ¢, has the form ¢ = (m/2t?)~1/2. The
complete correction term A is discussed in the appendix.

6 Results

In our simulations we can distinguish between three ranges of t, which will be
described subsequently. First we summarize the general picture and then we
relate this picture to the numerics.

1. small ¢: in this range we observe strong overfitting, which induces diverging
weights and generalization error, whereas the simulations typically show a
finite generalization error due to finite numerical precision and the flatness
of the error surface.

2. medium t: a 1/t2 scaling is observed. So far, neither the statistical physics
predictions nor statistical considerations have addressed the scaling of learn-
ing curves in a medium range of 1. We propose necessary higher order
corrections that have to be taken into account to explain the phenomena.

3. large t (asymptotic range): the asymptotics underlying eq.(1) are observed
in the range of a large number of patterns.

6.1 Few Examples — overfitting —

In the following we will first give a theoretical explanation of the small ¢ range
and then report on our experimental findings.

6.1.1 Why overfitting? — theoretical considerations —

For small ¢ we are below storage capacity. A network is considered to operate
below storage capacity if the student can reproduce the correct labeling on the
training set with probability 1 and can therefore classify all given training patterns
without error. The best and global solution of the learning problem in this case
is: one output set to 1, all others equal to zero and diverging weights. If the
weights diverge, also the generalization error is bound to go to infinity.

For a fixed architecture the limit of storage capacity depends on the specific
sample. Above storage capacity — as the student cannot classify all training
patterns correctly for a given sample - a minimum with finite generalization



error and finite weights becomes favorable. In fig. 3 we plot the probability r for
finding a finite minimum, computed by averaging over a large number of samples.
As we see for t > 2m all students end up in a finite minimum with probability
r = 1. At t ~ m about half of the students are giving perfect classifications
(r = 1/2), and therefore diverging generalization error. So » is not only a good
parameter to detect the limit of the storage capacity of the classifier, but r < 1
can be used as an indication for a diverging generalization error.

So for t < 2m, the averaged generalization error should be always be infinity,
according to our theoretical considerations. On single samples we can of course
obtain a finite generalization error, if a student cannot classify all training pat-
terns correctly. In the range of small ¢ an analogy to the transition found in the
binary commitee machine (Barkai et al. 1992, Schwarze et al. 1993, Seung et al.
1992, Kang et al. 1993, Saad et al. 1995), could be the transition from infinite
to finite weights, respectively KL divergence.

6.1.2 Experimental Results

Plotted in figure 2a is the Kullback-Leibler divergence found in the simulation
for a 108 parameter network (8-8-4)2. Obviously the generalization error is not
diverging. This result is typical for a practical simulation which is limited due to
finite precision and the flatness of the error surface.

For t < m the student overfits strongly with outputs tending to take the extreme
values 0 or 1 in order to imitate the empirical distribution ¢*(Z,Cpm). As one
student output tends to 1, the others tend to zero. The value for the extremality
parameter — also observed in fig. 3 of the simulation - in this situation is Ext ~ 0
before the bend of the Kullback-Leibler divergence (near t ~ m) and Ext > 0 after
the bend. Taking extreme output values is only possible if the student weights
increase drastically. Although we cannot see the expected diverging weight values
we observe in figure 4, that the size of the student weights is very large, until after
the transition point, it approaches a similar magnitude as the teacher’s weights.
The measure ratio O shows a nice agreement with the shape of the generalization
error, while ratio H approaches its maximum value after the transition near ¢ ~
m. As more examples are learned and the point ¢ = m is passed, we observe a
knee in the learning curve and a decrease of the absolute values of the student

2For the 8-8-4 nelwork we compute the number of free parameters as m = (N + 1) H + (H +
1)M = 108.

10



weights. For larger networks we find even stronger bends in the learning curve.
In the region of the bend in the KL divergence at m < ¢ < 4m we find a change
in the scaling behavior towards a faster scaling law. In this range the outputs
start to take non-extreme values and the parameter Ext shows a sharp bend,
since more examples are provided to give a smoother estimate of the a-posteriori
distribution of the teacher. Also the probability r of finding a finite solution tends
to 1 and for £ > 2m numerical effects do not have to be considered anymore. We
measure that the activities and angles of the teacher and student hidden units
are still uncorrelated, i.e. the student hidden units do not correlate to specific
teacher hidden units.

We conclude that overfitting effects dominate the small ¢ region to a large extent.
They can be measured through the order parameters ratio O and Ext. The
region where the average generalization error actually diverges theoretically can
be estimated by r. We would like to emphasize that below storage capacity
numerical effects that act as regularizers depending on implementation details®
will typically be observed and are hard to be circumvented.

