
Promotional Transformation on Monadic Programs

Zhenjiang Hu � Hideya Iwasaki y Masato Takeichi z

1 Introduction

Monads, proposed by Moggi [16] of their use in structuring denotational descrip-
tions and then popularized by Wadler[21], are becoming an increasingly important
tool for structural functional programming[8, 10, 11]. The reason is that monads
provide a uniform framework for describing a wide range of programming language
features including, for example, state, I/O, continuations, exceptions, parsing and
non-determinism, without leaving the framework of a purely functional language.

Programs using monads, which will be called monadic programs hereafter, can
be structured once again over data type for facilitating program transformation
[5, 9, 15]. It is known that each data type comes equipped with a catamorphism[13,
14] (i.e., a generalized fold[18]) which satis�es several laws that are very useful for
program transformation. Fokkinga[5] derived a su�cient condition under which
there is also a kind of so-called monadic catamorphism which satisfy similar laws
and can thus be used for transformation of monadic programs.

Apart from the theoretical study, very recently, Meijer and Jeuring[15] dis-
cussed the simultaneous use of catamorphisms and monads in practical functional
programming. They convincingly demonstrated through many examples that by
programming in this style resulting programs are of an astonishing clarity and
conciseness.

Categorically speaking, monadic catamorphisms are the lifting of normal cata-
morphisms to the Kleisli category[5]. This is also the approach taken in the Alge-
braic Design Language (ADL) [9]. Despite its mathematical elegance, Fokkinga's
theory contains an assumption on monad that is not valid for several known mon-
ads, in particular it is not valid for the state monad. Therefore, for these monads,
the whole reasoning of Fokkinga's doesn't make sense (see the conclusion in [5]).

Meijer and Jeuring[15] solved this problem informally in their case study of
deriving an e�cient abstract G-machine from an initial naive monadic program
related to the state monad; they de�ned their speci�c monadic catamorphism in
terms of a normal catamorphism and found some transformation rules for the
calculation of monadic programs based on the fusion laws (i.e., promotion theorem)
for the normal catamorphism. However, a general study on direct transformation
of monadic catamorphisms was not given.

� Department of Information Engineering, Graduate School of Engineering, The University of
Tokyo (hu@ipl.t.u-tokyo.ac.jp) .
y Educational Computer Centre, The University of Tokyo (iwasaki@rds.ecc.u-tokyo.ac.jp) .
z Department of Mathematical Engineering and Information Physics, Faculty of Engineering,
The University of Tokyo (takeichi@u-tokyo.ac.jp) .

1 June 1995, METR 95-05

2 Technical Report METR 95-05

In this paper, we propose a new theory on monadic catamorphism by moving
Fokkinga's assumption on the monad to the condition of a map between monadic
algebras so that our theory is valid for arbitrary monads including, for example, the
state monad that is not allowed in Fokkinga's theory. Our theory covers Fokkinga's
as a special case. Moreover, Meijer and Jeuring's informal transformation rules
of monadic programs in their case study is actually an instance of our general
promotion theorem.

The rest of this paper is organized as follows. We review brie
y some basic
concepts on program calculation in Section 2 and the de�nition of monads in Section
3. To help readers be familiar with monadic programming and understand the
motivation of the promotional transformation on monadic programs, we give a
simple example in Section 4. In Section 5, we propose our construction of the
category of monadic F -algebras, give the de�nition of monadic catamorphisms, and
present the promotion theorem for the transformation of monadic catamorphisms.
An example of an instance of our theory for calculating G-machine is given in
Section 6. Some discussions are given in Section 7.

2 Preliminaries for Program Calculation

In this section, we brie
y review the previous work in the program calculation[1,
3, 4, 6, 7, 12, 13, 14] and explain some basic facts which provide theoretic basis
of our method. In this paper, our default category C has as objects sets, has
as morphisms continuous functions, and has as composition of general functional
composition �.

2.1 Functors

Endofunctors on category C (functors from C to C) are used to capture the sig-
natures of data types. In this paper, we assume that all data types are de�ned by
endofunctors which are built up from I (identity functor), !a (constant functor),
� (product) and + (separated sum). Such endofunctors are known as polynomial

functors. We follow the de�nitions of product, separated sum functors, and related
combinators as in [19].

