
Making Recursions Manipulable by Constructing

Medio-types

Zhenjiang Hu � Hideya Iwasaki y Masato Takeichi z

Summary.

A catamorphism, generic version of our familiar foldr on lists, is
quite a simple recursive scheme associated with data type de�nitions. It
plays a very important role in program calculation, since for it there ex-
ists a general transformation rule known as Promotion Theorem. How-
ever, its structure is so tight that many recursions cannot be speci�ed by
catamorphisms because of their irregular reference to compound data
structures. In this paper, aiming at manipulating functions de�ned by
more general recursive schemes, we propose a method to factorize these
functions into a composition of a catamorphism and a type reformer
based on the construction of a medio-type { suitable intermediate data
type extracted from recursion. Consequently, our method extends the
applicability of transformational techniques specially geared to cata-
morphisms. Some examples are also given to illustrate our idea.

Topic: Program Transformation

1 Introduction

Recursive de�nitions, as found in most functional programming languages, provide
a powerful mechanism for specifying programs. By programming with a small,
�xed set of recursive patterns derivable from algebraic type de�nitions, an orderly
structure can be imposed upon functional programs. Such structures are exploited
to facilitate the proof of program properties, and even to calculate program trans-
formation [18, 19].

A Catamorphism, generic version of our familiar foldr on lists, is quite a simple
recursive patterns associated with data type de�nitions. Catamorphisms are sig-
ni�cant in program calculation [1, 3, 12, 14], since for them there exists a general
transformation rule known as Promotion Theorem stating that the composition
of a function with a catamorphism is another catamorphism under the so-called
promotable condition. Sheard [19] has succeeded in describing a normalization

� Dept. of Information Engineering, Graduate School of Engineering, University of Tokyo.
Email: hu@ipl.t.u-tokyo.ac.jp

y Educational Computer Centre, University of Tokyo. Email: iwasaki@rds.ecc.u-tokyo.ac.jp
z Department of Mathematical Engineering and Information Physics, Faculty of Engineering,
University of Tokyo. Email: takeichi@takeichi.t.u-tokyo.ac.jp

1 June 1995, METR 95-04

2 Technical Report METR 95-04

algorithms to automatically calculate improvements of programs expressed in a
language using catamorphism as the exclusive control operator.

Though general and simple, catamorphisms are lacking in descriptive power.
Some functions, even being naturally derivable from algebraic types, cannot be
speci�ed by catamorphisms, and hence transformation rules for these functions
have been investigated one by one. For instance, Meertens[16] gave transformation
rules for paramorphisms; Fegaras[8] showed how to improve recursions inducting
simultaneously over multiple algebraic data types. A question arises naturally: is
there a systematic way to manipulate these recursive patterns derivable from data
structures?

To answer this question, it may be helpful to make it clear why some recursions
cannot be speci�ed by catamorphisms. From our experience, we found that one of
the reasons is simply that some components of data structures are referenced in an
irregular way which breaks the condition of catamorphisms. To explain it, consider
a simple recursion:

peak [] = 0 ;
peak [x] = x ;
peak (x1 : x2 : xs) = x1 x1 > x2

= peak (x2 : xs) otherwise:

The function peak takes a cons list, and returns its �rst peak element, e.g., peak
[1; 3; 4; 2; 5] = 4. It, being quite simple, cannot be speci�ed as a catamorphism
over cons lists. In other words, a binary operator, say �, does not exist such that
peak (x : xs) = x�(peak xs) holds, because the recursion needs to look one element
ahead to continue. It implies that the data structure cons lists does not include
enough information for peak to be speci�ed as a catamorphism over it. This hints
us to construct a new data structure with the needed element as a component. To
do so, we de�ne a new type, namely ML a, as follows.

ML a = C1 j C2 a j C3 a a (ML a)

We use the function trans to describe the transformation from the original data
structure to the new one, which hereafter is called type reformer . It is de�ned as
follows.

trans :: [a]!ML a
trans [] = C1;
trans [x] = C2 x;
trans (x1 : x2 : xs) = C3 x1 x2 (trans (x2 : xs)):

In the de�nition of trans, x2 has been included as a component of the structure
constructed by C3. What we have done by this transformation is that peak becomes
to be factorized into two parts: a catamorphism over the new typeML a and a type
reformer1, i.e.,

peak = ([0; id; g]) :trans
where g x1 x2 r = x1 if x1 > x2

= r otherwise

1 We do not intend to puzzle readers here by using the notation ([�]) for catamorphisms which
will be de�ned in Section 2, but to give a concrete explanation.

Making Recursions Manipulable by Constructing Medio-types 3

Generally, as long as a recursion has the form of

([�1; � � � ; �n]) :�

where � is a type reformer, it becomes manipulable in the sense that the composition
of another function h and this form can be manipulated by the Promotion Theorem
once geared for catamorphisms. That is, if h is promotable to ([�1; � � � ; �n]) , h is
also promotable to this recursion. We call ML medio-type since it serves as a
medium for making recursions manipulable.

