
An Enumeration Algorithm for the Edge
Coloring Problem on Bipartite Graphs

Yasuko MATSUI1 and Tomomi MATSUI2

1 Tokyo Metropolitan University , Tokyo 192-03, Japan
2 University of Tokyo, Tokyo 113, Japan

METR 95{09 (OCTOBER 1995)

Abstract. In this paper, we propose an algorithm for �nding all the
edge colorings in bipartite graphs. Our algorithm requires O(m log� +
Kminfn2 +m;m log�g) time and O(m�) space, where n denotes the
number of vertices, m denotes the number of edges, � denotes the num-
ber of maximum degree, and K denotes the number of edge colorings.

1 Introduction

The �nding of all objects that satisfy a speci�ed property is a fundamental prob-
lem in combinatorics, computational geometry, and operations research. This
paper deals with the edge coloring problem in bipartite graphs. There are many
applications for the edge coloring problem. For example, scheduling problems
and timetable problems are discussed in [1, 3, 8, 14]. In this paper, we propose
an algorithm for �nding all the minimum edge colorings in bipartite graphs.

Let us consider a bipartite graph B = (U; V;E) with vertex sets U;V and
edge set E: We denote jU [V j by n, jEj by m and � denotes the maximum
degree of any vertex in U [V . In this paper, we allow a graph with parallel edges
and assume that n � m:

An edge coloring of a graph associates a color with each edge in the graph
in such a way that no two edges of the same color have a common endpoint.
A minimum edge coloring is an edge coloring which uses the fewest number of
colors as possible. The edge coloring problem �nds a minimum edge coloring. In
1916, K�onig proved the following theorem [10].

Theorem1. Let B be a bipartite graph and let � be the maximum degree of any
vertex. Then a minimum edge coloring of B uses exactly � colors.

Cole and Hopcroft proposed an algorithm for �nding a minimum edge color-
ing in a bipartite graph [2]. Their algorithm �nds a minimum edge coloring in
O(m log�) time.

Recently, we proposed an algorithm for �nding all the minimum edge color-
ings in bipartite graphs [13], which requires O(Knm) time and O(nm2) space,
where K denotes the number of minimum edge colorings. However, our new al-
gorithm is more e�cient in time bound and space complexity. Our algorithm

requires O(m log�+Kminfn2 +m;m log�g) time and O(m�) space. So, our
algorithm generates each additional edge coloring in O(minfn2 + m;m log�g)
time.

2 Algorithm

In this section, we describe the main framework of our algorithm.
First, we give some de�nitions and notations. An edge subsetM � E is called

a matching if each pair of edges in M are not incident with a common vertex. A
matching is said to cover a vertex subset W , if every vertex in W is an endpoint
of an edge in the matching. A degree of a vertex x, denoted by degree(x), is the
number of edges which are incident with x:

From Theorem 1, it is clear that a minimum edge coloring of a bipartite
graph B corresponds to a set of � matchings which is a partition of the edge
set E: In this paper, we identify a minimum edge coloring of B with a set of �
matchings. For any edge e and any minimum edge coloring C; we denoteM (C; e)
as a matching in C which contains the edge e: If B has exactly one minimum
edge coloring, we say B is uniquely edge colorable. When the graph B has two
distinct minimum edge colorings C and C 0; there exists an edge e 2 E satisfying
thatM (C; e) 6=M (C0; e): A matchingM of B is called a feasible matching, when
there exists a minimum edge coloring including M: Theorem 1 directly implies
the following lemma.

Lemma2. A matching M of B is feasible if and only if M covers every vertex
of B whose degree is equal to �:

For any edge e; F (B; e) denotes a set of all feasible matchings of B including
the edge e: For any edge e and for any minimum edge coloring C; it is clear that
M (C; e) 2 F (B; e): Given a feasible matching M of B; C(B;M) denotes the
set of all minimum edge colorings of B containing the matchingM: Clearly, the
family fC(B;M)jM 2 F(B; e)g is a partition of all minimum edge colorings of
B: When we have a feasible matching M 2 F(B; e); the problem to enumerate
all minimum edge colorings in C(B;M) is reduced to the problem to enumerate
all the minimum edge colorings in the bipartite graph B nM � (U; V;E nM):
So, we can divide the problem to enumerate all the minimum edge colorings of
B into subproblems. This idea implies the following algorithm.