De�nition 1 (Product) The productX�Y of two typesX and Y and its operation
to functions are de�ned as:

X � Y = f(x; y)jx 2 X; y 2 Y g
(f � g) (x; y) = (f x; g y)

Following combinators(left/right projections and split 4) are related to the prod-
uct functor:

exl (x; y) = x

exr (x; y) = y

(f 4 g) x = (f x; g x)

2

Promotional Transformation on Monadic Programs 3

De�nition 2 (Separated Sum) The product X + Y of two types X and Y and its
operation to functions are de�ned as:

X + Y = f0g �X [f1g � Y

(f + g) (0; x) = (0; f x)
(f + g) (1; y) = (1; g y)

Following combinators(left/right injections and junc 5) are related to the sepa-
rated sum functor:

inl x = (0; x)
inr y = (1; y)
(f 5 g) (0; x) = f x
(f 5 g) (1; y) = g y

2

2.2 Categories of Functor Algebras

Let C be a category and F be an endofunctor on C.

De�nition 3 (F -algebra) An F -algebra is a pair (X;�), where X is an object in
C, called the carrier of the algebra, and � is a morphism from object F X to object
X denoted by � :: F X ! X, called the operation of the algebra.

2

De�nition 4 (F -homomorphism) Given are two F -algebras (X;�) and (Y;). The
F -homomorphism from (X;�) to (Y;) is a morphism h from object X to object
Y in category C satisfying h � � = � Fh.

2

De�nition 5 (Category of F -algebras) The category of F -algebras has as its ob-
jects the F -algebras and has as its morphisms all F -homomorphisms between F -
algebras. Composition in the category of F -algebra is taken from C, and so are
the identities.

2

It is known that an initial object in the category of F -algebras exists provided
F is a polynomial functors[12]. The representative we �x for the initial algebra is
denoted by �F . Let (T; inF) = �F , we call inF :: F T ! T the constructor of the
initial algebra. Since the algebra (T; inF) is initial in the category of F -algebras,
for every F -algebra (X; �) there exits precisely a single f :: T ! X such that

f � inF = � � F f

We denote the unique solution of f of the above equation by ([�]) F . The F -
homomorphism ([�]) F is called F -catamorphism. Initiality of (T; inF) is fully cap-
tured by the law:

f = ([�]) F � f � inF = � � F f

If the functor F is clear from the context, we omit the subscript F in ([�]) F and
inF . Catamorphisms play an important role in program transformation (program
calculation) in that they satisfy a number of nice calculational properties of which
promotion is of greatest important:

4 Technical Report METR 95-05

Theorem 1 (Promotion)

f � � = � F f) f � ([�]) = ([])

2

Promotion theorem gives the condition that has to be satis�ed in order to \pro-
mote" a function into a catamorphism to obtain a new catamorphism.

2.3 Data Type Theory

Data type can be de�ned as an initial algebra. For example, the data type of cons
lists with elements of type a, usually given by the equation

L a = Nil j Cons (a; L a);

is de�ned as the initial object (L a;Nil 5 Cons) of the category of FL-algebras,
where FL is the endofunctor de�ned by

FL = !1 + !a� I;

in which 1 stands for some distinguished one-element set. As another example, the
data type of binary trees, usually declared by

Tree a = Leaf a j Node (Tree a; Tree a);

is the initial algebra (Tree a; Leaf 5 Node) of the category of FT -algebras, where
FT is the endofunctor de�ned by

FT = !a + I � I:

3 Monad

Wadler[20] de�nes a monad as a unary type constructor M together with two
functions result and bind whose types are given by:

result :: a!M a

bind :: M a! (a!M b)!M b

In addition, these two functions are required to satisfy a number of laws. The
left-unit law and right-unit law say how to remove occurrences of result from an
expression.

result a `bind` k = k a

m `bind` result = m

Furthermore, bind has to be associative.
For instance, the exception monad used to model programs with exception is

de�ned by the type constructor Maybe

Maybe a = Just a j Nothing

with the two functions result and bind de�ned by

result a = Just a

Nothing `bind` f = Nothing

Just a `bind` f = f a:

Promotional Transformation on Monadic Programs 5

An intersting use of monads is to model programs that make use of an internal
state. Computation of this kind can be represented by function of type s! (s; a)
(often referred to as state transformer) mapping an initial state to a pair containing
�nal state and the result. This state transformer can be de�ned as the monad
State s:

State s a = s! (s; a)

with the two functions result and bind de�ned by

result a = �s! (s; a)
m `bind` f = �s! let (s0; a) = m s in f a s0:

De�nition 6 (M-monadic Function) Let M be a monad. A function is said to be
M -monadic if it has type a!M b for some types a and b.

2

If M is clear from the context, we may say monadic function instead of M -
monadic function. The well known Kleisli category has as objects types and has
as morphisms M-monadic functions, which will be very important for our later
discussion.

4 Monadic Programming

To help understanding the use of monads in programming and the motivation of
promotional transformation on monadic programs, consider the following simple
problem. Given a tree whose leaves have the type of string indicating their names
and a list associating names with values, we are asked to sum up all leaves after
replacing every leaf with its associated value. If there is a leaf whose associated
value does not exist in the associated list, an error should be returned.