To summarize, rather than investigating transformation rules for various re-
cursive patterns, we try to factorize them into a composition of a catamorphism
and a type reformer so that transformation rules for catamorphisms become also
applicable for these recursions.

This paper is organized as follows. We briey introduce some basic concepts in
Section 2. In section 3, we formulate type reformers as a natural transformation
between map functors of two data structures. Section 4 proposes a general algo-
rithm for extracting medio-types from recursions. Two applications are given in
Section 5, and conclusions and future work are described in Section 6.

2 Types, Functors and Catamorphisms

We adopt Bird-Meertens Formalism (BMF) as our algebraic framework [1, 3, 13,
14], which relies on the algebraic properties on data structures to provide the basis
of program transformation.

We denote the application of a function f to its argument a by f a, and denote
the functional composition with an in�x dot (:) as (f : g) x = f (g x).

We sometimes use the symbols like � to denote in�x binary operators. These
operators can be turned into unary functions by sectioning or partial application
as follows.

(a�) b = a� b = (�b) a

A data type is constructed as the least solution of recursive type equations.
For example, the type of cons lists with elements of type a is usually given by the
following type equation

L a = [] j a : (L a):

To capture both data structure and control structure, type T is de�ned by a type
functor FT = F1 + � � �+ Fn and a type constructor � = �1 + � � �+ �n such that

�i :: FiT ! T (i = 1; � � � ; n):

Note that a type functor [11] is a function from types to types that has a corre-
sponding action on functions which respects identity and composition properties.

The cons list type, for example, is de�ned by a type functor FL = F1 + F2 and
a type constructor � = �1 + �2 where

FL for objects: F1 X = 1; F2 X = a�X
FL for functions: F1 f = id; F2 f = id� f
� : �1 = []; �2 = (:)

4 Technical Report METR 95-04

in which 1 stands for some distinguished one-element set, id for the identity func-
tion, � for product and + for sum. For notational convenience[18], we may de�ne
the above FL as

FL = !1 + !a� I

where ! is used to de�ne constant functor, i.e.,

!a X = a
!a f = id

and I denotes identity functor, i.e.,

I X = X
I f = f:

Besides, we follow de Moor [7] to use �FL to denote � and �Fi to �i, since the
name for type constructor is not so important in program calculation2.

Central to this paper is the notion of catamorphisms which form an important
class of functions over a given data type. A catamorphism is, put simply, a ho-
momorphism from an initial data type. A consequence of de�ning a type by the
least solution of a type equation is the unique existence of the catamorphism. For
example, for cons lists, given e and � , there exists the unique catamorphism, say
cata, satisfying the following equations.

cata [] = e;
cata (x : xs) = x� (cata xs)

In essence, this de�nition is a relabeling: it replaces every occurrence of \[]" with
e and every occurrence of \:" with � in the cons list. Since e and � uniquely
determine a catamorphism, we shall use special braces to denote this catamorphism
as

cata = ([e;�]) FL :

If the functor F is clear from the context, we sometimes omit the subscript F in
([�1; � � � ; �n])F . Moreover we even abbreviate ([�1; � � � ; �n]) to ([�]) when we don't
want to care much about the number of �i's.

In the world of catamorphisms, the Promotion Theorem[14] tells us that a
composition of a function with a catamorphism is again a catamorphism under a
certain condition.

Theorem 1 (Promotion)

Assume that ([�1; � � � ; �n]) is a catamorphism with respect to the type functor
F = F1 + � � �+ Fn. For a given h, if there exist 1; � � � ; n satisfying

h:�i = i:Fi h (i = 1; � � � ; n)

then
h :([�1; � � � ; �n]) = ([1; � � � ; n]) :

2

2 Some authors use inFL instead of �FL.

Making Recursions Manipulable by Constructing Medio-types 5

3 Type Reformer

Before explaining how to factorize recursions into a catamorphism composed with
a type reformer, we need to make it clear what a type reformer is. As argued in the
introduction, a type reformer is used to reshape a data structure without changing
the components of the original data structure. For example, a list [a1; a2] can be
reshaped to be C3 a1 a2 (C2 a2) where C2 and C3 are two type constructors in the
new data structure; but not to be C3 (2 � a1) a2 (C2 a2) because the component
2 � a1 in the new structure does not exist before. Reshaping structure allows
elements to be duplicated or deleted but not to be modi�ed or added.

One technique to formalize such reshaping is by means of the map function.
For simplicity, assume that all elements in the original data structure are of the
same type of a. An operation � on this data structure is said to be a reshape,
when for any function f :: a ! b the result obtained by �rst applying f to each
element (i.e., map f) and then manipulating by � is the same as that obtained by
�rst manipulating by � and then applying f to each element, i.e.,

�:map f = map f:�:

Categorically speaking, the above \map" can be formalized as a map functor and
the above \reshape" can be formalized as a natural transformation between map
functors. In the following, we shall focus on this study.

