
Cheap Tupling Transformation

Zhenjiang Hu � Hideya Iwasaki y Masato Takeichi z

Summary.

Tupling is a well-known transformation tactic to obtain new recur-
sive functions without redundant recursive calls and/or multiple traver-
sals of common data, which is achieved by grouping some recursive
functions into a tuple. Although being studied for a long time based
on fold/unfold transformation, it su�ers from the high cost of keeping
track of function calls and has to use clever control to avoid in�nite
unfolding, which prevent it from being used in a practical compiler of
functional languages. In this paper, we propose a cheap tupling based
on the theory of constructive algorithmics. We give several simple but
e�ective calculational rules, which not only can be successfully applied
to improve a lot of interesting recursive functions but also can be im-
plemented e�ciently.

KEYWORDS Program Analysis and Program Transformation
Reasoning about Language Constructs
Executable Speci�cation

1 Introduction

In functional programming, a program prog is usually expressed as compositions
of transformations over data structures while each transformation is de�ned by a
recursion Ri traversing over its input data structure, namely

prog = R1 � � � � � Rn:

This compositional style of programming allows clearer and more modular pro-
grams, but comes at a price of possibly high runtime overhead resulting mainly
from the following two categories:

� unnecessary intermediate data structures passed between the composition of
two recursions;

� Department of Information Engineering, University of Tokyo (hu@ipl.t.u-tokyo.ac.jp) .
y Department of Computer Science, Faculty of Technology, Tokyo University of Agriculture and
Technology (iwasaki@ipl.ei.tuat.ac.jp) .
z Department of Mathematical Engineering and Information Physics, Faculty of Engineering,
The University of Tokyo (takeichi@u-tokyo.ac.jp) .

1 October 1996, METR 96-08

2 Technical Report METR 96-08

� ine�ciency in a single recursion, such as redundant recursive calls, multiple
traversals of data structures, and unnecessary traversals of intermediate data
structures (see Section 2).

Although this paper is mainly concerned with elimination of the ine�ciency in the
latter case, these two kinds of ine�ciency are much related, for which there are
two known tactics, namely Fusion (or called deforestation) [Wad88, Chi92] and
Tupling [Chi93]. Fusion is to merge nested compositions of recursive functions in
order to obtain new recursions without unnecessary intermediate data structures,
while tupling is to remove redundant recursive calls and multiple traversals of the
same data structure from recursions.

Di�erent approaches are employed to formulate fusion and tupling. One, ex-
tensively studied by Chin [Chi92, Chi93], is based on the so-called fold/unfold
transformation[BD77]. It, however, su�ers from the high cost of keeping track of
function calls and has to use clever control to avoid in�nite unfolding, which pre-
vents fusion and tupling being embedded in a real practical compiler of functional
languages. To overcome this di�culty, quite a lot of studies have been devoted to
another approach called transformation in calculational form [GLJ93, SF93, TM95,
HIT96b] based on the theory of Constructive Algorithmics [Fok92]. It makes use of
the recursive structure information in some speci�c forms such as catamorphisms
(or called folds), anamorphisms (or called unfolds) and hylomorphisms and �nds
how transformation can be performed over them.

The latter approach, being less general than the former, has been successfully
applied to the fusion transformation. It is based on a quite simple Acid Rain calcu-
lational rule [TM95], an extension of the shortcut deforestation rule [GLJ93], and
can be practically employed in a real compiler of functional languages (e.g., Glas-
gow Haskell Compiler). However, so far as we know, no attempt has been made to
adapt this calculational approach to the tupling transformation for the improve-
ment of recursive functions. We believe it is worth doing for two reasons. First,
tupling and fusion are two most related transformation tactics, so they should be
studied in the same framework. In fact, the roles of tupling and fusion are comple-
mentary; fusion merges compositions of recursions into one which then should be
improved again by tupling in order to obtain a �nal e�cient program. Second, with
the same reason for the shortcut deforestation [GLJ93, TM95], tupling should be
used practically in a real compiler. So far, we haven't seen a real practical compiler
which performs tupling transformation.

In this paper, we propose the idea of cheap tupling1 in a calculational way. Our
main contributions are as follows.

� We identify the importance of the relationship between tupling transforma-
tion and structural mutual recursions (not a simple mutual recursion) in
Section 4, based on which we propose three simple but e�ective calculational
rules (Theorem 3, 7 and 9) for our cheap tupling transformation. As will be
seen, they can be applied to improve a wide class of recursions (though not

1 We call it cheap tupling after the name of shortcut deforestation.

Cheap Tupling Transformation 3

all) through the elimination of redundant recursive calls, multiple traversals
of the same data structures, and unnecessary traversals of data structures
which hasn't been noticed before.

� As discussed above, our cheap tupling follows the approach of transformation
in calculational form based on constructive algorithmics. This is in sharp
contrast to the previous study [Chi93] based on fold/unfold transformation.
Therefore, our cheap tupling preserves the advantages of transformation in
calculational form, as we have seen in the discussion of shortcut deforestation
in [TM95].

{ It can be applied to the improvement of recursions over any data struc-
tures, other than recursions over lists.

{ Each of our transformation rules is an automation of the unfold-simplify-
fold method without the intervention of explicit laws. Therefore, our
transformations are guaranteed to terminate and would be more practi-
cal for being used in a compiler.