We can solve the problem by de�ning a function st having the type of

st :: Tree String ! [(String; V alue)]!Maybe (Tree V alue):

Programming st usually requires us to carry the association list all the way and
pay much attention on an error happening. If we use monads in programming, we
could embed this requirement in the de�nition of the two functions related to a
monad, namely result and bind. So we de�ne a monad RM r as follows.

RM r x = r!Maybe x

result x = � ! Just x
m `bind` f = �r ! m r `bind` �a! f a r

zero = � ! Nothing

The monad RM r is in fact a composition of two standard monads the reader

monad and the exception monad, and so the de�nition of result and bind can be
derived from those of the two standard monads by means of composing monads[8].

Using the monad RM r, we can rewrite the type of st to

st :: Tree String ! RM [(String; V alue)] (Tree V alue)

which reads that st takes a data of type Tree String and yields a result of type
Tree V alue through the computation of monad RM [(String; V alue)].

6 Technical Report METR 95-05

In order to de�ne st, we need an auxiliary function

lookup :: String ! RM [(String; V alue)] V alue

which returns zero if the given name has no associated value and return result � v
if the name has associated value v.

Now we can de�ne st with two functions: subst for replacing each leaf with its
associated value and sumtr for summing up the replaced tree. Unlike programming
without monads, we do not need to pay much attention to the error happening and
do not need to carry explicitly the association list all the way.

st t = subst t `bind` �t0 ! result (sumtr t0)

subst :: Tree String ! RM [(String; V alue)] (Tree V alue)
subst (Leaf a) = lookup a `bind` �b! result(Leaf b)
subst (Node(l; r)) = subst l `bind`�l0 ! subst r `bind`�r0 !

result (Node(l0; r0))

sumtr = Tree V alue! V alue
sumtr = ([id; (+)])

One problem with monadic programs is that some intermediate result might be
produced and then be consumed, resulting in an ine�cient program. Consider the
de�nition of st. It has two parts composed together by bind operator, with subst t
produced a whole intermediate tree which then consumed by result � sumtr. Can
we fuse them together to make it e�cient?

Fokkinga[5] tried solving this problem by structuring monadic programs as
monadic catamorphisms for which there is a general promotion rule for fusing
monadic programs. Though being applicable to the example in this Section, his
theory contains an assumption on monads that is not valid for manipulating many
monadic programs one of which can be seen in Section 6. In this paper, we aims
to give a more general theory for fusing monadic programs.

5 Monadic Catamorphisms

We aim to de�ne monadic catamorphisms and propose general transformation rules.
Before doing so, let's recall how the normal catamorphism is de�ned. First of all,
we have the base category C. We then build the category of F -algebras upon C.
After that, we de�ne catamorphisms as homomorphisms from the initial F -algebra
to another F -algebra. In this section, we shall follow this train of thought to de�ne
monadic catamorphisms.

5.1 The Base Category for Monadic Catamorphisms

Let F be an endofunctor on C, and let (T; in) be the initial F -algebra. Informally,
a so-called monadic catamorphism[5, 15], denoted by h[�]i , should act on monadic

functions:
� :: F X !M X

h[�]i :: T !M X

Promotional Transformation on Monadic Programs 7

Now care should be taken of its typing. Comparing typing with the normal cata-
morphism:

� :: F X ! X

([�]) :: T ! X
:

One may notice that the type of � is di�erent.
Now we turn to give the de�nition of our base category whose morphisms are

monadic functions.

De�nition 7 (Base Category CM) Let M be a monad with bind and result oper-
ations. The base category for monadic catamorphisms, denoted as CM , is de�ned
as a Kleisli category[2]:

� whose objects are sets;

� whose morphisms are monadic functions, i.e., given two objects X and Y ,
the morphism from X to Y is the monadic function with type X !M Y ;

� whose associative composition operator is @, de�ned by

f@g = �x! g x `bind` f ;

� whose identity is the monadic function result.

2

Notice the di�erence between morphisms and monadic functions in CM . The
monadic function of type X !M Y denotes a morphism from object X to object
Y instead of a morphism from X to M Y . To make this di�erence clear, we may
use :: for typing of functions and and : for mapping of morphisms in what follows.

5.2 Adjunction between C and CM

Recall that our default category C has as objects sets and has as morphisms func-
tions from one type to another. Now, we know that that CM has as objects sets
but has as morphisms monadic functions. What is the relationship between them?

