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Summary. The accumulation strategy consists of generalizing a func-
tion by inclusion of an extra parameter, an accumulating parameter,
for reusing and propagating intermediate results. It has gained a wide
interest in the design of e�cient programs. In this paper, we shall
formulate accumulations as higher order catamorphisms, and propose
several general transformation rules for calculating accumulations by
calculation-based program transformation methods. Several examples
are given for illustration.

1 Introduction

The accumulation strategy consists of generalizing a function over an algebraic
data structure by inclusion of an extra parameter, an accumulating parameter, for
reusing and propagating intermediate results. It is one of the standard optimization
techniques taught to functional programmers[10].

We are faced with two di�culties in the accumulation strategy. One is to
determine where and when to generalize the original function. By \where", we
mean what part of the function should be generalized. We may have many alterna-
tives such as generalizing a constant to a variable or generalizing an expression to a
function[21]. By \when", we mean how many steps of unfolding are needed to �nd a
suitable place for generalization, since a proper place usually comes out after several
unfoldings. One general way, known as forcing generalization, is to do generaliza-
tion in case folding cannot be done during unfold/fold transformations[3, 6, 21, 22],
although related studies remain in an ad-hoc level.

The other di�culty, surprisingly not yet receiving its worthy consideration, is
how to manipulate accumulations. We believe this more important for the following
reason. As we know, one advantage of functional programming is that it allows
greatly improved modularity. Functions can be de�ned in terms of smaller and
simpler functions which are \glued" together to give their result. So, for a rather
complicated function whose accumulation is di�cult to obtain, we may decompose
it into several simpler ones whose accumulations are easier to �nd, and then re-
compose the result.
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We are trying to overcome these di�culties and to give a systematic study on
the accumulation strategy. To this end, we require that functions be de�ned in a
structural way. This is so-called structural programming advocated by Meijer[18]
and Sheard[23] who argued that programming with a small �xed set of recur-
sive patterns derivable from type de�nitions can impose an orderly structure upon
functional programs and such structures can be exploited to facilitate program
calculation. One important recursive pattern in which we are interested is called
catamorphism, generic version of our familiar foldr on lists. Catamorphisms are
signi�cant in program calculation [4, 11, 16, 18, 23], since there exists a general
transformation rule known as Promotion Theorem.

In this paper, we shall formulate accumulations as higher order catamorphisms,
and propose several general transformation rules for calculating accumulations
(i.e., �nding and manipulating accumulations) by calculation-based (rather than
a search-based) program transformation methods. Several examples are given for
illustration.

This paper is organized as follows. We briey review some basic concepts in
Section 2. In Section 3, we formulate accumulations as higher order catamor-
phisms and demonstrate through many examples that higher order catamorphisms
can describe accumulations e�ectively. In Section 4, we propose our Generalization

Theorem for deriving accumulations. Section 5 proposes two general Accumulation

Promotion Theorems for manipulating accumulations. An example of the deriva-
tion of an e�cient algorithm for longest path problem are given in Section 6, and
some related works and conclusions are described in Section 7.

2 Preliminaries for Program Calculation

In this section, we briey review the previous work in the program calculation[1,
4, 7, 15, 16, 18, 19] and explain some basic facts which provide theoretic basis of
our method. In this paper, our default category C has as objects types, has as
morphisms continuous functions, and has as composition general functional com-
position �.

We shall denote the application of a function f to its argument a by f a, and
denote the functional composition by an in�x circle (�) as (f � g) x = f (g x). We
abbreviate the equation

f � h = g � h

to

f = g mod h:

We use the symbols like �, 
, � � � to denote in�x binary operators. These
operators can be turned into binary or unary functions by sectioning or partial
application as follows.

(�) a b = (a�) b = a� b = (�b) a
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2.1 Functors

Endofunctors on category C (functors from C to C) are used to capture the sig-
natures of data types. In this paper, we assume that all data types are de�ned by
endofunctors which are built up from I (identity functor), !a (constant functor),
� (product) and + (separated sum). Such endofunctors are known as polynomial

functors. We follow the de�nitions of product, separated sum functors, and related
combinators as in [24].