� Our cheap tupling is suitable to coexist with the shortcut deforestation (in
calculational form). It will be seen that the combination of the two improve-
ment is direct and natural (Section 5). In contrast, the previous study on this
combination based on fold/unfold transformation [Chi95] is much more dif-
�cult because of complicated control of in�nite unfoldings in the case where
fusion and tupling are applied simultaneously.

The organization of this paper is as follows. In Section 2, we use several simple
examples to show what kind of ine�cient recursions we'd like to improve. After
giving a brief introduction of the concept of the transformation in calculational
form in Section 3, we propose three simple but e�ective rules for our cheap tupling
in Section 4. In Section 5, we give the cheap tupling strategy based our simple
rules, and see how cheap tupling can coexist with fusion transformation. Related
works and conclusions are discussed in Section 6 and 7 respectively.

2 Examples: Ine�cient Recursions

In this Section, we shall use several simple examples to show what kind of inef-
�ciency may occur in a recursion, and how an e�cient version can be derived.
As will be seen later, the e�ciency is always achieved at the cost of clarity and
conciseness compared with the original one. We would like to write our programs
concisely, but have the compiler automatically make them e�cient.

4 Technical Report METR 96-08

2.1 Multiple Traversals of Data Structures

Consider the function deepest, which �nds a list of leaves that are farthest away
from the root of a given tree, may be de�ned as follows.

deepest (Leaf a) = [a]
deepest (Node(l; r)) = deepest(l); depth(l) > depth(r)

= deepest(l) ++ deepest(r); depth(l) = depth(r)
= deepest(r); otherwise

depth (Leaf a) = 1
depth (Node(l; r)) = 1 +max (depth(l); depth(r))

The in�x binary function ++ concatenates two lists and the function max gives the
maximum of the two arguments. Function deepest uses another recursive function
depth. Being concise, this de�nition is quite ine�cient because deepest and depth
traverse over the same inputs leading to many repeated computations in calculating
the depth of subtrees. We'd like to eliminate this multiple traversal and have the
following e�cient program.

deepest 0 t = u where (u; v) = dd t

dd (Leaf a) = ([a]; 0)
dd (Node l r) = (dpl; 1 + dl); dl > dr

= (dpl ++dpr;1 + dr); dl = dr

= (dpr;1 + dr); otherwise
where (dpl; dl) = dd l; (dpr; dr) = dd r

2.2 Redundant Recursive Calls

A classical example to illustrate the super-linear speedup achieved when redundant
recursive calls are eliminated is the �bonacci function:

�b Zero = Zero
�b (Succ(Zero)) = Succ(Zero)
�b (Succ(Succ(n))) = plus(�b(Succ(n)); �b(n))

The fib is a recursion over the natural number data type:

N = Zero j Succ(N):

This de�nition gives an ine�cient exponential algorithm �b because of many re-
dundant recursive calls to �b. In previous studies, in order to make it e�cient,
a creative tupling function f 0(Succ(n)) = (�b(Succ(n));�b(n)) has to be de�ned,
and then the transformation based on fold/unfold is applied to improve f 0 for shar-
ing common computation and remove redundant recursive calls. We would like to
show that the redundant recursive calls can be removed by a simple calculation
with our approach (Section 4).

2.3 Unnecessary Traversals of Intermediate Results

Given a recursion R, we know that unnecessary intermediate data structures, pro-
duced by R, occur when composed with another recursion R0, i.e., R0 � R. By

Cheap Tupling Transformation 5

fusion, one can merge the two recursions into one without such unnecessary inter-
mediate data structures.

It would be surprising to see that even in a single recursion, there may remain
some unnecessary traversals of intermediate data structures produced by R. As an
example, consider the recursive function foo recursively de�ned by

foo Nil = Nil
foo (Cons(x ; xs)) = Cons(x+ sum p; p)

where p = foo xs

where sum is used to sum up all elements in a list. Although foo is de�ned in
a single recursion, it is ine�cient because the intermediate results produced by
foo are traversed by sum, which is actually unnecessary. We could eliminate this
unnecessary traversal and obtain the following e�cient one.

foo xs = i; where (i; s) = f 0 xs

f 0 Nil = (Nil ; 0)
f 0 (Cons(x; xs)) = (Cons(x+ s; i); x+ s+ s)

where (i; s) = f 0 xs

3 Transformation in Calculational Form

Before addressing how to calculate e�cient recursions, we review previous work
on the transformation in calculational form [MFP91, SF93, TM95, HIT96b]. Its
theoretical basis can be found in the study of Constructive Algorithmics[Fok92,
Mal90, MFP91] which will be outlined below. Throughout this paper, our default
category C is a CPO, the category of complete partial orders with continuous
functions.

3.1 Functors

Endofunctors on category C (functors from C to C) are used to capture both data
structure and control structure in a type de�nition. In this paper, we assume
that all the data types are de�ned by endofunctors which are only built up by the
following four basic functors. Such endofunctors are known as polynomial functors.

De�nition 1 (Identity)

The identity functor I on type X and its operation on functions are de�ned as
follows.

I X = X

I f = f 2

De�nition 2 (Constant)

The constant functor !A on type X and its operation on functions are de�ned as
follows.

!A X = A

!A f = id

where id stands for the identity function. 2

6 Technical Report METR 96-08

De�nition 3 (Product)

The product X�Y of two types X and Y and its operation to functions are de�ned
as follows.