Barr and Wells[2] present an adjunction between C and CM . The two functors
are

�M : C ! CM

XM = X

fM = result � f

U : CM ! C

U X = M X
U f = �m! m `bind` f

:: M X !M Y whenever f :: X !M Y

Thus �M raise the target of a function from Y to M Y , and U \rebalanced" this
by further raising the source of a monadic function from X to M X. It is trivial
to verify the adjunction property:

f = Ug � result � id @ fM = g:

The adjunction between C and CM provides us means to discuss properties of
CM in terms of C.

8 Technical Report METR 95-05

5.3 Category of Monadic F -Algebras

In this section, we shall give the de�nition of the monadic algebra and show how to
construct a category with monadic algebras as objects. In what follows, we assume
that F is an endofunctor from C to C, and that (T; in) is the initial F -algebra.

De�nition 8 (Monadic F -algebra) A monadic F -algebra is a pair (X;�), where
X is an object in CM and � is a monadic function denoting a morphism in CM

from object F X to X.

2

For example, (T; result � in) is a monadic F -algebra. Note that in the above
de�nition we can apply F on an object of category CM because we know C and
CM have the same objects.

We are going to construct a category whose objects are monadic F -algebras and
whose morphisms are structure-preserving maps between monadic F -algebras. To
this end, we �rst de�ne a derivation of F , denoted by F �, inducting over the con-
struction of functor F . F � maps a monadic function to another monadic function,
i.e., F � :: (X !M Y)! (F X !M (F Y)).

De�nition 9 (F �)

F = F1 + F2) F � f = F �
1 f + F �

2 f
F = F1 � F2) F � f (x1; x2) = F �

1 f x1 `bind` �y1 !
F �
2 f x2 `bind` �y2 !
result (y1; y2)

F = I) F � f = f

F =!a) F � f = result

2

Note the de�nition of F � in case F = F1�F2. It determines a computing order
from F � f x1 to F � f x2, which is not a necessary requirement. We may change
this order to give another proper de�nition of F �. The F � has two important
properties:

� Identity property: F � result = result

� Separable property: F � f = dF � F f , where dF is de�ned as follows.

F = F1 + F2) dF (x1 + x2) = dF x1 + dF x2
F = F1 � F2) dF (x1; x2) = x1 `bind` �y1 !

x2 `bind` �y2 !
result (y1; y2)

F = I) dF x = x

F =!a) dF x = result x

which are easy to be veri�ed.
It should be noted that we do not require F � be a functor satisfying F �(f@g) =

F �f@F �g, which is much di�erent from Fokkinga's approach[5]. Fokkinga's as-
sumption of F � being a functor makes his theory not valid for several known mon-
ads such as state monads, I/O monads etc. Instead, we shift his assumption on the
monad to the condition of a structure-preserving map (see De�nition 10 below) so
that our theory makes sense for arbitrary monad.

Promotional Transformation on Monadic Programs 9

Example 1 (F �

T
) Consider the functor FT =!a+ I � I de�ned in Section 2.3, and

we can calculate F �
T
as follows.

F �
T
f = (!a)� f + (I � I)� f
= result+ �(x1; x2)!

I� f x1 `bind` �y1 !
I� f x2 `bind` �y2 !
result (y1; y2)

= result+ �(x1; x2)!
f x1 `bind` �y1 !
f x2 `bind` �y2 !
result (y1; y2)

2

After obtaining F �, we can de�ne a structure-preserving map between two
monadic F -algebras.

De�nition 10 (Structure-preserving Map) Given two monadic F -algebras (X;�)
and (Y;), a structure-preserving map from (X;�) to (Y;) is a morphism h from
object X to object Y in category CM satisfying

(1) h@� = @F �h

(2) F �h@F �g = F �(h@g) for any g

2

Our de�nition of structure-preserving map has an additional condition (2),
comparing with Fokkinga's. At the �rst glance, it seems that we impose more
restrictions on such map than Fokkinga. On the contrary, we have few restriction,
because Fokkinga's assumption actually requires that for any monadic functions f
and g, F �f@F �g = F �(f@g) while our additional condition only requires that for
a speci�c monadic function h and any monadic function g, F �h@F �g = F �(h@g)
holds.

We remind readers again of that a structure-preserving map h from (X;�) to
(Y;) is a monadic function with type X !M Y although it is a morphism from
X to Y in category CM . Now we are ready to construct the category of monadic
F -algebras, denoted by Alg(F; �), with respect to a monad M .

Theorem 2 (Category of Monadic F -algebras: Alg(F; �)) The category of monadic
F -algebras, denoted by Alg(F; �), is constructed as follows.

� It has as objects monadic F -algebras.

� It has as morphisms structure-preserving maps.

� The composition of morphisms is @.

