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Abstract

Two important classes of manifolds of quantum states, the locally quasi-classical

manifold and the quasi-classical manifold, are introduced from the estimation theoret-

ical viewpoint, and they are characterized geometrically by the vanishing conditions

of the relative phase factor (RPF), implying the close tie between Uhlmann parallel

transport and the quantum estimation theory.

1 Introduction, Uhlmann's parallelity, and SLD

Berry's phase, by far con�rmed by several experiments, is a holonomy of a natural connec-

tion on the line bundle over the space of pure states [8][9]. In 1986, Uhlmann generalized

the theory to include mixed states in the Hilbert space H [10][11] [12]. Throughout this

paper, for the sake of clarity, n � dimH is assumed to be �nite, and the density matrix is

strictly positive, though Uhlmann's original theory is free of these assumptions.

Letting W be such a n by n matrix that � = �(W ) � WW y, WU also satis�es

� = �(WU) i� U is a unitary matrix. So, it is natural to see a space W = fW jW 2

GL(n;C) ;TrWW y = 1g as a �ber bundle over the space of strictly positive density ma-

trices Pn in H with U(n)'s being its �ber. One possible physical interpretation of W is a

representation of a state vector j�i in the bigger Hilbert space H
H0. Here, dimH0 is n

and the operation �(�) corresponds to the partial trace of j�ih�j over H0.

To introduce a connection [13], or a concept of parallel transport along the curve C =

f�(t)jt 2 Rg in Pn, a horizontal lift fW (t)jt 2 Rg 2 W of C is de�ned so that �(t) =

1



�(W (t)) and

dW (t)

dt
=

1

2
LS
t (t)W (t); (1)

are satis�ed, where LS
t (t) is a Hermitian matrix is the root of the matrix equation d�(t)=dt =

(1=2)(LS
t (t)�(t) + �(t)LS

t (t)).

Letting fW (t)jt 2 Rg be a horizontal lift of C 0 = f�(t)j0 � t � 1g, the relative phase

factor (RPF) between �0 and �1 along the curve C is the unitary matrix U de�ned by the

equation W (1) = Ŵ1U , where Ŵ1 satis�es �(1) = �(Ŵ1) and Ŵ y
1W (0) = W y(0)Ŵ1. RPF

is said to vanish when it is equal to the identity.

Back in the 1968, Helstrom independently introduced the Hermitian matrix LS
t (t),

which played a major role in the de�nition (1) of Uhlmann's parallelity, as a key concept of

his statistical estimation theory of quantum states. He called the matrix LS
t (t) symmetrized

logarithmic derivative (SLD) because SLD is introduced as a quantum counterpart of a

logarithmic derivative in the classical estimation theory (throughout this paper, the term

`classical estimation' means estimation of probability distributions) [1] [2]. Our starting

point is the following queries: Why SLD plays such an important role both in the quantum

estimation theory and in Uhlmann's parallelity ? Is this just a coincidence?

2 Quantum estimation theory

In this section, conventional theory of quantum estimation is reviewed briey. In the

quantum estimation theory, we try to know the density matrix of the given system from

the data � 2 � produced from a measuring apparatus. For simplicity, it is assumed that

the system belongs to a certain manifold M = f�(�)j� 2 � � R
mg � Pn, and that the

true value of the parameter � is not known. For example, M is a set of spin states with

given wave function part and unknown spin part. An estimate �̂ is obtained as a function

�̂(�) of data � 2 Xi to Rm. The purpose of the theory is to obtain the best estimate and its

accuracy. The optimization is done by the appropriate choice of the measuring apparatus

and the function �̂(�) from data to the estimate.

Whatever apparatus is used, the data � 2 � lie in a particular subset B of � writes

Prf� 2 Bj�g = Tr�(�)M(B); (2)
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when the true value of the parameter is �. Here, M , which is called measurement, is a

mapping from subsets B � � to non-negative Hermitian matrices in H, such that

M(�) = O;M(�) = I;

M(
1[

i=1

Bi);=
1X

i=1

M(Bi) (Bi \Bj = �; i 6= j); (3)

(see Ref.[2],p.53 and Ref.[3],p.50.). Conversely, some apparatus corresponds to any mea-

surement M [6][5]. A pair (�̂;M;�) is called an estimator.