De�nition 1 (Product) The productX�Y of two typesX and Y and its operation
to functions are de�ned as:

X � Y = f(x; y)jx 2 X; y 2 Y g
(f � g) (x; y) = (f x; g y):

2

De�nition 2 (Separated Sum) The product X + Y of two types X and Y and its
operation to functions are de�ned as:

X + Y = f0g �X [ f1g � Y

(f + g) (0; x) = (0; f x)
(f + g) (1; y) = (1; g y)

One combinator that is related to the separated sum functor is 5 de�ned by

(f 5 g) (0; x) = f x

(f 5 g) (1; y) = g y:

2

2.2 Categories of Functor Algebras

Let C be a category and F be an endofunctor on C.

De�nition 3 (F -algebra) An F -algebra is a pair (X;�), where X is an object in
C, called the carrier of the algebra, and � is a morphism from object F X to object
X denoted by � :: F X ! X, called the operation of the algebra. 2

De�nition 4 (F -homomorphism) Given are two F -algebras (X;�) and (Y;  ). The
F -homomorphism from (X;�) to (Y;  ) is a morphism h from object X to object
Y satisfying h � � =  � F h. 2

De�nition 5 (Category of F -algebras) The category of F -algebras has as objects
the F -algebras and has as morphisms all F -homomorphisms between F -algebras.
Composition in the category of F -algebra is taken from C, and so are the identities.
2

It is known that the initial object in the category of F -algebras exists provided
F is a polynomial functors[16]. The representative we �x for the initial algebra is
denoted by �F . Let (T; inF ) = �F , we call inF :: F T ! T the constructor of the
initial algebra. Since the algebra (T; inF ) is initial in the category of F -algebras,
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we have for every F -algebra (X;�) there exists precisely a single f :: T ! X such
that

f � inF = � � F f:

We denote the unique solution of f in the above equation by ([�])F . The F -
homomorphism ([�])F is called F -catamorphism. Initiality of (T; inF ) is fully cap-
tured by the law:

f = ([�])F � f � inF = � � F f:

If the functor F is clear from the context, we omit the subscript F in ([�])F and
inF . Catamorphisms play an important role in program transformation (program
calculation) in that they satisfy a number of nice calculational properties of which
promotion is of greatest important:

Theorem 1 (Promotion)

f � � =  � F f mod F ([�]) ) f � ([�]) = ([ ])

2

Promotion theorem gives the condition that has to be satis�ed in order to \pro-
mote" a function into a catamorphism to obtain a new catamorphism.

2.3 Data Type Theory

Data type can be de�ned as an initial algebra. For example, the data type of cons
lists with elements of type a, usually given by the equation

L a = [ ] j a : (L a);

is de�ned as the initial algebra (L a; [ ] 5 :) in the category of FL-algebras, where
FL is the endofunctor de�ned by

FL = !1 + !a� I;

in which 1 stands for some distinguished one-element set. As another example, the
data type of binary trees, usually declared by

Tree a = Leaf a j Node (a; T ree a; Tree a);

is the initial algebra (Tree a; Leaf 5 Node) in the category of FT -algebras, where
FT is the endofunctor de�ned by

FT = !a + !a� I � I:

Central to this paper is the concept of catamorphisms, a homomorphism from
an initial algebra to another algebra as de�ned in Section 2.2. Because a data
type can be de�ned as an initial algebra, catamorphisms form an important class
of functions over the given data type. For example, a catamorphism over type L a

can be generally represented as a function ([e 5 
]) :: L a! Y , where Y is another
type, e is a function with type 1! Y , and 
 is a function with type (a; Y )! Y .
According to the de�nition of catamorphisms, we know that

([e 5 
]) � ([ ] 5 :) = (e 5 
) � FL([e 5 
]);
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which can be in-lined to our familiar recursive equation:

([e 5 
]) [ ] = e

([e 5 
]) (x : xs) = x 
 ([e 5 
]) xs

In essence, ([e 5 �]) is relabeling: it replaces every occurrence of \[ ]" with e and
every occurrence of \:" with 
 in the cons list. For example, ([0;+]) is a function
computing the sum of a cons list.

Note that we may have function f :: 1 ! X which is de�ned over 1. For
example, [ ] and e are such functions. In such case, we often regard f as a value
with type X. In other words, we may use f to represent �():f when it is clear from
the context.