Algorithm main(B)

A1: begin

A2: set C := ;

A3: �nd a minimum edge coloring Ct of B

A4: call �nd all colorings(B;Ct; C)

A5: end

2

Subprocedure �nd all colorings(B0; C0

t
; C0)

B1: begin

B2: if C0

t
is the unique minimum edge coloring of B0 then output C0 [C0

t

B3: else

B4: begin

B5: choose an edge e of B0

B6: generate all the matchings in F(B0; e)

B7: for each M 2 F (B0; e) do

B8: begin

B9: �nd a minimum edge coloring C 00 of B0 nM

B10: �nd all colorings(B0 nM;C00; C 0 [fMg)

B11: end

B12: end

B13: return

B14: end

To complete this algorithm, we must solve the following three problems.

(1) The problem to determine whether a given graph is uniquely edge
colorable or not at Line B2.
(2) The problem to choose an appropriate edge at Line B5.
(3) The problem for �nding all the matchings in F(B0; e) at Line B6.

In the rest of this paper, we discuss the above problems.

3 Uniquely edge colorable bipartite graph

In this section, we discuss the problems (1) and (2) described in the previous
section.

When a given graph B has two distinct minimum edge colorings C and C0;

there exists an edge e satisfying that M (C; e) 6=M (C 0; e): In our algorithm, we
choose such an edge e at Line B5. Since M(C; e) 6= M (C0; e); the set F(B; e)
includes at least two feasible matchings. Therefore, if we choose the edge e at
Line B5, the original enumeration problem is divided into at least two subprob-
lems. From the above discussion, we need to solve the following problem in our
algorithm.

Subproblem uniquely-colorable(B;C)
Input: a bipartite graph B and a minimum edge coloring C in B
Output: an edge e satisfying that M(C; e) 6= M (C0; e); if B has a minimum
edge coloring C 0 di�erent from C; else, say \uniquely edge colorable"

3

There are some previous studies on uniquely edge colorable graphs [9, 12]. In
our algorithm, the following theorem plays an important role.

Theorem3. A connected bipartite graph B = (U; V;E) is not uniquely edge
colorable if and only if there exist two vertices x and y (x 6= y) such that
degree(x) � 3; degree(y) � 2:

Proof. If the degree of each vertex is less than 3; then the graph B is a path or
a cycle, and so B is uniquely edge colorable. Now suppose that there exists a
vertex x such that degree(x) � 3 and the degrees of any other vertices are less
than 2: Then the graph B becomes a star and so B is uniquely edge colorable.

Next we show the inverse implication. Assume that there exist two vertices
x; y(x 6= y) such that degree(x) � 3 and degree(y) � 2: Let v be a vertex
with degree(v) = � � 3: If every vertex adjacent to v is a leaf vertex, then B

becomes a star and it is a contradiction. So there exists a vertex u adjacent to
v such that degree(u) � 2: We denote the edge connecting u and v by e: Since
degree(u) � 2; there exists an edge e0

1
6= e incident with u: Let C be a minimum

edge coloring of B: Here we denote the feasible matchingM(C; e0
1
) byM 0: Since

the degree of v is equal to �; the matching M 0 contains an edge e0
2
which is

incident with v: The property degree(v) � 3 implies that there exists an edge
e00 incident to v satisfying that e0

2
6= e00 6= e: The matching M (C; e00) is denoted

by M 00: Let eB be the graph induced by the edge set M 0 [M 00: Clearly, each
component of eB is a path or a cycle and the component including the vertex v
is not an edge. If eB is disconnected, then eB is not uniquely edge colorable and
it directly implies that the original graph B is not uniquely edge colorable. Now
consider the case that eB is connected. Then eB contains a path P connecting v
and u and including the edges e0

1
and e0

2
: The path P and the edge e forms a

cycle, which is denoted by C: Obviously, the cycle C is an alternating cycle with
respect to the feasible matching M 0: Let M� be the symmetric di�erence of C
andM 0: ThenM� is also a feasible matching of B andM� is not contained in C:
Lemma 2 directly implies that there exists a minimum edge coloring C� which
contains the feasible matching M�: Since M� 62 C; the minimum edge coloring
C� is di�erent from C and so B is not uniquely edge colorable.