� The identity morphism is result.

Proof: To prove that the above construction establishes a category, we have to
show that

(a) The result is a morphism, i.e., a structure-preserving map;

(b) Given two morphisms h1 : (X;�) ! (Y;) and h2 : (Y;) ! (Z; �), then
h2@h1 : (X; �)! (Z; �);

10 Technical Report METR 95-05

(c) The composition @ is associative;

(d) result@h = h@result = h.

Since our category is built upon CM , (c) and (d) are obviously right.

To prove (a), we have to show that result satis�es two conditions for being a
morphism, as is easily veri�ed.

To prove (b), we proceed the following two calculations to show that h2@h1
satis�es two conditions for being a morphism.

h2@h1@�
= f condition (1) for h1 being a morphism g

h2@ @F
�h1

= f condition (1) for h2 being a morphism g

�@F �h2@F
�h1

= f condition (2) for h2 being a morphism g

�@F �(h2@h1)

F �(h2@h1)@F
�g

= f condition (2) for h2 being a morphism g

F �h2@F
�h1@F

�g

= f condition (2) for h1 being a morphism g

F �h2@F
�(h1@g)

= f condition (2) for h2 being a morphism g

F �(h2@h1@g)

2

5.4 Monadic Catamorphisms

Motivated by many studies on direct construction of monadic catamorphisms [15,
17], we shall give the de�nition of monadic catamorphisms and corresponding pro-
motion theorem. Moreover, we show that the category Alg(F; �) can be extended
to Alg+(F; �) including monadic catamorphisms as morphisms.

Our de�nition of monadic catamorphisms is based on the following fact.

Proposition 3 (Monadic Catamorphism) Let (T; in) be the initial F -algebra. For
any monadic F -algebra (X; �), there exists a unique monadic function h :: T !
M X satisfying

h@(result � in) = �@F �h

Here h will be called monadic catamorphism and will be denoted by h[�]i F � .

Proof: If we can de�ne h explicitly in terms of F , in and/or �, we can say that h exists
and is uniquely determined by F , in and �, and hence the proposition is proved. To this

Promotional Transformation on Monadic Programs 11

end, we calculate the equation and �nd the explicit de�nition of h as follows.

h@(result � in) = �@F �h

� f result property g
h � in = �@F �h

� f Separable property of F � g
h � in = �@(dF � F h)

� f by the fact f@(g � h) = (f@g) � h g
h � in = (�@dF) � F h

� f uniqueness of the normal catamorphism g
h = ([�@dF])

2

Example 2 (Monadic catamorphism over tree) The subst given in Section 4 is a
monadic catamorphism over tree data structure.

subst = h[�1; �2]i F�
T

�1 a = lookup a `bind` �b! result(Leaf b)
�2 (l; r) = result (Node (l; r))

If F � is clear from the context, we may omit the subscript F � in h[�]i F � .

2

Our promotion theorem for manipulating monadic catamorphisms is as follows.

Theorem 4 (Monadic Promotion) If

(1) h@� = @F �h
(2) F � h @ F � g = F �(h@g) for any morphism g

Then
h@h[�]i = h[]i

Proof:
h@h[�]i = h[]i

� f Proposition 3 g

h@h[�]i@(result � in) = @F �(h@h[�]i)
� f Assumption (2) g

h@h[�]i@(result � in) = @F �h@F �h[�]i)
� f Proposition 3 g

h@�@F �h[�]i = @F �h@F �h[�]i)
(f trivial g

h@� = @F �h

2

Let's compare our promotion theorem with Fokkinga`s [5] again. If the monad
we deal with satis�es Fokkinga's assumption, our de�nition of F � becomes a functor
from CM to CM and so the second promotable condition in Theorem 4 can be
removed since it is always true. Thus, Fokkinga's promotion theorem is derived. In
one word, our theorem covers Fokkinga's. However, our theorem has no assumption
on monads and is applicable to all monads including, for example, the state monad
that is ruled out by Fokkinga's theory. The idea behind our method is to shift

12 Technical Report METR 95-05

Fokkinga's assumption to a condition of promoting a monadic function h to a
monadic catamorphism.

Why is our promotion theorem able to be applied to a wider class of monadic
functions than Fokkinga's? Recall that Fokkinga's assumption which for any
monadic functions h and g, F �h@F �g = F �(h@g) must hold is one implicit neces-
sary condition in his promotion theorem. We believe that the h is not necessary
to range over all functions. In practical program calculation, h is usually given
and asked to be promoted into a monadic catamorphism. Therefore, we, as in our
promotion theorem, only requires that for a speci�c monadic function h and any
monadic function g, F �h@F �g = F �(h@g).