3 Accumulations and Catamorphisms

An accumulation[3] is a kind of computation which proceeds over an algebraic data
structure while keeping some information in an accumulating parameter to be used
as an intermediate result. We shall borrow the word \accumulation" to refer to
the function which performs accumulating computation.

As a simple example, consider the following de�nition of isum which computes
the initial pre�x sums of a list, i.e., isum [x1; x2; � � � ; xn] 0 = [0; x1; x1+x2; � � � ; x1+
x2 + � � �+ xn].

isum [ ] d = [d]
isum (x : xs) d = d : isum xs (d+ x)

In this de�nition, the second parameter of isum is the accumulating one that keeps
partial sums for the later reuse, leading to an e�cient linear algorithm.

Now by abstracting d in both equations, we obtain

isum [ ] = �d:[d]
isum (x : xs) = �d:(d : isum xs (d+ x));

which de�nes a catamorphism ([e 5 
]) over cons lists where

e = �d:[d]
x
 p = �d:(d : p (d+ x)):

This is a higher order catamorphism in the sense that it takes a list to yield a
function. Generally, we can formulate accumulations with the use of higher order
catamorphisms as in the following proposition.

Proposition 2 (Accumulation) Let the data type T be the initial F -algebra, i.e.,
(T; in) = �F . An accumulation, which inducts over T using an accumulating
parameter of type A and yields a value of type B, can be represented by a higher
order catamorphism ([�]) :: T ! A! B where � :: F (A! B)! (A! B). 2

Some points on this proposition are worth noting. Firstly, in spite of the restric-
tions of higher order catamorphisms, such accumulations have no loss in descriptive
power. Recalling our example of isum, we can naturally rewrite it to be a higher
order catamorphism by means of abstraction.
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Secondly, there is no restrictions on the type of the accumulating parameter,
which may be either a function or a basic value. This helps to describe an ac-
cumulation concisely if a proper accumulation parameter is chosen. Consider the
function idif that computes the initial di�erences of a list, e.g. idif [5; 2; 1; 4] =
[5; 5� 2; 5� 2� 1; 5� 2� 1� 4] = [5; 3; 2;�2]. It can be de�ned e�ciently as:

idif xs = idif 0 xs id

idif 0 = ([e 5 
])
where e = �f:[ ]

x
 p = �f:(f x : p ((f x)�));

Here, id denotes the identity function. In this de�nition, a function is used as the
accumulating parameter. If we insisted on using non-function values, the algorithm
would have become quite complicated because the subtraction is not associative.

Thirdly, our accumulations is valid for any freely constructed types such as
lists, trees and so on. In fact, one of our motivations for associating higher order
catamorphisms with accumulations was to �nd a method to make downwards tree
accumulations manipulable and e�cient. Gibbons[9] proposed the problem and
tried to solve it with the aid of catamorphisms as we do here. Catamorphisms that
he referred to are �rst order ones, and after a complicated discussion certain condi-
tions are turned to be necessary for downwards tree accumulation to be expressed
as a catamorphism. As will be seen in Example 1, we can give a concise de�nition
using higher order catamorphism and make Gibbons' conditions unnecessary (see
[11] for detail).

Example 1 (Downwards tree accumulation) We shall demonstrate how to de-
scribe an accumulation over trees. We have shown that the type of binary trees
with elements of type a can be de�ned as the initial FT -algebra in Section 2.3.

Downwards tree accumulation passes information downwards, from the root
towards the leaves; each element is replaced by some functions on its ancestors.
We denote a downwards accumulation by (f;�;
)+ :: Tree a ! Tree b, which
depends on three operations f :: a ! b, (�) :: b ! a ! b and (
) :: b ! a ! b.
This function is de�ned by

(f;�;
)+ (Leaf a) = Leaf (f a)
(f;�;
)+ (Node (a; x; y))
= Node (f a; (((f a)�);�;
)+ x; (((f a)
);�;
)+ y):

For instance, (id;+;+)+ is a function which replaces each node with the sum of
all its ancestors.