�

��

�

��

�

��

�

��

�

��

H
H
H
HH

�
�
�
��

�
�

�
��

v u
e

e
0

1
e

0

2

e
00

Fig. 1. Two vertices u and v such that degree(u) � 2; degree(v) = � � 3:

The above theorem directly implies the following.

4

Corollary 4. A bipartite graph B is uniquely edge colorable if and only if B
is a matching, a cycle, a path, or a star.

From Theorem 3, it is clear that we can determine whether a given bi-
partite graph is uniquely edge colorable or not by checking the degree of ev-
ery vertex. The proof of Theorem 3 gives an idea for solving the subproblem
uniquely-colorable(B;C): When the subgraph eB de�ned in the proof is dis-

connected, we can output arbitrary edge in eB as a solution of the subproblem
uniquely-colorable(B;C): If eB is connected, we output the edge e connect-
ing the vertices u and v: So, the above procedure solves the subproblem in
O(n+�)time, when we know the degree of each vertex.

4 Finding all feasible matchings

In this section, we consider the problem to enumerate all the feasible matchings
which contain a speci�ed edge e:

Our algorithm partitions the set of feasible matchings including e into two
subsets iteratively. More precisely, given two distinct feasible matchings M and
M 0 in F (B; e); we choose an edge f 2 (M [M 0) n (M \M 0) and partition the
set F(B; e) into two subsets M = fM 00 2 F(B; e)jf 2 M 00g;M0 = fM 00 2
F(B; e)jf 62 M 00g: This partition implies that M 2 M and M 0 2 M0: Clearly,
the recursive application of the above procedure constructs a binary tree of
subproblems. By using depth �rst rule, we can �nd all the feasible matchings
without repetition. Due to solve the above subproblem, it is very natural to
consider the following subproblem.

Subproblem matching-unique (B;M; I;D)
Input: a bipartite graph B, a feasible matchingM of B and a set of edges I;D
which satisfy the conditions that M � I;M \D = ;:
Output: a feasible matching M 0 satisfying that M 0 � I;M 0 \ D = ; and
M 6=M 0; if one exists; else, say \none exists".

We can drop the conditions e 2M and e 2M 0 by setting I with e 2 I:

In the following, we describe an algorithm for solving the above subprob-
lems. From Lemma 2, we can replace the condition that M and M 0 is a feasible
matching of B with the condition thatM andM 0 cover a given vertex subsetW:

If we delete all edges in D and all vertices covered by I (and edges incident with
the vertices), the subproblem matching-unique is transformed to the following
problem.

Subproblem find-matching (B;W;M)
Input: a bipartite graph B, a vertex subset W of B and a matching M which
covers W .
Output: a matchingM 0 which di�ers from M and coversW , if one exists; else,
say \none exists"

The following theorem provides an idea for solving the subproblem find-matching,

5

Lemma5. Let B = (U; V;E) be a bipartite graph, W a vertex subset and M

a matching which covers W: There exists a matching M 0 which di�ers from M

and covers W if and only if either (1) or (2) holds.
(1) There exists an alternating cycle with respect to M:

(2) There exists an alternating path with respect toM which connects two vertices
not in W:

