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Abstract

This paper presents a framework for sampled-data control systems with generalized samplers and

holds. This framework is advantageous in the point that it covers a large class of generalized samplers

and holds and also in the point that it treats samplers and holds in a symmetrical manner. Using this

framework, converging and non-converging properties of sampled-data control are investigated. The

best achievable performance of sampled-data control does not always converge to that of time-invariant

continuous-time control as a sampling period approaches zero. This paper shows that the non-converging

phenomenon occurs when a sampled-data system includes an anti-aliasing �lter whose bandwidth is

proportional to the Nyquist frequency or when it does not include an anti-aliasing �lter. Moreover,

this paper proves that one can avoid this non-converging phenomenon for almost all G using a special

sampler-hold pair.

1. Introduction

Intuitively, it seems obvious that the best achievable performance of sampled-data control converges to

that of time-invariant continuous-time control as a sampling period tends to zero. Recently, this intuition

is shown to hold in the H2-setting [15, 16] and in the H1-setting [6, 12] for some special cases. However,

there exists an easy example where this intuition does not hold.

Example 1. Let us control a plant P , whose transfer function is 1=(s � 1), using sampled-data control

and continuous-time control as shown in Figure 1. The purpose of control is to minimize the e�ect that the

sensor noise d(t) gives to the plant output y(t) in the sense of the L2-induced norm. Here, we let Kd be

a discrete-time controller having a time-invariant discrete-time state-space representation, while we let K

be a continuous-time controller described by a time-invariant continuous-time state-space representation.

The symbols Sid

�
and Hzo

�
denote the ideal sampler and the zero-order hold, respectively; both having a

sampling period � > 0. Moreover, F
�
is a low-pass �lter whose transfer function is 1=(�s+ 1).

The low-pass �lter F
�
is introduced to represent two situations. In the �rst situation, F

�
stands for

an anti-aliasing �lter inserted to cut o� unpreferable aliases. Since these aliases appear mostly at higher

frequencies than the Nyquist frequency �=� , the bandwidth of F
�
is taken proportionally to 1=� . In the

second situation, while no anti-aliasing �lter exists, a more precise model than the ideal sampler Sid

�
is used

for a sampler. Being di�erent from Sid

�
, a physically realizable sampler integrates the input signal for a

short but �nite period of time. If we assume that this integration period is proportional to the sampling

period � , combination of F
�
and S id

�
re
ects properties of an actual sampler better than Sid

�
itself.
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Figure 1. Two methods to control P : (a) sampled-data control; (b) time-invariant
continuous-time control.
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Figure 2. The best achievable performances of the two control methods, which are mea-
sured by the L2-induced norms.

Figure 2 shows simulation results. We consider the operators from d(t) to y(t), minimize their L2-

induced norms by tuning Kd and K, respectively, and plot the achieved in�ma. We can see the perfor-

mance of sampled-data control does not converge to that of continuous-time control as the sampling period

approaches zero. �

This example shows that the above-mentioned intuition is not always correct and implies that we should

be careful in applying sampled-data control. Therefore, we want to clarify why this phenomenon occurs

and how it can be avoided.

We start by investigating basic properties of sampled-data systems equipped with generalized samplers

and holds. Note that combination of F
�
and S id

�
is a sort of generalized sampler because it converts a

continuous-time signal to a discrete-time signal. In fact, using basic properties of this type of systems, we

can explain why the observed non-converging phenomenon occurs. Furthermore, we consider how we can

prevent the phenomenon.

Another objective of this paper is to present a framework for sampled-data systems with generalized

samplers and holds. There is a number of papers on generalized samplers and holds (for example, [1, 9, 10]).

Compared with these papers, our framework is useful in the point that it can treat a large class of samplers

and holds and in the point that it is symmetrical to samplers and holds.

A part of the results of this paper has been reported in [13, 14].

The notation used in this paper is as follows. The imaginary unit is denoted by i. The symbol `2 means

the set of square-summable sequences. It may be one-sided or two-sided depending on the context. We

let L2 and L2[0; � ) express the sets of Lebesgue square integrable functions de�ned on [0;1) and [0; �),

respectively. The symbol k � k denotes the L2-induced norm unless speci�ed in other way. Let H1 be a

Hardy space and write its norm as k � kH1 . An element of H1 may be a matrix-valued function. The set

RH1 is a subset of H1 and consists of real rational functions only. For a time-invariant continuous-time

2



operator F , its transfer function is de�ned based on the Laplace transform and is written as bF (s); for a

time-invariant discrete-time operator Fd, its transfer function is written as �Fd(z), which is de�ned from the

z-transform. Here, z corresponds to the unit-time advance operator. Finally, F(G;K) is the lower linear

fractional transform and is de�ned as F(G;K) := G11 +G12K(I �G22K)�1G21.

2. Sampled-Data Control Systems

3. Lifting-Based Transfer Functions and Their Properties

4. Converging and Non-Converging Properties

5. Conclusion

In this paper, we introduced a framework for sampled-data control systems with generalized samplers and

holds and investigated basic properties of these systems. Using these properties, we considered when the

best achievable performance of sampled-data control systems converges to that of time-invariant continuous-

time control systems and when it does not.

Our framework is useful because it covers many practical samplers and holds. Besides, it treats samplers

and holds in a symmetrical manner. These advantages are expected to be helpful in considering other

advanced problems on sampled-data control such as optimization of samplers and holds.

In the past researches on a sampled-data H1-control theory, insertion of anti-aliasing �lters seems to be

introduced only for theoretical convenience [1, 2, 3, 4, 18]. However, our results showed that an appropriate

choice of the �lter has practical importance. Especially, we should remember that the non-converging

phenomenon possibly occurs when we determine an anti-aliasing �lter according to the sampling period or

when we use no anti-aliasing �lter. This paper gives a mathematical basis for such an analysis of �lters.
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