Example 3 (Promotional Transformation on st) Recall the de�nition of st in Sec-
tion 4:

st t = subst t `bind` �t0 ! result (sumtr t0):

We know, as in Example 2, that subst is a monadic catamorphism. So we can
rewrite st to the following.

st = (result � sumtr)@h[�1 5 �2]i F�
T

It is easy to verify that F �
T
(f@g) = F �

T
f@F �

T
g for any monadic functions f and g.

So the condition (2) in the Theorem 4 is always true. Therefore, we only need to
�nd 1 5 2 satisfying the condition (1) in order to promote result � sumtr into
the monadic catamorphism h[�1 5 �2]i . To this end, we do calculation as follows.

(result � sumtr)@�1
= f def. of �1 g

(result � sumtr)@(�a! lookup a `bind` �b! result (Leaf b))
= f def. of @ g

(result � sumtr)@(result � Leaf)@lookup
= f associativity of @, unity of result g

(result � sumtr � Leaf)@lookup
= f def. of sumtr g

result@lookup
= f F1 =!a, F

�

1 f = result g

result@lookup@F �
1 (result � sumtr)

And
(result � sumtr)@�2

= f def. of �2 g

(result � sumtr)@�(l; r)! result (Node (l; r))
= f calculation g

(result � sumtr)@(result �Node)
= f unity of result g

result � sumtr �Node
= f def. of sumtr, F2 = I � I g

result �+ � F2(sumtr)
= f def. of F �

2 g

(result �+)@F �
2 (result � sumtr)

Promotional Transformation on Monadic Programs 13

...

...

result

O_ new

(X,phi)

<| phi |>

Alg(F,*)

Alg (F,*)+

<| |>-

Fig. 1 The extension of Alg(F; �) to Alg+(F; �)

According to Theorem 4, we get an e�cient program for st as follows.

st = h[1; 2]i
 1 = result@lookup
 2 = result �+:

This is a simple example intended to show how our promotion theorem may be
used rather than arguing the bene�t of our theorem. Fokkinga's theorem is also
applicable to this example. The example that cannot handled by Fokkinga's can
be found in Section 6.

2

Now we turn to see what is the monadic catamorphism in the framework of our
general theory Alg(F; �) which has as morphisms structural monadic functions (i.e.
structure-preserving map). We would like to show that monadic catamorphisms
can be added to Alg(F; �) to form a new category Alg+(F; �).

Theorem 5 (Alg+(F; �)) The category of Alg+(F; �) is an extension of Alg(F; �) in
the following way, as in Fig 1.

� It has as objects the objects in Alg(F; �), together with a newly added object
Onew = (T; result � in).

� It has as morphisms the morphisms in Alg(F; �), together with the morphism
h[�]i : Onew ! (X;�) for any object (X; �) in Alg(F; �) and the identity
morphism result : Onew ! Onew.

� It has the same composition operator as Alg(F; �).

14 Technical Report METR 95-05

� It has the same identity morphism as Alg(F; �).

Proof: To show that such extension really establishes a category, we have to prove
two facts.

(1) Since Alg+(F; �) is required to have the same composition operator and the
same identity morphism as Alg(F; �), we have to show that the newly intro-
duced object and morphisms are compatible with those in Alg(F; �), i.e., the
new object should be a monadic F -algebra and the new morphisms should
be structure-preserving maps between monadic F algebras.

(2) Composition is closed in Alg+(F; �), i.e., given any two morphisms h1 :
(X;�) ! (Y;) and h2 : (Y;) ! (Z; �), then there must exist a morphism
h : (X;�)! (Z; �).

If we can prove (1) and (2), we can say that Alg+(F; �) is an extended category
of Alg(F; �).

We prove (1) �rst. It is easy to verify that Onew is a monadic F -algebra and that
result is a morphism from Onew to Onew. Now we prove that for any object (X;�)
in Alg(F; �), h[�]i is a morphism from Onew to (X;�). Equivalently, we prove that
h[�]i is a structure-preserving map satisfying two conditions in De�nition 10. The
�rst condition is obviously satis�ed from Proposition 3. For the second condition:

F �h[�]i@F �g = F �(h[�]i@g) for any morphism g;

since the only possibility of morphism g is the identity morphism (i.e., result)
in Alg+(F; �), we can replace g with result in the equation and verify that this
condition is satis�ed.

For (2), since Alg(F; �) is a category, it is enough to prove that the composition
always exists of two morphisms one of which is a newly introduced one. This is
true because there exists a morphism Onew to every object of Alg+(F; �).