X � Y = f(x; y) j x 2 X; y 2 Y g
(f � g) (x; y) = (f x; g y)

Some related operators are:

�1 (a; b) = a

�2 (a; b) = b

(f 4 g) a = (f a; g a): 2

De�nition 4 (Separated Sum)

The separated sum X + Y of two types X and Y and its operation to functions
are de�ned as follows.

X + Y = f1g �X [f2g � Y

(f + g) (1; x) = (1; f x)
(f + g) (2; y) = (2; g y)

Some related operators are:

�1 a = (1; a)
�2 b = (2; b)
(f 5 g) (1; x) = f x

(f 5 g) (2; y) = g y: 2

Although the product and the separated sum are de�ned over 2 parameters,
they can be naturally extended for n parameters. For example, the separated sum
over n parameters can be de�ned by

+n
i=1Xi = [ni=1(fig �Xi)

(+n
i=1fi) (j; x) = (j; fj x):

3.2 Data Types as Initial Fixed Points of Functors

A data type is a collection of operations (data constructors) denoting how each
element of the data type can be constructed in a �nite way. Via these data con-
structors, functions on the type may be de�ned. So a data type is a particular
algebra whose one distinguished property is categorically known as the initiality of
the algebra. Let C be a category and F be an endofunctor from C to C.

De�nition 5 (F -algebra)

An F -algebra is a pair (X;�), where X is an object in C, called the carrier of the
algebra, and � is a morphism from object F X to object X denoted by � : F X !
X, called the operation of the algebra. 2

De�nition 6 (F -homomorphism)

Given two F -algebras (X;�) and (Y;), the F homomorphism from (X;�) to (Y;)
is a morphism h from object X to object Y in category C satisfying h�� = �F h.
2

Cheap Tupling Transformation 7

De�nition 7 (Category of F -algebras)

The category of F -algebras has as its objects the F -algebras and has as its mor-
phisms all F -homomorphisms between F -algebras. Composition in the category of
F -algebra is taken from C, and so are the identities. 2

It is known that the initial object in the category of F -algebras exists when F is
a polynomial functor[Mal90]. The representative for the initial algebra is denoted
by �F . Let (T; inF) = �F , �F de�nes a data type T with the data constructor
inF : F T ! T . Function outF : T ! F T is the inverse of inF and it destructs
its argument and is therefore called data destructor . To be concrete, consider the
data type of cons lists given by the following de�nition with elements of type A:

List A = Nil j Cons (A; List A):

It is categorically de�ned as the initial object of

(List A; Nil 5Cons)

in the category of FLA-algebras
2, where FLA is the endofunctor de�ned by FLA = !1+ !A�

I (1 is the �nal object in C). Here, the data constructor and the data destructor
are as follows.

inFLA = Nil 5Cons

outFLA = �xs: case xs of

Nil ! (1; ());
Cons (a; as)! (2; (a; as))

3.3 Cata, Ana, and Hylo: Recursions over Data Types

In constructive algorithmics, data types are categorically de�ned as initial algebras
of functors, and recursive functions from one data type to another are represented
as structure-preserving maps between algebras. By doing so, an orderly structure
can be imposed on the program and such structure can be exploited to facilitate
program transformation.

The most general structure-preserving maps are Hylomorphisms [MFP91], a
composition of catamorphisms and anamorphisms. To take into consideration nat-
ural transformations between data structures, Takano and Meijer de�ned hylomor-
phisms in triplet form[TM95] as follows.

De�nition 8 (Hylomorphism in triplet form)

Given two morphisms � : GA ! A, : B ! F B and natural transformation � :
F _!G, the hylomorphism [[�; �;]]G;F is de�ned as the least morphism f : B ! A

satisfying the following equation.

f = � � (� � F f) �
2

2 Strictly speaking, Nil should be written as �():Nil. In this paper, the function with the form
of �():t will be simply denoted as t.

8 Technical Report METR 96-08

Hylomorphisms (Hylo for short) are powerful in description in that practically
every recursion of interest (e.g., primitive recursions) can be speci�ed by them
[BdM94, HIT96b]. They are considered to be an ideal intermediate recursive form
for calculating e�cient functional programs.

De�nition 9 (Catamorphism, Anamorphism, Map)

Let (TF ; inF) = �F , (TG; inG) = �G.

([])F : 8A: (F A! A)! TF ! A

([�])F = [[�; id; outF]]F;F

[()]F : 8A: (A! F A)! A! TF
[()]F = [[inF ; id;]]F;F

h[]iG;F : (F _!G)! TF ! TG
h[�]iG;F = [[inG; �; outF]]G;F 2

Catamorphisms (Cata for short) ([]) are generalized foldr operators (or reduces)
that substitute the constructor of a data type with other operation of the same sig-
nature. Dually, anamorphisms (ana for short) [()] are generalized unfold operators
(or generations). Maps h[]i apply a natural transformation on the data structure.

Hylomorphisms enjoy many useful transformation laws3. One useful law is
called Hylo shift law:

[[�; �;]]G;F = [[� � �; id;]]F;F = [[�; id; � �]]G;G:

showing that a natural transformation can be shifted inside a hylomorphism.

For fusion, hylomorphisms possess the general laws called the hylo fusion laws,
and the speci�c calculational rules for shortcut deforestation as in the Acid Rain
Theorem.