A type with elements of type a will be denoted as T a. For instance, L a denotes
a list with elements of type a. A general data type may have no type parameter
or have more than one type parameters. We shall �rst study the type with a
single type parameter. Now we intend to de�ne the map functor with respect to
this type. Fortunately, we know that any parametrized data type like T a comes
equipped with a map functor we shall de�ne the map functor in a similar way
to Malcolm's[15], except for de�ning it over type functor rather than from type
equations.

A bifunctor[18] provides means to abstract functor and will be used later, so
we introduce it here.

De�nition 1 (Bifunctor)

A bifunctor y is a binary operation taking types into types and functions into
functions such that if f :: A! B and g :: C ! D then f y g :: A yC ! B yD, and
which preserves identities and compositions:

id y id = id
(f y g) : (h y j) = (f : h) y (g : j):

2

The following theorem shows how to construct a map functor in terms of bi-
functor.

Theorem 2 (Map functor)

Let T a be a parametrized type, FT be the type functor for type T a. If there
exists a bifunctor y satisfying

FT = (!a y);

6 Technical Report METR 95-04

that is,
FTX = a yX
FT f = id y f

where y contains no occurrence of a, there exists a map functor (denoted as T)3

for objects: T a = the type de�ned by FT
for functions: Tf = ([�FT :(f y id)]) FT :

Proof: To prove this theorem, it requires to verify that T is a functor, i.e.,

T id = id
T (f:g) = Tf : Tg

This is established, since
T id

= f de�nition of T g

([�FT :(id y id)]) FT
= f bifunctor y g

([�FT :id]) FT
= f identity g

([�FT])FT
= f obvious g

id

and
T (f:g) = Tf:Tg

� f de�nition of T g

([�FT :((f:g) y id)]) FT
= Tf:([�FT :(g y id)])

(f promotion g

�FT :((f:g) y id):FT (Tf)
= Tf:�FT :(g y id)

� f de�nition of T g

�FT :((f:g) y id):FT (Tf)
= �FT :(f y id):FT (Tf):(g y id)

� f de�nition of FT g

�FT :((f:g) y id):(id y (Tf))
= �FT :(f y id):(id y (Tf)):(g y id)

� f bifunctor y g

�FT :((f:g) y (Tf))
= �FT :((f:g) y (Tf))

� f obvious g

True

2

Example 1 (Map functor L)

3 This is the reason why we name T de�ned by for the map functor of type T a.

Making Recursions Manipulable by Constructing Medio-types 7

Consider the map functor L which maps type a to type L a, and maps function to
function as

Lf [a1; a2; � � � ; an] = [f a1; f a2; � � � ; f an]:

As given in Section 2, the type functor for type L a is FL. Now we extract
functor !a out of FL by bifunctor y such that

FL = (!a y):

That is,
a yX = 1+ a�X
f y g = id+ f � g:

According to Theorem 2, map functor L is

Lf = ([�FL:(f y id)]) FL = ([[]; (:):(f � id)]) FL :

2

Example 2 (Map functor for rose trees)

This is a little complicated example. Rose trees are tree structures with an arbitrary
branching factor: a tree is either a leaf or a node with a list of subtrees. The type
is de�ned as

R a = Leaf a j Node (L (R a))

with a corresponding functor FR

FR = !a+ L

where L is the map functor for cons lists. By a similar method, we know that the
map functor for the rose tree type is

R f = ([Leaf:f;Node]) FR :

2

Having got the map functor, we turn to de�ne type reformer that describes a
reshape from one type to another. Recall that natural transformation is a structural
map between functors. \Structural map" makes sense here, since we have already
seen that a functor is, or represents, a structure that objects might have. Therefore,
natural transformation seems �t for de�ning the type reformer which reshapes data
structures. Intuitively, let F;G be functors, a transformation from structure F
to structure G is a family t of functions ta :: F a ! Ga, mapping set F a to
set Ga for each a. A transformation t is natural if each ta does not a�ect the
constituents of the structured elements in F a but only reshapes the structure from
F -structure to G-structure. In other words, reshaping the structure by means of a
natural transformation t and subjecting the constituents to an arbitrary morphism
commute with each other:

ta0 :F f = Gf:ta For all f :: a! a0

The formal de�nition of natural transformation[9] is as follows.

8 Technical Report METR 95-04

De�nition 2 (Natural transformation)

Let A;B be categories, and F;G : A ! B be functors. A transformation in B from
F to G is a family t of morphisms ta:

ta : Fa!B Ga for each a in A:

A transformation t in B from F to G is natural, denoted as t : F _!G, if

tb:F f = Gf:ta for each f :: a!A b:

2

Example 3 (Natural transformation rev)

Consider the function that yields the reversal of its argument, i.e.,

reva [x0; � � � ; xn�1] = [xn�1; � � � ; x0]

where xi :: a (i = 0; 1; � � � ; n� 1).
The function reva reshapes a L structure into another L structure without

a�ecting the constituents of its arguments, and the family rev = frevag is a natural
transformation typed

rev : L _!L;

since for all f :: a! b
revb:Lf = Lf:reva

as is easily veri�ed.

2

Now we are ready to de�ne type reformer.