2

Obviously, Onew is an initial object in Alg+(F; �). We thus obtain, in another
way, our general promotion rule (Theorem 4) for monadic catamorphisms. It is
worth nothing that in Alg(F; �) we also have an object (T; result � in). However
whether this object is an initial object of Alg(F; �) or not depends on the monad
over which Alg(F; �) is de�ned. If Alg(F; �) is de�ned over the state monad, this
object is not an initial object since there exist some objects to which no morphism
is from (T; result � in). To make our theory valid for arbitrary monads, we extend
Alg(F; �) introducing the object Onew. Although the two objects are the same, the
morphisms starting from this object and the morphisms starting from Onew are
di�erent. It is the latter morphisms (i.e., monadic catamorphisms) that we have
more interest in during program transformation.

6 An Example

In this section, we adopt the impressive example, provided byMeijer and Jeuring[15],
that calculates e�cient G-machine. We intend to show that the four promotable
conditions, informally provided in [15] and acted as the kernel strategy in their
calculation, are just one instance of our promotion theorem. We will not address
the detail calculation already done in [15] and only explain our main idea.

Promotional Transformation on Monadic Programs 15

6.1 G-Machine

In the de�nition of G-machine, a state monad is used. Sharing and graph manipu-
lation that goes on in a real graph reduction implementation can be modeled using
the state monad whose state is a graph and whose computation result is a pointer
pointing to a node of the graph. An naive G-machine evaluates an expression e by
�rst building a graph for expression e and then evaluating resulting graph:

machine :: [Pointer]! Expr ! State Graph Pointer

machine ps e = (eval@(build ps)) e

Evaluating an expression thus is rather ine�cient: function build ps builds a com-
plete graph, which is subsequently consumed by function eval.

Since the monadic programmachine is de�ned over the state monad, Fokkinga's
theory cannot be used to calculate it to an e�cient one while our theory can.

In fact, Meijer and Jeuring [15] has shown that build ps can be described as
a monadic catamorphism over Expr, but they de�ned it undirectly in terms of a
normal catamorphism in order that they can �nd transformation rules to promote
eval into build ps to obtain e�cient monadic program.

In the following we shall demonstrate an instance of our theory for this speci�c
problem, giving the de�nition of monadic catamorphisms over Expr and proposing
the corresponding promotion theorem.

6.2 Expressing build ps by a Monadic Catamorphism over Expr

Consider a tiny �rst order language[15] in which all values are integers, and the
only operator is addition. Formal parameters are encoded by de Bruijn indices.
The expressions are elements of the data type Expr:

Expr = V ar Int variable
j Con Int constant
j Add (Expr;Expr) Addition
j App (Name;Expr) Function application

This data type can be de�ned as the initial F algebra (Expr; inE), where inE =
V ar 5 Con 5 Add 5 App, and F is an endofunctor de�ned by

F = !Int+!Int+ I � I+!Name� I:

Now we can have a derivation of F :

F � f = result 5

result 5

�(e1; e2)! f e1 `bind` �e
0
1 !

f e2 `bind` �e
0
2 !

result (e01; e
0
2) 5

�(n; es)! f es `bind` �es0 !
result (n; es0)

According to Proposition 3, a monadic catamorphism over Expr is h[�]i , de�ned

16 Technical Report METR 95-05

by

h[�1 5 �2 5 �3 5 �4]i :: Expr !MY

h[�1 5 �2 5 �3 5 �4]i (V ar v) = �1 v

h[�1 5 �2 5 �3 5 �4]i (Con c) = �2 c
h[�1 5 �2 5 �3 5 �4]i (Add (e1; e2)) = h[�1 5 �2 5 �3 5 �4]i e1 `bind` �e

0
1 !

h[�1 5 �2 5 �3 5 �4]i e2 `bind` �e
0
2 !

�3 (e
0
1; e

0
2)

h[�1 5 �2 5 �3 5 �4]i (App (n; e)) = h[�1 5 �2 5 �3 5 �4]i e `bind` �e
0 !

�4 (n; e
0)

The above monadic catamorphism over Expr is exactly the same as what Meijer
and Jeuring gave except that it is de�ned directly rather than in terms of a normal
catamorphism. In fact, build ps can be de�ned as such monadic catamorphism[15].
We omit the detail but assume that

build ps = h[�1 5 �2 5 �3 5 �4]i :

6.3 Promoting eval into build ps

Now we are faced with a monadic program eval@(build ps), and we hope to
promote eval into build ps tp obtain an e�cient one. As we know build ps =
h[�1 5 �2 5 �3 5 �4]i , we can derive the general transformation rule for this
calculation by instantiating Theorem 4.