An estimator (�̂;M;�) is said to be locally unbiased at � if

E�[�̂(�)jM;�] = �;

@iE�[�
j(�)jM;�] = �ji (i; j = 1; :::;m); (4)

hold at �, where E�[�jM;�] is the expectation with respect to the probability measure (2),

and @i stands for @=@�
i. Only locally unbiased estimators are treated from now on.

In the classical estimation, the inverse of so-called Fisher information matrix provides

the tight lower bound of covariance matrices of locally unbiased estimates, where local

unbiasedness of the estimate is de�ned almost in the same way as in quantum estimation.

Coming back to the quantum estimation,

V�[�̂(�)jM;�] � (JS(�))�1 (5)

holds true, i.e., V�[�̂(�)jM;�]�(JS(�))�1 is non-negative de�nite for any unbiased estimator

(�̂;M;�) (see (5.4) in Ref.[3],p.276). Here, V�[�̂(�)jM;�] is the covariance matrix of �̂ =

�̂(�) with respect to the probability measure (2), and JS(�) = [JSij(�)], which is analogically

called SLD Fisher information matrix, is de�ned by

JSij(�) = ReTr�(�)LS
i (�)L

S
j (�) (i; j = 1; :::;m); (6)

where LS
i (�) is the SLD of parameter �i, i.e.,

@i�(�) =
1

2
(LS

i (�)�(�) + �(�)LSi (�)): (7)

The bound (JS(�))�1 is one of the bests, in the sense that any Hermitian matrix A

such that A � (JS(�))�1, is no more a lower bound. However, di�erent from the classical

case, the equality in (5) is not attainable except for the case indicated by the following

theorem, which is proved by Nagaoka [4].
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Theorem 1 The equality in (5) is attainable at � i� [LS
i (�); L

S
j (�)] = 0 for any i; j. Let-

ting j�i be a simultaneous eigenvector of the matrices fLS
j (�)jj = 1; :::;mg and �i(�) be

the eigenvalue of LS
i (�) corresponding to j�i, the equality is attained by the estimator

(�̂(�);M(�);�) such that

� = f�j� = 1; :::; ng;

M(�)(�) = j�ih�j;

�̂j(�)(�) = �j +
nX

k=1

[(JS)�1]jk�k(�): (8)

Remark In this paper, we focus on the lower bound (5), and are not concerned with the

lower bound of TrGV [M ], which is treated in Refs. [2]-[3].

The manifold M is said to be locally quasi-classical at � i� LS
i (�) and LS

j (�) commute

for any i; j. In this case, the bound (5) becomes tight as its classical counterpart is and

the analogy of classical estimation seemingly works well. However, this analogy fails in

that the measurement M(�) in (8) is dependent on the true value of the parameter, which

is unknown before the estimation. Hence, we need to adopt the measurement through the

process of estimation using the knowledge about the parameter obtained so far [4].

Let us move to the easier case, in which LS
i (�) and LS

j (�
0) commute for any � 6= �0, in

addition to being locally quasi-classical at any � 2 �. Here, the measurement M(�) in (8),

denoted byMbest hereafter, is independent of theta and is uniformly optimal for all � (so is

the corresponding apparatus). We say such a manifold is quasi-classical [7], because given

the optimal apparatus, the quantum estimation reduces to the classical estimation.