6.2 Medium range — many examples —

For 4m < t < 30m we find a scaling law of 1/t2 which is faster than 1/1. Yet,
the exponent is slowly decreasing towards :~! as t is growing towards the large ¢
regime. The higher order corrections of eq.(11} can explain this effect: the farther
we are away from the 1/t asymptotics the more prominent are the correction terms
of Eq.(11).

Note that the above mentioned value 4m for the onset of the 1/t? asymptotic
region is specific to the example (8-8-4) used frequently in this paper, since the
parameter A from Eq.(11) - determining the onset - is unfortunately strongly
model dependent (see appendix). In figure 6 we can see the asymptotic region
for a number of different networks as a function of m/¢. Clearly the range of the
1/t regime is completely different for different network configurations.

To have a better impression of the quality of the t~! and =2 scaling, we subtracted
108/2¢ from the data points in figure 5 and clearly see ¢; = 0 for ¢ > 3000 while
for ¢ > 400 a ¢ fit can be nicely applied.

In the following we will use the term correlation synonymously to the functional
distance or the angle. In the -2 range, quantitatively the correlations (angle rH)

2In our case the linesearch and the bracketing subroutines have tolerance bounds for the
gtadients respectively the log likelihood (5). These act implicitely as regularizers.

11



between teacher and student weights show a transition from a state where the
hidden units of the student and the teacher are initially correlated to a certain ex-
tent (rH = 0.63) towards asymptotic alignment (tH =1; ¢f. Fig. 7). Furthermore,
if we consider the functional distances Act H;; in fig. 7, we observe an initial over-
all similar functional distance between student and teacher hidden units ranging
from 0.15 to 0.4. For larger t this distance is decreased to zero for one hidden
unit, while the others maintain a similar magnitude ranging from 0.15 to 0.35
as before. This effect would also be a candidate for the transition in the binary
committee machine (Barkai et al. 1992, Schwarze et al. 1993, Seung et al. 1992,
Kang et al. 1993, Saad et al. 1995), although it is by no means similarily abrupt
and has to be observed in several order parameters (angle, functional distance
and ratio) as proposed above {see also section 6.1.1).

Note that practical applications have usually access to a data size > 5m™, where
m* is the number of effective parameters in the network. So under the conditions
pointed out in section 3 we will observe in most practical situations a knee in the
learning curve and a faster scaling than 1/¢,i.e. the exponent of ¢ is smaller than
—1 and higher order correction terms have to be taken into account to explain
this effect.

6.3 Asymptotic Behavior — extensively many examples —

As the asymptotic range is reached slowly, the higher order terms loose their
importance and the law stated in eq.(1) is approached. All networks studied
exhibit a m/2¢ scaling in their asymptotic range?. In the figures 8a and b we show
in particular the 8-8-4 result with an interpolated slope of 57 and the 16-10-4 net
(212 parameters) with a slope 104 respectively. Clearly the interpolated region
of m/2t is reached at higher ¢ (¢ > 5000) in the larger system. In even larger
networks (e.g. 16-12-4) the asymptotic region will shrink and will eventually
not be reached for the maximum number of patterns 32768 considered in our
simulation. In this case one always has to rely on higher order corrections of the
scaling law Eq. (11). In figure 6 we plotted the KL divergence as a function of
m/t. For large t all curves coincide with a slope of 1/2.

‘E.g. 16-4-4 slope: 47, 16-8-4, slope: 98, 16-10-4 slope: 104, 8-8-4 start from teacher slope:
57, 8-8-4 start from random initialization slope: 56.

12



6.4 Initialization

Most of the figures report on the simulation scenario, where we trained the student
network starting from the teacher configuration @r. The idea was, that since
we consider a local neighbourhood of the maximum likelihood estimator in the
asymptotic case, the teacher would be a good starting condition for training.
Figure 2a shows the complete learning curve of a 8-8-4 network comparing this
initialization of the student to a random one. Except for the asymptotic range
both initializations always yield very similar results. From this we conclude that
no matter where we start in phase space, the dynamics of learning is always
attracted to a local minimum of similar quality as in the case of a start from
wr. The detailed picture of the asymptotic range is given in figure 2b. Clearly,
starting from a random initial state makes the learning converge to a higher local
minimum in the generalization error only in the asymptotic range. Nevertheless,
since the asymptotic theory is valid in any local minima close to-the teacher, we
observe the same asymptotic m/2¢t scaling for the random initialization as for
a start from the teacher (cf. fig.2b}). Note however, that the learning speed is
increased by 20% using the teacher as initial starting point of learning.