Obviously, the function (f;�;
)+ cannot be speci�ed by a �rst order catamor-
phism if these three operations do not satisfy certain conditions. And looking for
such conditions may lead to a very complicated discussion as Gibbons did[9]. If we
use a higher order catamorphism, we can describe it as follows.

(f;�;
)+ t = ([l 5 n])FT t f
where
l a � = Leaf(� a)
n (b; u; v) � = Node (� b; u((� b)�); v((� b)
))
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We have demonstrated its use in calculating e�cient parallel tree algorithms in
[13]. 2

4 Derivation of Accumulations

In this section, we shall propose our Generalization Theorem for deriving an accu-
mulation from a structured speci�cation in catamorphisms.

Recall that our accumulations are sort of higher order catamorphisms. If the
speci�cation is an �rst order catamorphism, namely a catamorphism whose result
is a value instead of a function, the derivation of an accumulation can be considered
as a transformation from a �rst order catamorphism to a higher order one. The
following lemma is useful in such transformation.

Lemma 3 Let ([�])F be a �rst order catamorphism. If there exists a binary operator
� with a right identity e such that

(�) � � =  � F (�) mod F ([�])F ;

then
([�])F xs = ([ ])F xs e:

Proof:
([�])F xs

= f e is a right identity of � g

(�) (([�])F xs) e
= f Function application and composition g

((�) � ([�])F ) xs e
= f Promotion Theorem g

([ ])F xs e

2

Lemma 3 tells us that the transformation from a �rst order catamorphism to a
higher order one can be considered to �nd a suitable binary operator for relating
the original catamorphism with the newly introduced accumulating part. However,
from Lemma 3, we know only what property it should obey, not how it should be
derived. To see how to derive such a binary operator � and thus obtain  , let us
compare the both sides of the equation of

(�) � � =  � F (�) mod F ([�])F ;

and we can see that � is expected to have the form of g � F (�) so that both sides
can end with F (�). This suggests us to derive � from �, and hence calculate  ,
which leads to our Generalization Theorem.

Theorem 4 (Generalization) Let ([�])F be the given �rst order catamorphism. If
� = g � F (�) where � is a binary operator with right identity e, then

([�])F xs = ([ ])F xs e;

where  = (�) � g mod F ((�) � ([�])F ).
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Proof: According to Lemma 3, it is enough to prove that

(�) � � =  � F (�) mod F ([�])F :

This can be easily veri�ed with the composite property of functor F , i.e., F f�F g =
F (f � g). 2

In fact, the Generalization Theorem provides us a generalization procedure for
deriving accumulations. In practical program calculation the given catamorphism
is likely to have the form of ([�1 5 � � � 5 �n])F1+���+Fn .

1. Rewrite each �i in a given catamorphism ([�1 5 � � � 5 �n])F1+���+Fn to a form
of gi � Fi(�) such that � is a binary operator with a right identity e.

2. Calculate  i according to the equation

 i = (�) � gi mod Fi((�) � ([�1 5 � � � 5 �n])F1+���+Fn):

3. Group  i's to be ([ 1 5 � � � 5  n])F1+���+Fn . Obviously,

([�1 5 � � � 5 �n])F1+���+Fn xs = ([ 1 5 � � � 5  n])F1+���+Fn xs e:

For convenience, we de�ne that a parameter xj in �i(x1; :::; xm) :: T is said to
be a recursive parameter if xj has the type of T . In what follows, we would like
to use pj's instead of xj's to explicitly denote recursive parameters. One property
with recursive parameter is as follows.

Corollary 5 (Recursive parameter) Any recursive parameter p of function  i ob-
tained by the generalization procedure can be represented by (p0�) using another
function p0.

Proof: A direct result from the equation:

 i = (�) � gi mod Fi((�) � ([�1 5 � � � 5 �n])F1+���+Fn):

2

One use of this corollary can be seen in Example 2 when we derive  2.

Example 2 (isum) By way of illustration, consider the function isum again. Sup-
pose we are given the following �rst order catamorphism:

isum = ([�1 5 �2])F1+F2
where �1() = [0]

�2(x; p) = 0 : (x+) � p

where F1 =!1 and F2 =!a � I. It is an ine�cient quadratic algorithm, so we are
trying to derive an e�cient accumulation for it.