Our rule says that eval@(build ps) = h[1 5 2 5 3 5 4]i , provided that

(a) eval@�1 = 1
(b) eval@�2 = 2
(c1) eval@�3 = �(e1; e2)! eval e1 `bind` �e

0
1 !

eval e2 `bind` �e
0
2 !

 3 (e
0
1; e

0
2)

(c2) F
� eval@F � g = F � (eval@g) for any g

(d) eval@�4 = �(n; e)! eval e `bind` �e0 ! 4 (n; e
0);

which is essentially the same as the four conditions informally provided in [15].
Note that we have (c1) and (c2) while there is only one condition in [15]. It is easy
to see that (c1) and (c2) imply Meijer and Jeuring's one condition.

Using the above rule, we can go on deriving i's and thus obtain an e�cient
monadic program for G-machine as done in [15].

7 Discussions

As noted in Section 5.3, our given F � is just one possible de�nition. Therefore, for a
given type, we have only one de�nition of endofunctor F but we may have a class of
F � and hence have a class of monadic catamorphisms. This is quite di�erent from
normal catamorphisms. But once F � is determined, the corresponding monadic
catamorphism and corresponding promotion rules are determined.

So far, we have only studied the transformation of monadic programs with
respect to one monad. How to fuse monadic programs with respect to di�erent
monads?

Promotional Transformation on Monadic Programs 17

Can we extend our work on monadic catamorphisms to its dual, say monadic
anamorphism?

Acknowledgement

We wish to thank A. Takano for his helpful discussions and numerous suggestions
on this paper.

References

[1] R. Backhouse. An exploration of the Bird-Meertens formalism. In STOP Summer
School on Constructive Algorithmics, Abeland, 9 1989.

[2] M. Barr and C. Wells, editors. Category Theory for Computing Science. Prentice
Hall, 1990.

[3] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Program-
ming and Calculi of Discrete Design, pages 5{42. Springer-Verlag, 1987.

[4] M. Fokkinga. A gentle introduction to category theory { the calculational approach
{. Technical Report Lecture Notes, Dept. INF, University of Twente, Netherlands,
September 1992.

[5] M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Technical report,
Dept. INF, University of Twente, Netherlands, June 1994.

[6] Z. Hu, H. Iwasaki, and M. Takeichi. Catamorphism-based transformation of functional
programs. Technique report METR 94{06, Department of Mathematical Engineering
and Information Physics, University of Tokyo, June 1994.

[7] J. Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science,
Utrecht University, 1993.

[8] M.P. Jones and L. Duponcheel. Composing monads. Report yaleu/dcs/rr-1004, De-
partment of Computer Science, Yale University, December 1993.

[9] R.B. Kieburtz and J. Lewis. Algebraic design language. Technical Report OGI,
Tech-report 94-002, Dept. of Computer Sceience and Engineering, Oregon Graduate
Institution of Science and Technology, 1994.

[10] D.J. King and P. Wadler. Combining monad. In Proc. Glasgow Workshop on Func-
tional Programming. Springer-Verlag, 1993.

[11] S. Liang, P. Hudak, and M.P. Jones. Monad transformers and modular interpreters.
In Proc. 22th ACM symposium on principles of programming languages, San Francisco,
1995.

[12] G. Malcolm. Data structures and program transformation. Science of Computer
Programming, (14):255{279, August 1990.

[13] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proc. Conference on Functional Programming
Languages and Computer Architecture (LNCS 523), pages 124{144, Cambridge, Mas-
sachusetts, August 1991.

[14] E. Meijer and G. Hutton. Bananas in space: Exteding fold and unfold to exponential
types. In FPCA '95, June 1995.

[15] E. Meijer and J. Jeuring. Merging monads and folds for functional programming. In
Proc. of 1st International Springschool on Advanced Functional Progamming Tech-
niques, May 1995.

[16] E. Moggi. An abstract view of programming languages. Technical Report Tech-
nique Report ECS-LSCS-90-113, LFCS, University of Edinburgh, Edingurgh, Scot-
land, 1990.

18 Technical Report METR 95-05

[17] T. Sheard. Type parametric programming with compile-time re
ection. Technical Re-
port OGI, Tech-report, Dept. of Computer Science and Engineering, Oregon Graduate
Institution of Science and Technology, June 1993.

[18] T. Sheard and L. Fegaras. A fold for all seasons. In Proc. Conference on Functional
Programming Languages and Computer Architecture, pages 233{242, Copenhagen,
June 1993.

[19] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In FPCA '95,
June 1995.

[20] P. Wadler. Comprehending monads. In Conference on Lisp and Fuctional Program-
ming, 1990.

[21] P. Wadler. The essence of functional programming. In 19'th Annual Symposium on
Principles of Programming Languages, 1992.