7 Discussion and Outlook

In our numerical study we observed a rich structure in the learning curves of
continucus feed-forward networks. For a small number of patterns we find a
phase of strong overfitting, where the outputs take extreme values in their es-
timate of ¢(Ci|Z,®r) (fig. 3) and the student can classify all training patterns
correctly. We are below storage capacity of the classifier, so the weights and
the generalization ability should theoretically diverge. This fact is not observed
in a typical simulation due to numerical effects of finite precision (inducing an
implicit regularization) and the flatness of the error surface. As the number
of patterns increases beyond storage capacity, the Kullback-Leibler divergence
reaches also theoretically the finite value found in the simulation and the outputs
start estimating smoother probabilities. The size of the student weights becomes
comparable to the teacher weights. The bend of the learning curve is followed by
a region of 1/#? scaling when ¢ is increased. Asymptotically we confirm the m/2t
behavior.

From our results it seems important to reach the 1/¢? phase as fast as possible

13



to learn efficiently without overfitting and to obtain a smooth estimate of the
a-posteriori distribution. Furthermore, as a smooth estimate is obtained, the
network is finally free to learn in a collective manner, j.e. the activity of one
student hidden unit becomes highly correlated to one specific teacher hidden
unit {figs. 7).

Practical applications have usually access to datasets large enough to enter the
1/t? range. If maximum likelihood training and no early stopping method is used
— according to our results — typically both, a knee and a faster scaling in the
learning curve should be observed. Yet, the range of the asymptotic 1/t scaling
seems to be too far from realistic sizes of data sets available to most practical
users of neural nets.

We would like to emphasize that we always find a faster scaling than 1/ between
the small ¢ overfitting phase and the asymptotic phase. For this reason model
selection criteria which are usually based on asymptotic or a certain overall as-
sumptions on the smoothness of learning curves are likely to perform weakly,
since they do neither capture the transition encountered nor the faster scaling
observed (see also Kearns et al. 1995).

Further investigation is focussed on the measurement of scaling laws in a real
practical application and on algorithms that use early stopping to avoid over-
learning or overfitting effects (Amari et al. 1995).
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A Appendix

We now describe the details of the asymptotic theory for the higher order cor-
rections. The conditions for an asymptotic evaluation of ¢, are t — large and 2
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realizable teacher machine which has parameter wr. The present framework can
be readily extend to unrealizable cases.
A.1 Asymptotic distribution of the m.l.e.

Let us normalize the maximum likelihood estimator {m.l.e.) W as
W= \/E(\'V - wWr).
Then, the error W is asymptotically normally distributed

1
exp{-=wlG W}

p(w; wr) = p(#G)+0 (22 ) where o(¥:G) = 5

1
2r )G
with mean 0 and variance matrix (¢*), where (¢*/) is the inverse of the Fisher
information matrix G = (gi;)

o |9 log p(Ciy x; W)
5 =E [ Owi fwi '

The higher-order Edgeworth expansion gives

p(Ww;wr) = @(W;G){1+ Aw)}

< 1 i - pij
Alw) = ﬁ—\ﬁ(fxih + KiyehF)

1 ij 1 izk 1. - i7kimn
i {C;jh"' + EC.'J'H-’! Ty Eﬁi:}k-ﬁ!mnh 7k }
1
o (——) .
+0 (=
Here, ki, h¥, hi1% piikl ... are the tensorial Hermite polynomials with the metric
G = (gi;). For example

B o= @
R = @ - v,
Wi = piaaF e — 69l aF @) + 3g(gH
etc., where ( ) attached to indices denotes symmetrization with respect to the

indices inside the bracketts { ).
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The Edgeworth expansion of asymptotic distributions of m..e. was given by
many researchers in the eighties, e.g., Akahira and Takeuchi (1981), Amari (1984).
Amari gave its geometrical interpretation in the framework of curved exponential

families.
From this, we have the moments of the error in parameter space w = \/E(\if -wr).

E[Ww] E[m*]:%f(*’

E[wwT] : E[o'd’] = ¢ + %Au‘
E[www] : E[ii’ o] = _}.EAi:k,
Elwwww] : E[zb"d;iﬁ;k@f] = 3¢l gH) 4 %Al‘jkf,
where A’s are given explicitly in Akahira and Takeuchi (1981) and Amari (1985).