Theorem 1 (Hylo Fusion)

Left Fusion Law: f � � = �0 � F f =) f � [[�; �;]]F;G = [[�0; �;]]F;G
Right Fusion Law: � g = Gg � 0 =) [[�; �;]]F;G � g = [[�; �; 0]]F;G 2

Theorem 2 (Acid Rain)

� : 8A: (F A! A)! F 0A! A

[[�; �1; outF]]G;F � [[�inF ; �2;]]F 0;L = [[�(� � �1); �2;]]F 0;L

� : 8A: (A! F A)! A! F 0A

[[�; �1; �outF]]G;F 0 � [[inF ; �2;]]F;L = [[�; �1; �(�2 �)]]G;F 0

2

3 We don't list the transformation laws for catamorphisms and anamorphisms, because they can
be deduced from those for hylomorphisms.

Cheap Tupling Transformation 9

4 Cheap Tupling Rules in Calculational Form

Tupling achieves e�cient recursive functions through elimination of redundant re-
cursive calls and multiple traversals of common inputs. In this section, we propose
three simple but e�ective calculational rules for our cheap tupling.

We shall start by examing the relationship between tupling and mutual recur-
sive de�nitions and propose our basic calculational rule (Theorem 3) on how to
perform tupling transformation on mutual recursions. Based on it, we give another
two calculational rules for removing redundant recursive calls and unnecessary in-
termediate data structures respectively. We shall also demonstrate how the rules
work practically.

Mutual Recursions and Tupling

There has been a folklore that mutual recursive de�nitions can be turned into a
single non-mutual recursive de�nition if the functions mutually de�ned are tupled.
Take as an example the following mutual recursive de�nitions:

f = C1[g; f]
g = C2[f; g]

where Ci denotes a context. It says that f calls g and f , and g calls f and g too.
One can turn this mutual recursion into non-mutual one by tupling the functions
f and g to another function h:

h = f 4 g:

It follows that
f = �1 � h
g = �2 � h

and that h becomes a non-mutual recursion as follows.

h = C1[�2 � h; �1 � h] 4 C2[�1 � h; �2 � h]

This transformation is interesting in theory in the sense that one need not con-
sider the transformation for mutual recursive functions because they can de�nitely
be turned into a single non-mutual one. It is, however, unsatisfactory in practice as
it is not clear how to make h e�cient. Generally, the new de�nition h costs more
than the direct implementation of mutual recursions if no further simpli�cation is
applied. This is why many compilers, such as Glasgow Haskell, implement mutual
recursions directly without such transformation.

Things become expected when the recursive structure information of f and
g are known. Such structural information can be exploited to make the tupled
function e�cient, as shown in the following theorem.

Theorem 3 (Tupling)

f � inF = � � F (f 4 g); g � inF = � F (f 4 g)

f 4 g = ([� 4])F

10 Technical Report METR 96-08

Proof: We prove it by the following calculation.

(f 4 g) � inF
= f 4 g

f � inF 4 g � inF
= f Assumptions for f and g g

� � F (f 4 g) 4 � F (f 4 g)
= f 4 g

(� 4) � F (f 4 g)

It soon follows that

f 4 g = ([� 4])F

according to the de�nition of catamorphisms (De�nition 9). 2

The Tupling Theorem is quite simple, and some similar studies can be found
in [Tak87, Fok92]. What interest us is its signi�cant use in calculating recursions
to e�cient ones, which has not yet received its worthy consideration. For this
purpose, we generalize the Tupling Theorem from one step of unfolding of input to
n step as follows.

Corollary 4 Given the following mutual recursive de�nitions for f and g:

f � inF = � � (F (f 4 g) 4 F 2(f 4 g) � outF 4 � � � 4 Fn(f 4 g) � outn�1F)
g � inF = � (F (f 4 g) 4 F 2(f 4 g) � outF 4 � � � 4 Fn(f 4 g) � outn�1F)

then f and g can be tupled as

(f 4 g) � inF = (� 4) � (F (f 4 g) 4 F 2(f 4 g) � outF 4 � � � 4 Fn(f 4 g) � outn�1F)

where4 F n = Fn�1 � F and outnF = F n�1outF � goutn�1F . 2

In the following, we shall show how the simple calculational rules can be ef-
fectively used for our cheap tupling to handle the ine�cient recursions in Section
2.

4.1 Eliminating Multiple Data Traversals

The Tupling Theorem reads that, if f and g are recursive functions traversing over
the same data structures in a certain uniform way, then tupling them will de�nitely
give a catamorphism without multiple traversals over the same data structures by
both f and g. Therefore, direct use of the tupling theorem can help to eliminate
multiple data traversals in a recursion.

To see how the Tupling Theorem works, let's recall the de�nition of deepest
given in Section 2. Since deepest and depth are mutually de�ned and traverse over
the same input tree, we can apply the Tupling Theorem to calculate them into an

4 Note out
i

F can be considered as unfolding i steps of input data.

Cheap Tupling Transformation 11

e�cient one. First, we rewrite them to be our required form.

deepest � inFT = � � FT (deepest 4 depth)
where
� = �1 5 �2
�1 a = [a]
�2 ((tl; hl); (tr; hr)) = tl; if hl > hr

= tl ++ tr; if hl = hr

= tr; otherwise
depth � inFT = � FT (deepest 4 depth)

where
 = 1 5 2
 1 a = 1
 2 ((tl; hl); (tr; hr)) = 1 +max(hl; hr)

where FT = !Int + I � I (the functor de�ning the binary tree type) and inFT =
Leaf 5 Node. Now, according to the Tupling Theorem, we get the following e�cient
linear recursion:

deepest = �1 � (deepest 4 depth) = �1 � ([� 4])FT

which can be in-lined to the one as given in Section 2.