We begin by rewriting �1 and �2 to �nd g1; g2 and �. It is trivial to see that

g1 = �1

from �1 = g1 � F1(�) since F1 f = id. Now we hope to �nd g2 and � satisfying
the equation �2 = g2 � F2(�) where F2 f = id� f . This is the same to �nd g2 and
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� satisfying �2(x; p) = g2(x; (p �)). Since in the de�nition of �2 the operation on
p is (x+)�, we may de�ne � as

p� y = (y+) � p;

and we have

g2(x; p
0) = 0 : p0 x:

Note that � has the right identity 0 since p� 0 = (0+) � p = p.

Next, we turn to calculate  1 and  2.

 1 () y
= f Generalization Theorem g

((�) � g1) () y
= f Function composition g

g1()� y

= f Def. of g1 and � g

(y+) � [0]
= f Map g

[y]

 2 (x; (p�)) y
= f Generalization Theorem g

((�) � g2) (x; (p�)) y
= f Function composition g
g2(x; (p�))� y

= f Def. of g2 and � g

(y+) � (0 : (p� x))
= f Map g

y : ((y+) � (p� x))
= f Def. of � g

y : ((y+) � ((x+) � p))
= f Map and associativity of \+" g

y : (((y + x)+) � p)
= f Def. of � g

y : (p� (y + x))
= f Sectioning g

y : (p�)(y + x)

According to the second step of our procedure, it follows that

 1 () = �y:[y]
 2 (x; p

0) = �y:(y : p0 (y + x)):

Finally, according to the Generalization Theorem, we get

isum xs = ([ 1 5  2]) xs 0

which is the same as we introduced at the beginning of Section 3. 2
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The generalization procedure requires us to derive a suitable binary operator
�. But sometimes, we cannot �nd a right identity for such �. Techniquely, in this
case, we may create a virtual one as in the following example.

Example 3 (subs) Consider the function subs which accepts a cons list and yields
the set of all its subsequences:

subs [ ] = f[ ]g
subs (x : xs) = subs xs [ (x :) � subs xs;

i.e.,

subs = ([�1 5 �2])
where �1() = f[ ]g

�2(x; p) = p [ (x :) � p.

With a similar derivation as for isum, we can de�ne the binary operator for subs
as

p� y = (y :) � p:

The problem with such � is that it has no right identity. Nevertheless, we could
assume a virtual right identity � and continue the calculation. By the generalization
procedure we can have

subs xs = ([ 1;  2]) xs �
where  1 () y = f[y]g

 2 (x; p) y = p y [ (y :) � (p x).

Section 6 will show how this de�nition is used in practical program derivation.
2

The following is an often-quoted example illustrating the role of accumulation.
We shall give the derivation of such accumulation using our approach.

Example 4 (rev) Consider the rev function which reverses a list. The initial
quadratic speci�cation is

rev = ([�1 5 �2])
where �1() = [ ]

�2 (a; p) = p++[a]

According to the generalization procedure, we see that the binary operator � can
be instantiated to ++ whose right identity is [ ]. We omit other calculation but give
the �nal result:

rev xs = ([�01 5 �0
2]) xs [ ]

where �0
1 () = id

�0
2 (a; p) = p � (a :)

which is the well-known e�cient accumulation as that in [14]. 2

Sheard[23] also studied the generalization of structure programs, but he requires
the associativity of � and puts many restrictions on the structure of �0

is. On the
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contrary, we remove as many restrictions as possible in our theorem and give a
much more general but practical generalization procedure. Our method covers
Sheard's but not vice versa. For instance, our examples of the isum and the subs
can not be dealt with by Sheard's.

5 Manipulating Accumulations

In this section, we propose several general rules for manipulating accumulations.
By \manipulate accumulations" we mean the derivation of new accumulations from
the old ones.

In compositional style of programming, it is usually the case where a function
is composed with an accumulation. To �nd an accumulation for this composition,
we propose the following theorem.