De�nition 3 (Type reformer �)

Given two parametrized types: S a with its type functor FS and its map functor
S, and T a with its type functor FT and its map functor T . A type reformer � from
S a to T a is de�ned as a natural transformation � : S _!T .

2

Example 4 (Type reformer trans)

The trans de�ned in the introduction is a type reformer from L a to ML a, This
can be veri�ed by showing that trans : L _!ML holds.

2

Our discussion can be extended naturally to deal with type reformers mapping
from multiple data structures to a new data structure. Without loss of generality,
we only study the case of two instead of more than two. The idea is simple.
We generalize the de�nition of the map functor from the type with a single type
parameter to that with two type parameters. The map functor M shall take types
a and b to type M a b and take functions f :: a ! a0 and g :: b ! b0 to M f g ::
M a b ! M a0 b0. By means of bifunctors y and z which include neither a nor b,
we extract two constant functors !a and !b out of type functor FM as

FM = (!ay):(!bz);

Making Recursions Manipulable by Constructing Medio-types 9

that is,
FMX = a y (b zX)
FMf = id y (id z f):

Then, the map functor M (for functions) is de�ned as

M(f; g) = ([�FM :f y (g z id)]) :

A type reformer from (S a; T b) to M a b is �, satisfying

�a0b0 :(Sf � Tg) =M(f; g):�ab

for any f :: a! a0; g :: b! b0.

4 Extracting Medio-types from Recursions

Types and recursions are much related and functors play an important role in
relating both of them. Although we are used to discussing a recursion over a type,
it is not necessary to go from types to recursions. As a matter of fact, it is also
possible to go from recursions to types.

Medio-type is a suitable type extracted from a recursion in order that the
recursion can be factorized into a composition of a catamorphism over it and a type
reformer. By the use of medio-type, a recursion has two forms: original recursive
form and the new compositional form due to the introduction of medio-types. These
two forms can be transformed to each other but used at di�erent situation. The
compositional form is used only when the recursion is to be manipulated. To make
this clear, suppose that we are given the speci�cation of

spec = g:f

and we are asked to promote function g into f which is de�ned by a recursion. To
do so, we may factorize f to make it manipulable as

f = ([�1; � � � ; �n]) :�:

Thus, we calculate spec in the following style.

spec
= f de�nition g

g:f
= f factorize f to be a compositional form g

g:([�1; � � � ; �n]) :�
= f Promotion Theorem g

([1; � � � ; n]) :�
= f change compositional form to recurisive form g

h

From this calculation, we can see that the medio-type only exists during calculation,
but not in the �nal result h. In this sense, medio-types serve as medium for
manipulating recursions. This is the reason why we give the name of medio-types.

The essential requirement for medio-types is the existence of catamorphisms
over them, otherwise the factorization becomes meaningless. Therefore, we have
to impose restrictions on recursions.

10 Technical Report METR 95-04

rf ::= e1; � � � ; ek recursion
e ::= f p = t equation
p ::= C p1 � � � pk constructor application
j v variable

t ::= v variable
j c global function name

or constant except f
j f p recursive application
j t t other application

Fig. 1 Grammar of the language

We are restricted to describing recursions in a language with the grammar
shown in Figure 1. In this grammar, we implicitly consider f as the function that
is recursively de�ned.

A function f is de�ned by a recursion rf that is made up of a sequence of
equations ef1 ; � � � ; efk while each equation gives the de�nition of f over one pat-
tern p. This style ensures that the recursion is de�ned over the data structure
of its argument. A pattern p is constructed with variables and type constructors.
Obviously, a nested pattern is permitted. In a term t, we separate recursive ap-
plication from other applications in order to guarantee that the recursions have
neither nested function calls nor manipulation on the parameter of f . They outlaw
such as f (f x) and f (2 + x). Obviously, this language cannot specify nested
recursion like Ackerman function. But it can describe a wide class of recursions
including primitive ones.

Our main extraction theorem is as follows.

Theorem 3 (Extraction of medio-types)

Given a function f :: T ! R that is de�ned by a recursion rf , there exists a medio-
type M such that f can be described as a composition of a catamorphism on M
and a type reformer from T to M .

2

This theorem says that any recursion speci�ed in our language is surely fac-
torizable. To prove Theorem 3, we give a constructive algorithm R that accepts
a recursion as an input and output a triple of a type functor for medio-type, a
catamorphism on the medio-type, and a type reformer from the initial data type
to the medio-type. That is,

(FM ; ([�]) FM ; r�) = R[[rf]]

where FM stands for the type functor for Medio-type M and r� for the recursion
that de�nes type reformer � which maps the old type toM . The algorithm is shown
in Figure 2.

In this algorithm, the function � takes a variable and returns its type; !�(x)
denotes a de�nition of constant functor, e.g., in case x has type a, !�(x) = !a.