It should be noted that the above two processing steps, namely rewriting into
the required form and applying the Tupling Theorem, can be done automatically
at a low cost; the �rst step is basically an abstraction of recursive calls for the
de�nition of � (similar to the study in [HIT96b]) while the second step is just a
simple calculation. One should compare with the previous expensive approach on
the basis of fold/unfold transformation [Chi92], where it is required to keep alert
on any sub-expression which could be folded and to de�ne many new functions in
order to remember occurred sub-expressions during its transformation process.

In the Tupling Theorem, f and g are de�ned mutually. One special interesting
case is when they are independent catamorphisms. They can be tupled as well, as
stated in the following corollary.

Corollary 5

([�])F 4 ([])F = ([� � F�1 4 � F�2])F

Proof. Directly from the Tupling Theorem and the following two equations.

([�])F � inF = � � F�1 � F (([�])F 4 ([])F)
([])F � inF = � F�2 � F (([�])F 4 ([])F) 2

This corollary can reduce two traversals of the input (by the two catamorphisms
respectively) into one.

4.2 Eliminating Redundant Recursive Calls

It is impractical to eliminate all redundant recursive calls in recursions as done by
the most general approach called memoization[Mic68]. Therefore some restrictions

12 Technical Report METR 96-08

on recursions are necessary. For instance, Chin [Chi93] restricted his method on
T0 class of recursions; Hughes [Hug85] argued that it is more practical to eliminate
the redundant recursive calls that are applied to exactly the identical arguments {
that is, arguments stored in the same place in memory.

The restriction we impose on the recursive de�nitions, much related to Hughes'
restriction, is that the parameters of the recursive calls to the de�ned function
should be the sub-structure of the input data without any processing. This re-
striction helps to verify the identity of two parameters at the stage of compilation
(rather than seeing if the arguments are stored in the same place in memory at
execution time as Hughes did). For example, we can treat the recursive de�nition
like

foo(Cons(x1;Cons(x2; xs))) = x1 + foo(Cons(x2; xs)) + foo(xs)

but not

foo(Cons(x1;Cons(x2; xs))) = x1 + foo(Cons(2 � x2; xs)) + foo(Cons(x1; xs))

because the two underlined parameters are not sub-structures ofCons(x1;Cons(x2; xs)).

Another restriction, just for the sake of simple presentation, is that the input
is only traversed by a single function. For example, our restriction excludes the
following case

foo(Cons(x1;Cons(x2; xs))) = x1 + foo(Cons(x2; xs)) + foo(xs) + g(x2 : xs)

because both foo and g traverse over the same input. As a matter of fact, this
restriction is unnecessary because we are always be able to tuple foo and g to have
a new function meeting this restriction.

Proposition 6 Let h :: T ! R be a recursively de�ned function over T , where T
is de�ned by functor F , i.e., (T; inF) = �F . If (1) every parameter of all recursive
calls to h is the sub-structure of the input; and (2) there is no other function
traversing over the part or the whole of h's input, then h can be transformed into
the following hylomorphism:

h = [[�; id; outF 4 out2F 4 � � � 4 outnF]]G;G

where G = F � F 2 � � � � � Fn.

Proof Sketch: According to the restriction of parameters of recursive calls to h,
we can see that each recursive call to h can be embedded in the term of F ih� outiF
for an integer i (Recall that outiF can be considered as unfolding i steps of input
data). In addition, since no other functions traversing h's input, it implies that the
input is only traversed by h. Thus, there must exist a � so that h can be expressed
as

h = � � (Fh � outF 4 F 2h � out2F 4 � � � 4 F nh � outnF)

which is exactly as we expected. 2

Now, our theorem for removing redundant recursive calls in the above restricted
recursive functions is given below.

Cheap Tupling Transformation 13

Theorem 7 Let h :: T ! R be the hylomorphism given in Proposition 6. Then, h
can be de�ned by the following mutual recursive de�nitions.

h � inF = � � � � F (h 4 g1 4 � � � 4 gn�1)
g1 � inF = Fh

g2 � inF = Fg1
...

gn�1 � inF = Fgn�2

where � is a natural transformation de�ned by

� :: F (X1 � � � � �Xn)! (FX1 � � � � � FXn)
� = F�1 4 � � � 4 F�n

Proof: This can be proved by the following calculation.

h � inF = � � � � F (h 4 g1 4 � � � 4 gn�1)
� f unfolding gi one time g

h � inF = � � � � F (h 4 Fh � outF 4 � � � 4 Fgn�2 � outF)
� f repeat the above unfolding to remove gi g

h � inF = � � � � F (h 4 Fh � outF 4 � � � 4 Fn�1h � outn�1F)
� f � g

h � inF = � � (Fh 4 F (Fh � outF) 4 � � � 4 F (Fn�1h � outn�1F))
� f functor F , in�1

F
= outF , 4 and �, def. of G g

h = � �Gh � (outF 4 FoutF � outF 4 � � � 4 Foutn�1F � outF)
� f Fouti

F
� outF = outi+1

F
, as proved later. g

h = � �Gh � (outF 4 out2F
4 � � � 4 outnF)

� f def. of hylo g

h = [[�; id; outF 4 out2F
4 � � � 4 outnF]]G;G

To complete the proof, we prove that FoutiF � outF = outi+1F by induction on i.
For the base case of i = 0, it is obviously true. For the inductive case, we calculate
it as follows.