Theorem 6 (Accumulation Promotion 1) Let ([�])F and ([ ])F be two accumula-
tions. If

(h�) � � =  � F (h�) mod F ([�])F

then
h � (([�])F xs) = ([ ])F xs:

Proof: This can be easily proved by specializing the Promotion Theorem in which
h is replaced by (h�). 2

Example 5 Suppose that we want to derive an accumulation algorithm for the
composition of length � rev, where length is a function computing the length of a
list. Recall that we have got the accumulation algorithm rev xs = ([�0

1
5 �0

2]) xs [ ]
in Example 4, we can thus use Theorem 6 and calculate as follows.

(length�) � �0
1

= f Def. of �0
1
g

(length�) � �():id
= f Calculation g
�():length

= f F1 f = id, de�ne  1 = �():length g
 1 � F1(length�)

(length�) � �0
2

= f Def. of �0
2
g

(length�) � (�(a; p):p � (a :))
= f Calculation g
�(a; p):length � p � (a :)

= f F2f = id � f , de�ne  2 = �(a; p):p � (a :) g

 2 � F2(length�)

Therefore, by Theorem 6, we have

(length � rev) xs = ([ 1 5  2]) xs [ ]:

2



12 Technical Report METR 96-03

Although we have successfully promoted length into rev, our derived accumu-
lation is quite unsatisfactory. The reason is that Theorem 6 does not tell anything
about manipulation on accumulating parameter, which is also very important. Our
following theorem is for this purpose.

Theorem 7 (Accumulation Promotion 2) Let ([�])F and ([ ])F be two accumula-
tions. If

(�g) � � =  � F (�g) mod F ([�])F

then
(([�])F xs) � g = ([ ])F xs

Proof: The proof is similar to that for Theorem 6 by specializing h to (�g) in the
Promotion Theorem. 2

Example 6 Consider the point of the calculation in Example 5 where we have
reached

(length � rev) xs = ([ 1 5  2]) xs [ ]:

We are going to derive �1; �2 and g based on Theorem 7 such that

(([�1 5 �2]) xs) � g = ([ 1 5  2]) xs:

Observing that
(�g) � �1 = f Theorem 7 g

 1 � F1(�g)
= f F1f = id, Def. of �1 g

�():length
= �():(id � length)
= (�length) � (�():id);

we may let g = length and �1 = �():id. To derive �2, we calculate as follows.

(�g) � �2 = f Theorem 7 g

 2 � F2(�length)
= f Def. of  2 and F2 g

(�(a; p):p � (a :)) � (id� (�length))
= �(a; p):p � length � (a :)
= f length � (x :) = (1+) � length g
�(a; p):p � (1+) � length

= (�length) � (�(a; p):p � (1+))
= f Def. of g g

(�g) � (�(a; p):p � (1+))

It is immediate that �2 = �(a; p):p � (1+). Therefore,

(length � rev) xs = ((([�1 5 �2]) xs) � length) [ ]
= ([�1 5 �2]) xs (length [ ])
= ([�1 5 �2]) xs 0

By in-lining the de�nition of catamorphisms, we get our familiar recursive de�ni-
tion:
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(length � rev) xs = h xs 0
where h [ ] y = y

h (x : xs) y = h xs (1 + y):

2

6 An Application

In this section, we explain how to apply our rules to a rather complicated example:
calculating an e�cient program for the longest subsequences paths problem. Bird[3]
proposed an impressive study on this example. We review it in order to show that
some of the Bird's explanation of where to generalize and how to proceed program
transformation can be made more systematic by program calculation in a theorem-
driven manner. In other words, we proceed the derivation by repeatedly trying to
calculate program to a form that meets the conditions of our theorems so that our
theorems become applicable.

Beginning with a simple and straightforward speci�cation of the problem in
hand, our calculational method coerces the speci�cation into an executable and
acceptably e�cient program in some given functional language such as Gofer.

6.1 Speci�cation

Our problem is to determine the length of the longest subsequence of a given se-
quence of vertices that forms a connected path in a given directed graph G. For
simplicity we suppose that G is presented through a predicate arc so that arc a b
is true just in the case that (a; b) is an arc of G from vertex a to vertex b. For
example, Figure 1 gives a graph and its representation. If the input sequence is
[C;A;B;D;A;C;D;E; B;E]. The length of the longest path sequence is 5, par-
ticular length for solutions of [C;D;A;B;E] and [A;B;C;B;E]. Our de�nition of
the problem reads:

psp = max � (length�) � (path/) � subs
where path [ ] = True

path [x] = True

path (x1 : x2 : xs) = arc x1 x2 ^ path (x2 : xs)

Here p/ is a function that takes a set and removes those elements not satisfying
predicate p.

