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Summary.

A great deal of e�ort has been made on a systematic way for paral-
lelization of sequential programs, because parallel programs are known
to be much more di�cult to write that their sequential counterparts.
What seems to be unsatisfactory with current approaches, however, is
either too general where many heuristics are needed or too restrictive
where application scope is rather limited. In this paper, we propose
a calculational framework for deriving parallel divide-and-conquer pro-
grams from naive sequential programs in a more systematic way. Being
more constructive, our method is not only helpful in design of e�cient
parallel programs in general but also promising in construction of paral-
lelization system. Several interesting examples are used for illustration.

Keywords: Parallel Programming, Parallelization, Program Cal-
culation, Transformational Programming, Bird Meertens Formalism.

1 Introduction

Parallel programs are known to be more di�cult to write than their sequential
counterparts [CDG96, CTT97]. As an example, consider the sbp problem of de-
termining whether the brackets '(' and ')' in a given string are correctly matched,
e.g.,

sbp 00(()sd(12))00 = True
sbp 00(as))00 = False

This problem has a straightforward linear sequential algorithm, in which the string
is examined from left to right. A counter is initialized to 0, and incremented or
decreased as opening and closing brackets are encountered.

sbp xs = sbp0 xs 0
sbp0 [ ] c = c = 0
sbp0 (x : xs) c = if x =0 (0 then sbp0 xs (c+ 1)

else if x =0)0 then c > 0 ^ sbp0 xs (c� 1)
else sbp0 xs c:

It, however, turns out to be di�cult to write a parallel program like in [GR88,
BSS91, Col95] whose algorithms involved are actually non-trivial. Therefore, a
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good way for parallelizing sequential programs is of great importance in helping
us design e�cient parallel programs solving problems. Furthermore, it is our hope
that machines could perform parallelization automatically.

Recently, much attention has been drawn to looking into a systematic way
for parallelization of sequential programs. Basically, there are two kinds of ap-
proaches. One aims at a general derivation of parallel programs from sequential
ones, e.g. [CTT97]. It utilizes some arti�cial intelligent technicals, such as synthe-
sis from examples, and makes painstaking e�ort to systemize derivation process,
while imposing as less restrictions as possible on the forms of sequential programs.
This approach has the advantages of generality, but it usually requires heuristics
and human insights in the derivation process, which seems a bit di�cult to be made
automatic.

The other approach, which is very popular, is to use Bird-Meertens formal-
ism [Bir87, MFP91, Fok92] to synthesize parallel functional programs by program

calculation1, e.g., [Ski90, GDH94, Gor96a, Gor96b]. Di�erent from the �rst ap-
proach whose emphasis is on the derivation process, its emphasis is on the re-
striction of sequential programs being described in some speci�c recursive forms
(like left reductions or right reductions). Imposing restrictions on the forms of the
sequential programs makes derivation straightforward; the prepared simple trans-
formation rules (laws) can be directly applied. This calculational approach has
the advantage of simple derivation process suiting mechanical implementation, as
demonstrated in other applications [OHIT97, HITT97]. But for lack of descriptive
power of the speci�c forms, the application scope is rather limited.

This paper is intended as the �rst investigation of a calculational framework
for parallelization with the aim of combining the advantages of the above two
approaches. We take the advantage of the �rst approach for deriving elementary
parallelization laws, and the second approach for constructing our parallelization
algorithm. Our main contributions are as follows.

� We develop several elementary but general parallelization laws (Section 4).
By elementary, we mean that they contribute to the core transformations in
our parallelization algorithm; and by general, we mean that they are more
powerful than the previous ones [Ski92, Gor96a, Gor96b] and can be applied
to synthesize several interesting parallel programs (as demonstrated in Sec-
tion 4). Moreover, these laws can be directly implemented in a way of simple
symbolic manipulation.

� We propose a systematic and constructive parallelization algorithm (Section
5) for derivation of divide-and-conquer parallel programs from naive sequen-
tial ones. It can be applied to a wider class of sequential programs covering
all primitive recursive functions with which almost all algorithms of interest
can be described. The distinguished point of our algorithm is its construc-
tive way of deriving associative/distributive operators from the data types,
and its e�ective use of the fusion and tupling calculation in the parallelizing
process.