Making Recursions Manipulable by Constructing Medio-types 11

1: R[[rf]] = (FM ; ([�])FM ; r�)
2: where
3: FM = F1 + � � �+ Fk
4: ([�]) FM = ([�1; � � � ; �k]) FM
5: r� = e�1 ; � � � ; e�k
6: where (Fi; �i; e�i) = E [[efi]] (i = 1; � � � ; k)
7: ef1; ef2 ; � � � ; efk = rf
8: E [[f pi = ti]] = (Fi; �i; � pi = t0i)
9: where
10: Fi= !�(x1)� � � ��!�(xm)� I1 � � � � � In, if m+ n > 0
11: = !1, otherwise
12: t0i = �Fi x1 � � � xm (a1[f=�]) � � � (an[f=�])
13: �i x1 � � � xm s1 � � � sn = t[ai=si]
14: where fx1; � � � ; xmg = FV (ti)
15: fa1; � � � ; ang = FC(ti)
16: FV (v) = fvg
17: FV (c) = f g
18: FV (f p) = f g
19: FV (t1 t2) = FV (t1) [FV (t2)
20: FC(v) = f g
21: FC(c) = f g
22: FC(f p) = ff pg
23: FC(t1 t2) = FC(t1) [FC(t2)

Fig. 2 Algorithm for constructing medio-type

The notation t[x=y] represents a substitution for the term t by replacing all free
occurrences of the term x with the term y. In addition, FV (t) gives a set of free
variables in t except those only appearing in recursive applications (see line 18).
FC(t) gives a set of recursive applications in the term t, e.g.,

FV (x1 : x2 : xs) = fx1; x2; xsg;
FV (g x (h x y) (f z)) = fx; yg

where g and h are global function names
FC(h (f x) (f y) (f y)) = ff x; f yg

where h is a global function name:

The point of our algorithm is the construction of medio-type with respect to
a recursion. Once the medio-type is obtained, the recursion can be factorized by
simple program calculation. Intuitively speaking, the medio-type M extracted by
our algorithm from the recursion of

f p1 = t1
f p2 = t2

...
f pk = tk

12 Technical Report METR 95-04

have the form something like

M = C1 x11 � � �x1m1
M1 � � � Mn1

j C2 x21 � � �x2m2
M1 � � � Mn2

...
j Ck xk1 � � �xkmk

M1 � � � Mnk

where all Mi's are the same as M . Each branch

Ci xi1 � � �ximi
M1 � � � Mni

is derived from the term ti, where

fxi1; � � � ; ximi
g = FV (ti)

ni = Number of elements in FC(ti)

The property of the algorithm is characterized by the following lemma.

Lemma 4

Let f be de�ned over the type T a by a recursion rf , and (FM ; ([�]) FM ; r�) = R[[rf]].
Then f = ([�]) FM :� and � : T _!M hold.

Proof Sketch: We shall prove that 1) Type functor FM de�nes an initial data
type; 2) The � is a type reformer from T to M ; 3) f is equivalent to ([�]) FM :�.

The proof of 1) is soon followed (line 3,10) by the fact that a type de�ned by
a polynomial type functor (i.e. a functor only constructed by constant functor,
identity functor, product and sum) is an initial data type [9].

To prove 2), we need to show that �:T h =M h:� for any function h. The proof
can be proceeded based on the de�nition of map functor and the de�nition of �
(line 8).

To prove 3), it is su�cient to show that

f pi = ([�]) FM (� pi)

holds for any pi. We prove it by induction on pi. It is not di�cult to verify the base
case where pi contains no nested patterns. For the inductive case, we calculate as
follows.

f pi = ([�]) FM (� pi)
� f line 8 g

ti = ([�]) FM t0i
� f line 12 g

ti = ([�]) FM (�Fi x1 � � �xm (a1[f=�]) � � � (am[f=�]))
� f Assume ai = f p0

i
, line 15 g

ti = ([�]) FM (�Fi x1 � � �xm (� p01) � � � (� p
0
n))

� f catamorphism g

ti = �i (Fi([�]) FM x1 � � � xm (� p01) � � � (� p
0
n))

� f line 10 g

ti = �i x1 � � � xm (([�]) FM (� p
0
1)) � � � (([�]) FM (� p

0
n))

Making Recursions Manipulable by Constructing Medio-types 13

� f induction g

ti = �i x1 � � �xm (f p01) � � � (f p
0
m)

� f Our assumption, line 13 g

true
2

Example 5 (sum)

Assume that N denotes the type of natural number de�ned by

N = 0 j S N:

Consider the following recursion rsum used to de�ne function sum :: N ! N :

sum 0 = 0;
sum (S n) = S n + sum n

The problem with sum, being unable to be speci�ed by a catamorphism, is that it
\takes its argument and keeps it too". Such kind of recursive patterns are called
paramorphisms[16] which cover all the primitive recursions. We shall demonstrate
how to extract a medio-type from this recursion. Although R[[rsum]] is given in
top-down, it may be better to explain it in bottom-up. For the �rst equation, since
FV (0) = FC(0) = f g, it follows that

E [[sum 0 = 0]] = (F1 = !1; 0; � 0 = �F1))

For the second equation, since FV (S n + sum n) = fng and FC(S n + sum n) =
fsum ng, it follows that