Proof. One direction is trivial. For the other direction, suppose that there exists a
matchingM 0 which coversW and di�ers fromM: Consider the graph B0 induced
by the edges (M [M 0) n (M \M 0): In this graph, each connected component is
an alternating path or an alternating cycle with respect to M: When the graph
B0 contains an alternating cycle, we have done. Consider the case that B0 has
an alternating path. Then, the terminal vertices of the path are covered by one
matching and not by another matching. If a terminal vertex is contained in W;

it contradicts our assumption that each vertex in W is covered by both M and
M 0: So, the alternating path connects two vertices not in W:

From now, we explain how to solve find-matching(B;W;M). Let G0(B;M)
be a directed graph obtained from B by directing the edges in E �M from
U to V; and the edges in M from V to U: Each directed elementary cycle in
G0(B;M) corresponds to an alternating cycle with respect to B and M: The
inverse implication also holds. The depth �rst search method �nds a directed
elementary cycle in a given directed graph(see [11]).

Next, we describe how to �nd an alternating path with respect to M which
connects two vertices not in W: Let U 00(respectively V 00) be a set of vertices
in U (respectively V) which are covered by M: A directed graph G00(B;M) is a
graph obtained from B by directing edges in E�M from U to V; the edges inM
from V to U; add the source vertex s and the edges from s to (V 00nW)[(U nU 00);
and add the sink vertex t and the edges from (V n V 00) [(U 00 nW) to t: Each
directed s-t path in G00(B;M) corresponds to an alternating path with respect
to M which connects two vertices not in W: The inverse implication also holds.
The depth �rst search method �nds a directed elementary s-t path [11].

From the above, we can solve the subproblem matching-unique in O(n+m)
time and O(n+m) space by employing the depth �rst search method [11] (where
n denotes the number of vertices and m denotes the number of edges in B).

Our algorithm generates the feasible matchings by solving a sequence of sub-
problems iteratively. When we apply the problem dividing procedure described
before, we obtain a binary tree structure of subproblems. At any inner node
(non-leaf node) of the binary tree structure, the corresponding subproblem �nds
a new matching and a given enumeration problem is divided into two subprob-
lems. At every leaf node of the binary tree structure, the corresponding sub-
problem says \none exists" and we output the current feasible matching. So, the
number of nodes of the binary tree structure is equal to 2jF(B; e)j � 1: Thus,
the total time complexity for �nding all the feasible matchings in F(B; e) is
O((n + m)jF(B; e)j); when we have one matching in F(B; e): Since we solve
the subproblems recursively, we traverses the binary tree structure by using the
depth �rst rule. So, the space requirement becomes O(n+m):

6

5 Complexity

Finally, we discuss the computational complexity and memory requirements of
our algorithm for �nding all the minimum edge colorings.

At Line A3 of the algorithm main, we employ Cole and Hopcroft's method [2]
and �nd a minimum edge coloring in O(m log�) time. In Section 3, we proposed
a method to choose an edge e at Line B5 such that F(B0; e) has at least two
feasible matchings. Thus, the original enumeration problem is divided into at
least two subproblems at Line B7. The algorithm main calls the subprocedure
�nd all colorings recursively and generates a tree structures of the subproce-
dures. At every leaf node of the tree structure, we output a minimum edge
coloring. At any inner node, we divide a given enumeration problem into at least
two subproblems. Thus, the number of inner nodes of the tree structure is less
than the number of minimum edge colorings in the original graph. So, the al-
gorithm main calls the subprocedure �nd all colorings at most 2K � 1 times,
where K denotes the number of minimum edge colorings in the original graph.
The computational time required at Lines B1-B5,B7,B8,B10-B14 is bounded
by O(m): At Line B6, we can generate all the feasible matchings in F (B0; e) in
O(mjF(B0; e)j) time. Clearly, the subprocedure �nd all colorings(B0; C0

t
; C) calls

the subprocedure �nd all colorings jF(B0; e)j times at Line B10. Thus, the total
time required at Line B6 is bounded by O(mK): From the above, the total com-
putational e�ort required at Lines B1-B8,B10-B14 is bounded by O(mK): At
Line B9, we need to �nd a new coloring of the graph B0 nM: If we employ Cole
and Hopcroft's method, it requires O(m log�) time. However, we have an edge
coloring C 0