FoutiF � outF
= f def. of outi

F
g

F (F i�1outF � outi�1F) � outF
= f functor F g

F ioutF � Fouti�1F � outF
= f induction g

F ioutF � outiF
= f def. of outi+1

F
g

outi+1F 2

Theorem 7 says that, if every parameter of a recursive call to function h is
only the sub-structure of the input and no other functions traverse over the same
input of h, than h can be successfully transformed to a single mutual recursive
de�nition which could be further improved by the Tupling Theorem, as stated in
the following corollary.

14 Technical Report METR 96-08

Corollary 8 Under the same assumption in Theorem 7, we have

h 4 g1 4 � � � 4 gn�1 = ([� � � 4 F�1 4 � � � 4 F�n�1])F
2

Before showing how the theorem works practically, let's de�ne some useful
natural transformations as follows.

dist :: (X � (Y + Z))! (X � Y +X � Z)
dist(x; (1; y)) = (1; (x; y))
dist(x; (2; z)) = (2; (x; z))

zipSum :: (X1 + Y1)� (X2 + Y2)
zipSum((1; x1); (1; x2)) = (1; (x1; x2))
zipSum((2; y1); (2; y2)) = (2; (y1; y2))

Now recall the de�nition of �b :: N ! N in Section 2. According to Proposition
6, we can transform it to the following hylomorphism.

�b = [[�; id; outFN 4 out2FN]]G;G

Here
� = (Zero 5 ((Succ(Zero) 5 plus) � dist)) � zipSum
G = FN � F 2

N

In addition, we remind readers that

FN = !1 + I

F 2
N = !1 + (!1 + I)
outFN = �x: case x of Zero ! (1; ()); Succ(n)! (2;n)
out2FN = �x: case x of Zero ! (1; ()); Succ(n)! (2; case n of Zero ! (1; ()); Succ(n 0)! (2; n 0))

By Theorem 7 and Corollary 8, we soon have that

�b = �1 � ([� � (FN �1 4 FN �2) 4 FN �1])FN :

Simple simpli�cation gives

�b = �1 � ([(Zero 5 ((Succ(Zero) 5 plus) � dist)) 4 FN �1])FN

which could be in-lined to the following linear program.

�b n = x; where (x; y) = f 0 n

f 0 Zero = (Zero; (1; ()))
f 0 (Succ(n)) = (case i of 1 ! Succ(Zero); 2 ! plus(x ; y); (2; x))

where (x; (i; y)) = f 0 n

4.3 Removing Unnecessary Traversals of Intermediate Results

It is commonplace in a recursive de�nition where some intermediate results are
traversed by another recursive function. We can generally formulate it by the
equation:

f � inF = � � F (f 4 (g � f)): (1)

Cheap Tupling Transformation 15

where the intermediate results of f is not only used for the �nal results (the �rst
f in the RHS) but also traversed by another recursive function g (the second f in
RHS).

In fact, the traversals of intermediate results by g can be calculated away under
a certain condition leading to a more e�cient recursion. This is shown in the
following theorem.

Theorem 9 Given is the recursive function f de�ned by Equation (1). If there
exists satisfying

g � � = � F ((g 4 id)� id) (2)

then

f = �1 � ([� 4 (� F ((�2 4 �1) 4 �2))])F

Proof: It Su�ces to prove that

f 4 (g � f) = ([� 4 (� F ((�2 4 �1) 4 �2))])F :

According to the Tupling Theorem, it is only need to prove

(g � f) � inF = (� F ((�2 4 �1) 4 �2)) � F (f 4 (g � f)):

To this end, we do calculation as follows.

g � f � inF = � F ((�2 4 �1) 4 �2) � F (f 4 (g � f))
� f Equation (1) g
g � � � F (f 4 (g � f)) = � F ((�2 4 �1) 4 �2) � F (f 4 (g � f))

� f Equation (2) g

 � F ((g 4 id)� id) � F (f 4 (g � f)) = � F ((�2 4 �1) 4 �2) � F (f 4 (g � f))
� f Functor F , simpli�cation g

 � F ((g � f 4 f) 4 (g � f)) = � F ((g � f 4 f) 4 (g � f))
� f obvious g

True
2

The idea behind Theorem 9 is simple. In order to avoid unnecessary traversals
of intermediate results by g, it is su�cient to �nd a condition for g � f being a
single recursion. This condition is expressed by Equation (2) reading that g should
not recursively applied to the results produced by itself.

With the above theorem, we can improve foo given in Section 2. First, we
rewrite the recursive de�nition into the form of Equation (1).

foo � inFL
A

= � � FLA(foo 4 (sum � foo))

where � = Nil 5 (�(x; (pi; ps)):Cons(x+ ps; pi))

16 Technical Report METR 96-08

Next, we check whether sum can be expressed in the form of Equation 2.

sum � �
= f � g

sum � (Nil 5 (�(x; (ps; pi)):Cons(x+ ps; pi)))
= f � and 5 g

sum �Nil 5 sum � (�(x; (ps; pi)):Cons(x+ ps; pi))
= f sum g

0 5 (�(x; (ps; pi)): (x+ ps + sum(pi)))
= f De�ne = �(x; ((pi; p); ps)): (x+ ps + pi) g

(0 5) � FLA((sum 4 id)� id)

Finally, according to Theorem 9, it soon follows that

foo = �1 � ([� 4 (� FLA((�2
4 �1) 4 �2))])FL

A

which can be easily in-lined to the e�cient program as given in Section 2.