E [[sum (S n) = S n+ sum n]] = (F2; �2; � (S n) = t02)
where

F2 = !�(n)� I = !N � I
�2 n s1 = S n+ s1
t02 = �F2 n (� n):

So we obtain our result:

R[[r]] = (!1+!N � I; ([0; �n:�s1:S n+ s1]) ; r�)
where r� is the following collection of equations:

� 0 = �F1
� (S n) = �F2 n (� n)

By naming �Fi with constructor name Ci, we can rewrite our derived medio-type,
say MN , clearly as

MN = C1 j C2 N MN :

2

Our algorithm can be easily extended to be applicable for the case where a
recursion is de�ned over multiple data structures. The only di�erence lies in the
de�nition of equations and recursive applications, where each occurrence of f p
should be replaced by f (p1; � � � ; pl). So, the modi�cation for our algorithm is
simply to change all occurrences f p to f (p1; � � � ; pl) and � p to � (p1; � � � ; pl).

14 Technical Report METR 95-04

Example 6 (Medio-type for zip)

Consider the function zip :: (La;L b)! L (a; b) de�ned by

zip ([]; ys) = [];
zip ((x : xs); []) = [];
zip ((x : xs); (y : ys)) = (x; y) : zip (xs; ys):

The medio-type derived by our algorithm is as follows:

M a b = C1

j C2

j C3 a b (M a b):

Here we name type constructors as C1, C2 and C3. By this medio-type, zip is
factorized as follows.

zip = ([[]; []; �x:�y:�s1:(x; y) : s1]) :�
where � ([]; ys) = C1

� ((x : xs); []) = C2

� ((x : xs); (y : ys)) = C3 x y (� (xs; ys))

2

There are some points to be noticed. First, our algorithm is fully mechanical
and can be implemented as an automatic transformation system.

Secondly, our algorithm is quite di�erent from a simple reexpression of a recur-
sion as a catamorphism composed with another function. The latter may introduce
trivial and meaningless case. For example, any recursion can be expressed as an
identity function composed with itself, because we know that any identity function
is itself a catamorphism. The characteristic of our factorization is that the derived
type reformer only concerns reshaping of the old data structure while the derived
catamorphism covers as much computation as possible.

Finally, since our algorithm does not concern the order of free variables and
recursive application calls during the construction of medio-types in the algorithm
(line 14,10), one may reorder them to get other medio-types. However, these medio-
types are the \same" in essence. In this sense, this algorithm gives only one of these
medio-types.

5 Some Applications

We have given a general study on making recursions manipulable by constructing
medio-types. The following two simple examples may help to see how our algorithm
is applied to practical calculation to improve programs.

5.1 Manipulating length:zip

We will improve
spec = length:zip;

where length = ([0; �x�p:S p]) FN and zip is de�ned in Section 4. The same
example has also appeared in [8], where a special promotion transformation was
given for recursions over multiple inductive structures. Here, we shall show how to

Making Recursions Manipulable by Constructing Medio-types 15

manipulate on zip. Using the result obtained in Section 4 where a medio type has
been extracted from zip, we know that

zip = ([[]; []; �x:�y:�s1:(x; y) : s1]) :�:

So
length:zip

= f above g

length:([[]; []; �x:�y:�s1:(x; y) : s1]) :�
= f promotion on catamorphism g

([0; 0; �x:�y:�p:S p]) :�

Finally we eliminate the medio-type by replacing the type constructors C1; C2; C3 in
the de�nition of � with corresponding operators 0; 0; �x:�y:�p:S p which appears in
the derived catamorphism, and obtain the following improved program after simple
calculation.

spec ([]; ys) = 0;
spec ((x : xs); []) = 0;
spec ((x : xs); (y : ys)) = S (spec (xs; ys))

Note that our result is simpler than Fegaras'[8] whose recursion consists of four
equations for all combinations of two patterns. We believe that it is unnecessary
to express a recursion to such a degree that Fegaras did.

5.2 Longest common subsequences problem

We will derive an e�cient program for longest common subsequences problem {
computing the length of the longest common subsequences between two given se-
quences. The speci�cation is as follows4.

lcs = max=:(length:fst) � :(==) / :gen
where

gen :: (L a;L b)! Set(L a;L b)
gen (xs; ys) = f(x; y)jx subs xs; y subs ysg
subs [] = ffgg
subs (x : xs) = subs xs [(x :) � (subs xs)

All the possible pairs of two subsequences of two given sequences (represented
by cons lists) are generated, and only those pairs that are equal remain. Finally
their lengths are calculated and the maximum is left as the result.