t
of B0: Then the set fM 0 nM :M 0 2 C 0

t
g is an edge coloring of B0 nM

using �0 colors where �0 is the maximum degree of any vertex in B0: SinceM is
a feasible matching of B0; the maximum degree of any vertex in B0 nM is �0�1:
If we employ K�onig's color
ipping method [10], we can �nd an edge coloring
of B0 nM from C 0

t
in O(n2 +m) time. Thus, the time complexity of Line B9 is

bounded by O(minfn2+m;m log�g): From the above, the total time complexity
of the algorithm main is bounded by O(m log�+Kminfn2 +m;m log�g):

At last, we discuss the space requirement. If we generate all the feasible
matchings in F(B0; e) at Line B6, then we need a huge amount of memory
space, since F(B0; e) contains exponential number of matchings in the worst
case. However, we can reduce the space requirement easily. At Line B6, we ex-
ecute the matching enumeration algorithm proposed in Section 2 and at each
time instance when an additional matching is obtained, we give a pause to
the matching enumeration algorithm and execute the loop B8-B11. Since the
matching enumeration algorithm requires O(m) space, the space complexity of
the subprocedure �nd all colorings is bounded by O(m): Clearly, the height of
the tree structure of the subprocedures generated by the algorithm main is less
than or equal to �: Since the algorithm main traverses the tree structure by
using the depth �rst rule, the total memory requirement is bounded by O(m�):

From the above discussions, our algorithm requires O(m log�+Kminfn2+
m;m log�g) time and O(m�) space. The bottleneck of the time complexity
is Line B9. If we have an O(T) time algorithm for �nding an edge coloring

7

using � colors (i.e., a minimum coloring) of a bipartite graph B from an edge
coloring using �+ 1 colors, the time complexity of our algorithm is reduced to
O(m log�+K(m+ T)) time.

References

1. Bondy,J.A., Murty,U.S.R.: Graph theory with applications. North-Holland (1976)
2. Cole,R., Hopcroft,J.: On Edge Coloring Bipartite Graphs. SIAM J.Comput. 11

(1982) 540-546
3. Dempster,M.A.H.: Two algorithms for the time-table problem, Combinatorial Math-

ematics and its Applications(ed. D.J.A.Welsh). Academic Press New York (1971)
63-85

4. Fukuda,K., Matsui,T.: Finding All the MinimumCost perfect Matchings in bipartite
Graphs. Networks 22 (1992) 461-468

5. Fukuda,K., Matsui,T.: Finding All the Perfect Matchings in Bipartite Graphs. Appl.
Math. Lett. 7 1 (1994) 15-18

6. Gabow,H.N.: Using Euler Partitions to Edge Color Bipartite Multigraphs. Informa-
tion J. Comput. and Information Sciences 5 (1976) 345-355

7. Gabow,H.N., Kariv,O.: Algorithms for Edge Coloring Bipartite Graphs and Multi-
graphs. SIAM J. Comput. 11 (1982) 117-129

8. Gonzalez,T., Sahni,S.: Open Shop Scheduling to Minimize Finish Time. J. ACM.
23 (1976) 665-679

9. Greenwell,D.L., Kronk,H.V.: Uniquely Line Colorable Graphs. Canad. Math. Bull.
16 (1973) 525-529

10. K�onig,D.: �Uber Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlhere. Math. Ann. 77 (1916) 453-465

11. Tarjan,R.E.: Depth-�rst search and linear graph algorithms. SIAM J. Comput. 1
(1972) 146-160

12. Thomason,A.G.: Hamiltonian Cycles and Uniquely Edge Colourable Graphs. Ann.
Discrete Math. 3 (1978) 259-268

13. Yoshida,Matsui.Y., Matsui,T.: Finding All the Edge Colorings in Bipartite Graphs.
T.IEE. Japan 114-C 4 (1994) 444-449 (in Japanese)

14. de Werra,D.: On some combinatorial problems arising in scheduling. INFOR. 8
(1970) 165-175

8