5 Cheap Tupling Strategy

So far we have given the three simple calculational rules and demonstrated how
they are used to improve recursions. In summary, the general strategy in the
application of each calculational rule is a two-step calculation, namely,

� Rewriting the given recursion into a suitable form required by the theorem;

� Performing simple calculation according to the theorem.

Since these two steps can be automatically implemented at a rather low cost com-
pared with the previous tupling methods [Chi93], it becomes direct and possible
to embed the rule in a real compiler of functional languages.

Now let's turn to see how to give full play of these three rules to handle more
complicated recursions. Rather than discussing in a formal way, we show our idea
by the following example. Suppose that we want to improve function f de�ned by5

f (x1 : x2 : xs) = x1 + f (x2 : xs) + f (xs) + g (x2 : xs)
g (x1 : x2 : x3 : xs) = x1 + g (x2 : x3 : xs) + g (x3 : xs) + g (xs) + f (x2 : x3 : xs)

where f calls another recursive function g. Here we omit the equations for the base
cases for both f and g, e.g., f [] = � � � ; f [x] = � � � ; f [x1; x2] = � � �, etc. Obviously,
there are many redundant recursive calls to f and multiple traversals of the input
(by f and g), and hence this de�nition is ine�cient.

First, we eliminate multiple traversals in the recursive de�nition by grouping
the functions traversing over the same data structure. We usually start with this
calculation as it could turn mutual recursive de�nitions into a single non-mutual
one, making room for the later removal of redundant recursive calls by Corollary

5 For notational convenience, we use in�x operator : for list Cons operator, i.e., x : xs denotes
Cons(x : xs), and use [] to denote Nil .

Cheap Tupling Transformation 17

8 and unnecessary traversals by Theorem 9. To this end, we de�ne h = f 4 g. By
Corollary 4, we can have

f = �1 � h
h (x1 : x2 : x3 : xs) = x1 + x1 + d1 (h (x2 : x3 : xs)) + d2 (h (x3 : xs)) + d3 (hxs)

where d1, d2 and d3 are functions de�ned by d1(x; y) = x + x + y + y; d2(x; y) =
x + y; d3(x; y) = y. Next, we turn to improve h in order to improve f . We
can eliminate redundant recursive calls to h by Corollary 8, and obtain the result
something like

h = �1 � ([�])FLA
where � is another function. Finally, we use Theorem 9 to eliminate possible
unnecessary traversals in the catamorphism ([�])FLA .

In summary, our cheap tupling is proceeded in the following way. Given a
set of functions de�ned by recursions. For each function, we calculate it to an
e�cient recursive de�nition in the order of eliminating multiple traversals, removing
redundant recursive calls and getting ride of unnecessary data traversals.

It is worth noting that our cheap tupling can be well coexisted with fusion
under the transformation in calculational form. As a matter of fact, they assist
each other to obtain better optimization:

� Fusion merges several recursive functions into one, which makes our cheap
tupling algorithm easy to �nd how to tuple them.

� Tupling improves the recursion by constructing an e�cient catamorphism (a
special instance of hylomorphism) for it. It does not lose any possibility for
fusion in case it is composed with another recursion (see Section 3)

We shall not give the detailed discussion to convince the reader. A relevant
study can be found in [HIT96a] where tupling and fusion are used together to
derive list homomorphisms (i.e., catamorphisms over append lists). Recently, Chin
[Chi95] discussed this issues on the fold/unfold transformation basis. But it is
quite complicated to choose carefully the order of tupling and fusion since they
may hinder each other.

6 Related Work and Discussions

It has been argued that the use of generic control structures which capture patterns
of recursions in a uniform way is of great signi�cance in program transformation
and optimization[MFP91, Fok92, SF93, TM95]. Our work is much related to these
studies. In particular, our work was greatly inspired by the success of applying this
approach to fusion transformation as studied in [SF93, GLJ93, TM95].

We made the �rst attempt to apply this calculational approach to the tupling
transformation as well. Previous work, as intensively studied by Chin [Chi93],
tries to tuple arbitrary functions by fold/unfold transformations. In spite of its
generality, it has to keep track of all function calls and devise clever control to
avoid in�nite unfolding, resulting in high runtime cost which prevents it from being
employed in a real compiler system.

18 Technical Report METR 96-08

We follows the experience of work of fusion in calculational form [TM95] where
a simple calculational rule is used. We identify three patterns of ine�cient re-
cursions, and construct three calculational rules to improve them based on the
structural knowledge in these patterns. Though being simple and less general than
Chin's, our cheap tupling transformation, as demonstrated, can be applied to a
wide class of functions. Moreover, it can be e�ciently implemented in a practical
compiler and can be naturally coexisted with fusion under the basis of transforma-
tion in calculational form. Chin [Chi95] discussed the intergration of fusion and
tupling under the basis of fold/unfold transformation, whose algorithm is much
more complicated than ours because of the complicated control of in�nite unfold-
ings for when fusion and tupling are used in one system.