3 Vanishing conditions for RPF

So far, we have reviewed the conventional theory of quantum estimation and Uhlmann's

parallelity. In this section, we derive conditions for RPF to vanish, which is used to char-

acterize the classes of manifold de�ned in the previous section. For notational simplicity,

the argument � is omitted, as long as the omission is not misleading.
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The RPF for the in�nitesimal loop

� = (�1; �2; :::; �m)! (�1 + d�1; �2; :::; �m)! (�1 + d�1; �2 + d�2; :::; �m)

! (�1; �2 + d�2; :::; �m)! (�1; �2; :::; �m) = �;

is calculated up to the second order of d� by expanding the solution of the equation (1) to

that order:

I +
1

2
W�1F12W d�1d�2 + o(d�)2;

Fij = (@iL
S
j � @jL

S
i )�

1

2
[LS

i ; L
S
j ]: (9)

Note that Fij is a `representation' of the curvature form, and that RPF for any closed loop

vanishes i� Fij is zero at any point in M.

Theorem 2 RPF for any closed loop vanishes i� [LS
i (�); L

S
j (�)] = 0 for any � 2 �. In

other words,

Fij(�) = 0() [LS
i (�); L

S
j (�)] = 0: (10)

Proof If Fij equals zero, then both of the two terms in the left-hand side of (9) must

vanish, because the �rst term is Hermitian and the second term is skew-Hermitian. Hence,

if Fij = 0, [LS
i ; L

S
j ] vanishes.

On the other hand, the identity @i@j�� @j@i� = 0, or its equivalence

(@iL
S
j � @jL

S
i �

1

2
[LS

i ; L
S
j ])�+ �(@iL

S
j � @jL

S
i +

1

2
[LS

i ; L
S
j ]) = 0;

implies that @iL
S
j � @jL

S
i vanishes if [LS

i ; L
S
j ] = 0, because @iL

S
j � @jL

S
i is Hermitian and

� is positive de�nite. Thus we see Fij = 0 if LS
i and LS

j commute. 2

A manifold M is said to be parallel when the RPF between any two points along

any curve vanishes. From the de�nition, if M is parallel, RPF along any closed loop

vanishes, but the reverse is not necessarily true. The following theorem is a generalization

of Uhlmann's theory of 
-horizontal real plane [12].

Theorem 3 The following three conditions are equivalent.
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(1) M is parallel.

(2) Any element �(�) ofM writesM(�)�0M(�), whereM(�) is Hermitian andM(�0)M(�1) =

M(�1)M(�0) for any �0; �1 2 �.

(3) 8i; j; 8�0; �1 2 �; [LSi (�0); L
S
j (�1)] = 0:

Proof Let W (�t) = M(�t)W0 be a horizontal lift of f�(�t); t 2 Rg � M. Then,

W y
0W (�t) = W y(�t)W0 implies M(�t) = M y(�t), and W y(�t0)W (�t1) = W y(�t1)W (�t0)

implies M(�t0)M(�t1) = M(�t1)M(�t0). Thus we get (1) ) (2). Obviously, the reverse

also holds true. For the proof of (2), (3), see Ref. [7], pp.31-33. 2

4 Uhlmann's parallelity in quantum estimation theory

In this section, geometrical structure of W is related to the quantum estimation theory.

First, we imply the statistical signi�cance of natural metric Tr _W _W y in the spaceW . When

dimM = 1, the equality in (5) is always attainable (see Refs. [1]-[3]). By virtue of the

geometrical identity

JSt (t) = min
W (t)2��1(�(t))

4Tr
dW (t)

dt

dW y(t)

dt
(11)

(see Refs. [11]-[12]), the inequality (5) in the case of dimM = 1, allows natural geometrical

interpretation: the closer two �bers ��1(�(t)) and ��1(�(t + dt)) are, the harder it is to

distinguish �(t) from �(t+ dt).

To conclude the paper, we present the theorems which geometrically characterize the

locally quasi-classical manifold and quasi-classical manifold, described statistically so far,

by the vanishing conditions of RPF, implying the close tie between Uhlmann parallel

transport and the quantum estimation theory. They are straightforward consequences of

the de�nitions of the terminologies and theorems 1 -3.

Theorem 4 M is locally quasi-classical at � i� Fij(�) = 0 for any i; j. M is locally

quasi-classical at any � 2 � i� the RPF for any loop vanishes.

Theorem 5 M is quasi-classical i� M is parallel.
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