It is important to observe that the above does describe an algorithm to solve
the problem, but it is not an e�cient one. Clearly, the algorithm is exponential in
the length of the given sequence.

6.2 Program Derivation

Our derivation of an accumulation for psp begins with �nding an accumulation for
subs, and then manipulates accumulations according to the Accumulation Promo-
tion Theorems.



14 Technical Report METR 96-03

A

B

C

DE

arc  A B
arc  A D
arc  B C
arc  B E
arc  C D
arc  C E
arc  D A
arc  D C
arc  E A
arc  E D

Fig. 1 An Example of a Graph and its Representation

Deriving an accumulation for subs

This derivation has been already given in Example 3. The result is as follows.

subs xs = ([ 1 5  2])F1+F2 xs �
where  1 () y = f[y]g

 2 (x; p) y = p y [ (y :) � (p x)

where F1 =!1 and F2 =!a� I.

Manipulating (path/) � subs

After obtaining the accumulation for subs, we step to derive an accumulation for
the composition of the function path/ with the subs based on Theorem 6.

Let k = path/. We calculate �1; �2 from  1;  2 and k based on the condition in
Theorem 6. Observing that

(k�) �  1 = (k�) � (�():�y:f[y]g)
= �():�y:(k f[y]g)
= �():�y:f[y]g
= (�():�y:f[y]g) � F1(k�)

we thus get �1:
�1 () y = f[y]g:

Now calculate �2

(k�) �  2 = (k�) � (�(x; p):�y:(p y [ (y :) � (p x)))
= �(x; p):�y:k (p y) [ k((y :) � (p x))):

Before continuing the calculation, we break to look into � (see Section 4), the right
identity of �. It should represent a vertex in the graph and satisfy � : xs = xs.
Unfortunately, such vertex does not exist. To �x this problem, we consider � as
a virtual vertex with edges going to every vertex, i.e., arc � v = True for each
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vertex v in graph G. To keep the graph's path soundness, we do not allow any
edge going from any vertex of G to �, i.e., arc v � = False. Now return to our
calculation for the underlined part. In the following, \p ! q; r" is used to denote
\if p then q else r".

k((y :) � (p x))
= f By Corollary 5 let p = (p0�), def. of k g
path / ((y :) � ((x :) � p0))

= f Map g

path / (((y :) � (x :)) � p0)
= f Def. of path and / g
arc y x! (y :) � (path / ((x :) � p0)); path / ((x :) � p0)

= f Def. of k, and the above \let" nassumption g

arc y x! (y :) � (k (p x)); k (p x)
= f � : xs = xs g

arc y x! (y 6= �! (y :) � (k (p x)); k (p x)); k (p x)
= f Property of ! g

arc y x ^ y 6= �! (y :) � (k (p x)); k (p x)

So
(k�) �  2 = �(x; p):�y:k (p y) [

(arc y x ^ y 6= �! (y :) � (k (p x)); k (p x))
= (�(x; p0):�y:(p0 y) [

(arc y x ^ y 6= �! (y :) � (p0 x); (p0 x)) � F2(k�):

Thus we get �2 de�ned as

�2 (x; p) y = (p y) [ h
where h = arc y x ^ y 6= �! (y :) � (p x); (p x).

Finally, according to Theorem 6, we obtain

((path/) � subs) xs = ([�1 5 �2]) xs �:

Promoting max � (length�) into the obtained accumulation

We continue promoting max � length� into the derived accumulation according
to the Accumulation Promotion Theorems, as we did above. We omit the detail
calculation but give the last result.

psp xs = ([�1 5 �2]) xs �
where �1 () y = y = �! 0; 1

�2 (x; p) y = max (p y) h
where h = arc y x ^ y 6= �! 1 + p x; p x

Our program

By in-lining the last derived accumulation in Gofer, we get the following program.
Note that we assign a positive number as the identi�er of each vertex, and we
assume that � has the identi�er of 0.