The idea in Theorem 3 for the tupling of mutual recursive de�nitions is not
new at all. It basically the same as Takeichi's generalization algorithm [Tak87]
and Fokkinga's mutumorphisms [Fok92]. Takeichi showed how to de�ne a higher
order function common to all functions mutually de�ned so that multiple traversals
of the same data structures in the mutual recursive de�nition can be eliminated.
Fokkinga proposed the idea of mutumorphism and develop the laws for the fusion
of mutual recursions with other functions. We generalize their idea (Corollary 4),
and investigate deeply how it can be used further for the elimination of redundant
recursive calls and unnecessary traversals of data (Corollary 8 and Theorem 9).

Our idea (Theorem 7) for avoiding redundant recursive calls is much sim-
pler than the existed techniques such as, memoization [Mic68, Hug85], tabulation
[Bir80, Coh83] and tupling [Chi92]. Though being less general, it can be done by a
simple calculation rather than by complicated program analysis or applied at run
time. In fact, we are much inuenced by Hughes' idea of lazy memoization [Hug85]
in which it is only required to reuse the previously computed results of recursive
calls applied to arguments identical (not equal in value) to previous ones { that
is, arguments stored in the same place in memory. We impose more restriction so
that and we can remove redundant recursive calls by calculation at compilation
time rather than at execution time.

Our cheap tupling is \cheap" in the sense that it can be implemented very
cheaply and hence more practical than previous studies. But this comes at price of
less generality. Although we have demonstrated that combining of three rules can
deal with more complicated cases (Section 5), there are still many recursions that
our tupling cannot be applied. How to enlarge our application scope is one of our
future work.

7 Conclusions

We propose the �rst cheap tupling in calculational form for obtaining e�cient recur-
sions without multiple traversals of the same data structures, redundant recursive
calls, and unnecessary traversals of intermediate data structures. Our cheap tu-
pling algorithm can be naturally combined with fusion so that e�cient functional
programs can be obtained by program calculation. It has shown its promising in
many examples, big or small. We are currently implementing a calculational sys-

Cheap Tupling Transformation 19

tem based on the idea of fusion and tupling in calculational form. We are going
to give a performance evaluation of the whole functional programs in the Haskell's
benchmark in order to see how much we could get generally.

References

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing recur-
sive programs. Journal of the ACM, 24(1):44{67, January 1977.

[BdM94] R.S. Bird and O. de Moor. Relational program derivation and context-free lan-
guage recognition. In A.W. Roscoe, editor, A Classical Mind, pages 17{35.
Prentice Hall, 1994.

[Bir80] R. Bird. Tabulation techniques for recursive programs. ACM Computing Sur-
veys, 12(4):403{417, 1980.

[Chi92] W. Chin. Safe fusion of functional expressions. In Proc. Conference on Lisp and
Functional Programming, San Francisco, California, June 1992.

[Chi93] W. Chin. Towards an automated tupling strategy. In Proc. Conference on Par-
tial Evaluation and Program Manipulation, pages 119{132, Copenhagen, June
1993. ACM Press.

[Chi95] W. Chin. Fusion and tupling transformations: Synergies and conits. In
Proc. Fuji International Workshop on Functional and Logic Programming, pages
106{125, Susono, Japan, July 1995. World Scienti�c Publisher.

[Coh83] N.H. Cohen. Eliminating redundant recursive calls. ACM Transaction on Pro-
gramming Languages and Systems, 5(3):265{299, July 1983.

[Fok92] M. Fokkinga. Law and Order in Algorithmics. Ph.D thesis, Dept. INF, Univer-
sity of Twente, The Netherlands, 1992.

[GLJ93] A. Gill, J. Launchbury, and S.P. Jones. A short cut to deforestation. In
Proc. Conference on Functional Programming Languages and Computer Archi-
tecture, pages 223{232, Copenhagen, June 1993.

[HIT96a] Z. Hu, H. Iwasaki, and M. Takeichi. Construction of list homomorphisms via
tupling and fusion. In 21st International Symposium on Mathematical Founda-
tion of Computer Science, LNCS 1113, pages 407{418, Cracow, September 1996.
Springer-Verlag.

[HIT96b] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms from
recursive de�nitions. In ACM SIGPLAN International Conference on Functional
Programming, pages 73{82, Philadelphia, PA, May 1996. ACM Press.

[Hug85] J. Hughes. Lazy memo-functions. In Proc. Conference on Functional Program-
ming Languages and Computer Architecture (LNCS 201), pages 129{149, Nancy,
France, September 1985. Springer-Verlag, Berlin.

[Mal90] G. Malcolm. Data structures and program transformation. Science of Computer
Programming, (14):255{279, August 1990.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In Proc. Conference on Functional
Programming Languages and Computer Architecture (LNCS 523), pages 124{
144, Cambridge, Massachuetts, August 1991.

[Mic68] D. Michie. Memo functions and machine learning. Nature, 218:19{22, 1968.

[SF93] T. Sheard and L. Fegaras. A fold for all seasons. In Proc. Conference on
Functional Programming Languages and Computer Architecture, pages 233{242,
Copenhagen, June 1993.

[Tak87] M. Takeichi. Partial parametrization eliminates multiple traversals of data struc-
tures. Acta Informatica, 24:57{77, 1987.

20 Technical Report METR 96-08

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In
Proc. Conference on Functional Programming Languages and Computer Archi-
tecture, pages 306{313, La Jolla, California, June 1995.

[Wad88] P. Wadler. Deforestation: Transforming programs to eliminate trees. In
Proc. ESOP (LNCS 300), pages 344{358, 1988.