Promotion will act as a driving force in our calculation, so we want to make
gen manipulable. In the practical development of program, it is not the case that
medio-types can always be extracted directly. Instead, some preprocessing are
needed. Since gen is not an explicit recursion, we calculate it by inducting upon
xs and ys to obtain the following recursion.

gen ([]; ys) = f(fg; fg)g;
gen ((x : xs); []) = f(fg; fg)g;
gen ((x : xs); (y : ys)) = ((x :)� (y :)) � (gen (xs; ys))

[gen (xs; (y : ys))
[gen ((x : xs); ys)

4 For the notation, refer to [3].

16 Technical Report METR 95-04

According to our algorithm, the medio-type M extracted from the above recursion
is

M a b = C1

j C2

j C3 a b (M a b) (M a b) (M a b);

and gen is expressed as a composition of a catamorphism and a type reformer.

gen = ([f(fg; fg)g; f(fg; fg)g; �]) FM :�
where � x y s1 s2 s3 = ((x :)� (y :)) � s1 [s2 [s3

� ([]; ys) = C1

� ((x : xs); []) = C2

� ((x : xs); (y : ys))= C3 x y (�(xs; ys))
(�((x : xs); ys))
(�(xs; (y : ys))

After gen has been rewritten to this form, it becomes manipulable. Thus we
can promote (==)/, (length:fst)� and max into gen step by step according to the
Promotion Theorem. We omit the details of the derivation, and only give the �nal
result here.

lcs = ([0; 0; g]) FM :�
where g x y l1 l2 l3 = 1 + l1; x = y

= max l2 l3; otherwise

Finally, by eliminating medio-type, we obtain the following program.

lcs ([]; ys) = 0;
lcs ((x : xs); []) = 0;
lcs ((x : xs); (y : ys))
= 1 + lcs (xs; ys); if x = y
= max (lcs (x : xs; ys)) (lcs (xs; y : ys)); otherwise

The execution of these two programs under pfc5[23] system has proved that
the derived program is much more e�cient than the original. With memoisation
mechanism, the derived program is quadric regardless of expense for looking up
memoising table, while the original program is exponential. For instance, in the
case where two input sequences are [1; 3; 5; 7; 9] and [1; 4; 7; 10; 13], the derived
program takes 2776 reductions while the original one takes 66450 reductions.

6 Conclusions and Future Work

In this paper, we propose a new concept called medio-types for the purpose of mak-
ing recursions manipulable, and present an algorithm to factorize recursions into a
composition of a catamorphism and a type reformer. In addition, we demonstrate
that many recursions including paramorphisms and those over multiple data struc-
tures can be dealt by our method. Even though some of our theory in this paper
is within the realm of sets and functions, it could be made much more general by
category-theoretical means.

5 The pfc is a functional language with memoisation mechanism developed by Takeichi Labora-
tory in University of Tokyo.

Making Recursions Manipulable by Constructing Medio-types 17

Besides the theoretical study, we also give some applications to show how to
make use of our method in practical program calculation. One may �nd other
applications. For example, our method may be useful to enhance the power of
Sheard's normalization algorithm so that it can automatically calculate improve-
ment of programs expressed in a language with more general recursive schemes
rather than simple catamorphisms.

We put restrictions on our recursions. But this does not mean that we can deal
with only such recursions. In fact, many transformation techniques can be used as
a preprocess to transform others to the forms of ours. Some examples are shown
below.

� mutually recursive function

Suppose that f1; � � � ; fn are mutually recursively de�ned, according to the
well known tupling transformation, we may de�ne f x = (f1 x; � � � ; fn x) and
hence fi x = ith (f x) where ith stands for the function to pick out the ith
element from a tuple. Having done so, we could remove this mutual recursion
into a non-mutual one by replacing each fi with ith(f x).

� recursive function with non-inductive parameter

So far as we have concerned, each recursive application must have the form
of f p1 � � � pm, where p1; � � � ; pm are patterns. It seems as if we ruled out
those functions some of whose parameters are not patterns (i.e. containing
some computations rather than just rearranging the structure). As a matter
of fact, we can deal with them. Suppose in the recursive de�nition rf , the
recursive applications have the form of f p1 � � � pm x1 � � � xn where x1 to xn
are not simple patterns. We may de�ne f as a higher order function over p1
to pm, so that our algorithm is also applicable. For example, the recursion of

f [] y = y
f (x : xs) y = f xs (x+ y)

may be transformed to

f [] = id
f (x : xs) = �y:((f xs) (x+ y))

which is in the scope of our recursions. It should be noted that for higher order
function, our algorithm will generate a higher order catamorphism which is
also manipulable[12, 17].

Careful readers, however, may have found that when we rearrange data struc-
ture to the medio-type structure by type reformer �, some elements may have many
occurrences. This arrangement gives much possibility for multiple computations
and multiple traversals of data structures. Fortunately, implementation techniques
of functional programs such as partial evaluation, lazy evaluation [21, 22], memoi-
sation [2, 24], and tupling technique[2, 6, 5] can help us to avoid multiple compu-
tations and multiple traversals of data structures. At present, we releave us from
it, but we plan to study how to remove these recomputations in medio-types.

It is of interest for us to �nd that our type reformer may be a kind of ana-
morphisms[18], generic version of our familiar unfold on cons lists. If this is true,

18 Technical Report METR 95-04

our algorithm would provide a mechanical way to rewrite a recursion into a hylo-
morphism (i.e., a composition of a catamorphism and an anamorphism) [18]. More-
over, it might support in theory that a compositional form can be transformed to
a recursive form as argued in Section 4 based on the fact that a hylomorphism can
be rewritten into a recursion. We would like to make it clear in our future research.