16 Technical Report METR 96-03

type Vertex = Int

psp :: [Vertex] -> Int

psp xs = acc xs 0

acc [] y = if y==0 then 0 else 1

acc (x:xs) y = max (acc xs y) h

where h = if ((arc y x)&&(y/=0))

then (1+acc xs x)

else (acc xs x)

arc 0 v = True

arc v 0 = False

Comparing with the initial speci�cation, we can see that substantial progress
has been made. Careful readers may have found that if the above program is
implemented naively, it still requires exponential time to give its answer. But
this is not a problem. Di�erent from the initial program, our derived program is
suitable to be made optimized by some standard techniques such as tabulation [2]
or memoisation[20]. Since these discussions are beyond the scope of this paper, we
omit it here. Alternatively, a Gofer system with embedded memoisation mechanism
[25] can give a direct e�cient implementation.

As maybe easily veri�ed, there are only O(n2) distinct values of acc requiring in
the computation of psp xs, where n = length(xs). So our �nal program brings the
running time down to O(n2) if we ignore the time for manipulating memo-table.

7 Related Work and Conclusions

Much work has been devoted to the \forcing strategy" for the derivation of an
accumulation. Pettorossi[22, 21] showed, through many examples, how to gener-
alize functions in case folding fails. All these studies are search-based program
transformation rather than our calculational based transformation.

The main contributions of our work are as follows.

� We formulate accumulations as higher order catamorphisms facilitating pro-
gram calculation.

� We have provided several general rules for calculating accumulations, i.e.,
�nding and manipulating accumulations. Each application of the rule can
be seen as a canned application of unfold/simplify/fold in the traditional
transformational programming[5]. Our calculational approach can avoid the
process of keeping track of function calls and the clever control to avoid
in�nite unfolding which always introduces substantial cost and complexity in
search-based transformation.

� Instead of ad-hoc study on accumulation strategy, our study is systematic
and some of them can be embedded in an automatic transformation system.
On the other hand, our theory is built upon category theory which is more
general. For example, our de�nition of accumulations is applicable to any
type besides lists.
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� Our study of generic theorems for higher order catamorphisms which return
functions (rather than values), we believe, is also a particular valuable avenue
to pursue since programs that deal with state are quite common and can be
handled algebraically.

Our work was greatly inspired by Bird's[3] pioneer work where he treated pro-
motion as the guide strategy for achieving e�ciency, and the parameter accumula-
tion is the method by which promotion is e�ected. We improve Bird's work in three
respects. First, we have extended his strategy from lists to any data type based
on the categorical theory of data type. Secondly, we have shown that some of the
Bird's explanation of where to generalize and how to proceed program transfor-
mation can be made more systematic by program calculation in a theorem-driven
manner. Thirdly, we provides general rules for manipulating accumulations to
obtain new ones.

Our work concerning higher order catamorphisms was much inuenced by
Fokkinga and Meijer's speci�cation of attribute grammar with catamorphisms [8].
But their interest is in speci�cation while we are interested in calculation. Another
interesting work is from Meijer[17] who proposed the following promotion theorem
for higher order catamorphisms for calculating compiler.

F (�g) a = F (f�) b) �a � g = f �  b

f � ([ ])xs = ([�])xs � g

Comparing with our Accumulation Promotion Theorems, it has too many free
parameters which make derivation di�cult. In fact, the above theorem can be
obtained from Theorem 6 and Theorem 7.

We are also related to Sheard's work [23] where he discussed to some extent
about transformation of higher order catamorphisms. But his interest is in how
to remove computations that are not amenable to his normalization algorithm. In
addition, his promotion theorem for higher order catamorphisms are not so general
as ours.

So far, we only studied the algorithms programmed in catamorphisms. How
to handle the algorithms unable to be programmed in catamorphisms? In [12],
we have shown that by using medio-type, more algorithms can be speci�ed as a
catamorphism with a type reformer. Thus our theorems in this paper are also
applicable. We shall report some results about it in the future.

We are now interested in applying our approach to the calculation of memoisa-
tion functions[20], because a memo function is no more than a special accumulation
whose accumulating parameter remembers all computed results of the application
of the speci�ed function.
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