A.2 Expansion of the Kullback-Leibler Divergence

Let w = wy + Aw. Then, by Taylor expansion, we have

D(wr,w) = ]p(x, wr)log *';EE‘T’::")—)dx

= Ewgll{wr) - l(w)],
where x implies hereafter the pair (x,C;) and {(w) = log p(x, w). By expansion,

we have

i(w)

llwr + Aw)
Hwr)+ 5 o o dwit 5 an anAw;Aw_,-

Z 83!
+_ Bw‘-ﬁw,-r?wk

It

Aw;Aw,;Awy

; A 5.
+og Z Fo. ﬁwJ Bwk 6wIAw,Aw_, wiAw; + O(|Aaw|®)
Hence we arrive at
. B |
D(WT,W) = —%LUA‘IU‘AHJJ - EZLUkAw"ijAwk

1
By Z Lijridw Aw; AwpAwy + O(|Aw|5)
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where for example L;; is given by

2
Li; = Ew, [d log p(C;, x; wr)]

OwBw;

Therefore the expansion of ¢, is given as

£ = E[D wWT, W ] = E[D(WT,WT + %w)]

= —§ZL.';'E[?“I"W]
—%ZL;;kE[;]?ﬁJiﬁ)j@k]
_%ZL,-J-HE[ @'’ oFd') + O (t2f)

= %Zg;j(gij + -i-Aij)
_lzLuk ‘ElﬁAijk thjkf -3¢% M
+0 (ri"i/')

- Aol

A=) g,AY - —quA”k - = ZLUHQ"QH

This gives the higher-order correction to the lea:mng curve,
gg = {~logp(Ci,x|W)) = EgEz0,) [ log p(Cirx|W)]

m A .
= Ho+ evy + 7 + higher-order terms.

where

The result is also confirmed by Komaki (1994), where he obtained the Kullback-
Leibler divergence with the modification of the predictive distribution by the
normal mixture direction. When the normal correction is put equal to 0, his
result gives
D{wr, W)= ;1 + 4?2 +0 (tiz) ,

where A is explicitly obtained. It includes the curvature terms, bias gradient
terms, geometrical and the fourth cumulant terms etc., in agreement with that
given by Amari (1985).
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Teaches va. Sudent: 8-8-4
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Figure 2: Plotted are the simulated generalization values over 1/t for an 8-8-4
network. We compare the start from the teacher wr and a random initialization
(a) for the whole learning curve and (b} for the asymplotic area. Note that in the
asymplotic range we find for the random started simulation higher values for the
KL divergence, i.e. the simulation gels stuck earlier in local minima.
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Output Measure vs. 1
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Figure 3: Ext measured on training and test sei indicates, whether the outpul
activilies take ertreme values as ¢ function of 1/t (8-8-{ net). A value of zero
indicates extreme cutput values, i.e. 0 or 1. Compared to Ext ts the probability
r of wrong classification on the training set, for r = 0 only a diverging KL
divergence is a valid solution, for r = 1 a finite minimum is more favourable. r
is a good parameter fo detecl the limit of the storage capacity of the classifier.
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Generalisation error (KL) vs. Ratio (8-8-41)

KL vs. ratios
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Figure 4: Ratio of the student and teacher weights of hidden to output units {ratio
0) and input to hidden units (ratio H) versus Kullback-Leibler divergence as a
function of 1/t (8-8-4 net). Note the strong increase of ratio O at the bend of KL

neart ~ m.
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Figure 5: Plotted are the simulated generalization values over 1/t for an 8-8-4
network. For large t an exponent of the scaling law smaller than —1 is observed.
Shown are the simulated values minus m/2t. Above t = 3000 we find the scaling
predicted in eq.(1), e.g. the points are on the line ¢, = 0. Below t = 3000 an
quadratic interpolation is applied, yielding the necessary higher order corrections

of eq.(1).
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Figure 6: Kullback-Leibler divergence as a function of m/i for different network
sizes as indicated in the caption. Asymptotically all curves coincide. Further-
more, note the different onset of the 1/1? region for the different network sizes.
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Generalisation error (KL ) va. Ratio {8-8-41)
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Figure 7: Angle between student and leacher weights of input to hidden units
(rH) versus L? functional distance between the activity of student hidden unit 1
and all teacher hidden unit activities versus Kullback-Leibler divergence (KL) as
¢ function of 1/t (8-8-4 net).
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Figure 8: Plotted are the simulated generalization values in the asymplotic range
for (a) the 8-8-§ network (108 parameters) and (b) for the 16-10-4 network (212
parameters). In both cases a clear scaling as 1/t is seen.
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