Another seemly interesting topic is to investigate the relation between the Pro-
motion Theorem and deforestation techniques [4, 10, 20, 25]. They both provide
means for fusing a composition of functions. By imposing structure on functions
with the aid of type functors, the Promotion Theorem seems simpler and more
concise than deforestation techniques. However, in deforestation there have been
many good results that we have not got from the Promotion Theorem. For exam-
ple, Chin [4] has proposed a terminative deforestation algorithm for �rst order and
higher order functional languages. We believe that starting with the Promotion
Theorem may give a more general and concise study on deforestation.

Acknowledgements

We gratefully acknowledge valuable discussions with Oege de Moor on helping us
understand BMF. We also wish to express our gratitude to Akihiko Takano for
introducing us his work on hylomorphisms and deforestation. Our special thanks
are to Liangwei Xu, Fer-Jan de Vries and the members of Takeichi Research Group
for a lot of suggestions on medio-types.

References

[1] R. Backhouse. An exploration of the Bird-Meertens formalism. In STOP Summer
School on Constructive Algorithmics, Abeland, 9 1989.

[2] R. Bird. Tabulation techniques for recursive programs. ACM Computing Surveys,
12(4):403{417, 1980.

[3] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Program-
ming and Calculi of Discrete Design, pages 5{42. Springer-Verlag, 1987.

[4] W. Chin. Safe fusion of functional expressions. In Proc. 1992 ACM Conference on
Lisp and Functional Programming, San Francisco, Ca., June 1992.

[5] W. Chin. Towards an automated tupling strategy. In Proc. Conference on Partial
Evaluation and Program Manipulation, pages 119{132, Copenhagen, June 1993. ACM
Press.

[6] N.H. Cohen. Eliminating redundant recursive calls. ACM Transaction on Program-
ming Languages and Systems, 5(3):265{299, July 1983.

[7] O. de Moor and R.S. Bird. Solving optimization problems with catamorphisms. In
Mathematics of Program Construction (LNCS 669). Springer-Verlag, 1992.

[8] L. Fegaras, T. Sheard, and T.Zhou. Improving programs which recurse over multiple
inductive structures. Technical Report OGI, Tech-report 94-005, Dept. of Computer
Science and Engineering, Oregon Graduate Institution of Science and Technology,
1994.

[9] M. Fokkinga. A gentle introduction to category theory { the calculational approach
{. Technical Report Lecture Notes, Dept. INF, University of Twente, Netherlands,
September 1992.

Making Recursions Manipulable by Constructing Medio-types 19

[10] A. Gill, J. Launchbury, and S.P. Jones. A short cut to deforestation. In Proc. Confer-
ence on Functional Programming Languages and Computer Architecture, pages 223{
232, Copenhagen, June 1993.

[11] T. Hagino. Category Theoretic Approach to Data Types. Ph.D thesis, University of
Edinburgh, 1987.

[12] Z. Hu, H. Iwasaki, and M. Takeichi. Catamorphism-based transformation of func-
tional programs. Technique report METR 94{06, Department of Mathematical En-
gineering and Information Physics, University of Tokyo, June 1994.

[13] J. Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science,
Utrecht University, 1993.

[14] G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut, editor,
Mathematics of Program Construction, pages 335{347. Springer-Verlag, 1989.

[15] G. Malcolm. Data structures and program transformation. Science of Computer
Programming, (14):255{279, August 1990.

[16] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413{424, 1992.

[17] E. Meijer. Calculating Compilers. PhD thesis, University of Nijmegen, Toernooiveld,
Nijmegen, The Netherlands, 1992.

[18] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proc. Conference on Functional Programming
Languages and Computer Architecture (LNCS 523), pages 124{144, Cambridge, Mas-
sachusetts, August 1991.

[19] T. Sheard and L. Fegaras. A fold for all seasons. In Proc. Conference on Functional
Programming Languages and Computer Architecture, pages 233{242, Copenhagen,
June 1993.

[20] M.H. Sorensen. A grammar-based data-ow analysis to stop deforestation. In Collo-
quium on Algebra in Trees and Programming, Edinburgh, Scotland, April 1994.

[21] A. Takano. Generalized partial computation for a lazy functional language. In
Proc. PEPM '91, pages 1{12, New Haven, USA, June 1991. ACM Press.

[22] M. Takeichi. Partial parametrization eliminates multiple traversals of data structures.
Acta Informatica, 24:57{77, 1987.

[23] M. Takeichi. Evaluation partial order and synchronization mechanisms in parallel
functional programs. In 40th IFIP WG2.1 Meeting Record 629, pages 1{12, 1989.

[24] M. Takeichi. Partial evaluation by memoising functions. Unpublished note, 1994.

[25] P. Wadler. Deforestation: Transforming programs to eliminate trees. In Proc. of
ESOP (LNCS 300), pages 344{358, 1988.