1 By program calculation, we usually mean that program transformation by symbolic manipu-
lation based on a set of simple rules.
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� Our parallelization algorithm is given in a calculational way like those in
[TM95, OHIT97, HITT97]. Therefore, it preserves the advantages of trans-
formation in calculational form; being correct, guaranteeing to terminate, and
being natural to be generalized to programs over any data types other than
lists we studied in this paper. It would be not only helpful in design of e�-
cient parallel programs but also promising in construction of parallelization
system.

The organization of this paper is as follows. In Section 2, we review the nota-
tional conventions and some basic concepts used in this paper. After showing the
extension of homomorphisms to mutumorphisms in Section 3, we focus ourselves
on deriving several basic parallelization laws with some interesting examples in
Section 4. Finally, we propose our parallelization algorithm in Section 5. Related
work and conclusions are given in Section 6 and 7.

2 Preliminary

In this section, we brie
y review the notational conventions known as Bird-Meertens
Formalisms [Bir87] and some basic concepts which will be used in the rest of this
paper.

2.1 Functions

Functional application is denoted by a space and the argument which may be writ-
ten without brackets. Thus f a means f (a). Functions are curried, and application
associates to the left. Thus f a b means (f a) b. Functional application is regarded
as more binding than any other operator, so f a�bmeans (f a)�b, but not f (a� b).
Functional composition is denoted by a centralized circle �. By de�nition,

(f � g)a = f (g a):

Functional composition is an associative operator, and the identity function is
denoted by id.

In�x binary operators will often be denoted by �;
 and can be sectioned ; an
in�x binary operator like � can be turned into unary functions by

(a�) b = a� b = (� b) a:

The projection function �i will be used to select the ith component of tuples,
e.g., �1 (a; b) = a: The 4 and � are two important binary operators on tuples,
de�ned by

(f 4 g) a = (f a; g a)
(f � g) (a; b) = (f a; g b):

The 4 can be naturally extended to functions with two arguments. So, we have
a (� 4 
) b = (a� b; a
 b).

2.2 Lists

The data type of lists dominates functional programming; much of the subject
is taken up with notations, and the names and properties of useful functions for
manipulating them. Lists are �nite sequences of values of the same type. There
are two basic views of lists.
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� Parallel View : a list is either empty, a singleton, or the concatenation of two
other lists. We write [ ] for the empty list, [a] for the singleton list with element
a (and [�] for the function taking a to [a]), and xs++ ys for the concatenation
of xs and ys. We usually call the lists in the parallel view append lists.

� Sequential View : a list is either empty [ ], or constructed by an element a
and a list x with data constructor : producing a : x or with :̂ producing x :̂ a.
Equationally, we have

a : x = [a] ++x
x :̂ a = x++[a]:

To tell di�erence, we usually call the lists by the the former construction cons

lists, the lists by the later construction snoc lists.

Concatenation is associative, and [ ] is its unit. For example, the term [1] +
+ [2]++ [3] denotes a list with three elements, often abbreviated to [1; 2; 3]. We also
write a : xs for [a] ++xs.

2.3 Recursions on Lists

Functions over lists are usually de�ned in a recursive way. This section introduces
some well-known recursive patterns over append, cons and snoc lists.

De�nition 1 (List Homomorphism) A function h satisfying the following three
equations is called a list homomorphism:

h [ ] = ��
h [x] = f x
h (xs++ys) = h xs � h ys

where � is an associative binary operator with unit ��. We write ([f;�])2 for the
unique function h. Usually, even a function h de�ned by the last two equations is
considered to be a list homomorphism too. 2

For example, we have sum = ([id;+]), which sums up all elements in a list. Note
when it is clear from the context, we usually abbreviate \list homomorphisms" to
\homomorphism."

Two important list homomorphisms are map and reduction. Map is the oper-
ator which applies a function to every item in a list. It is written as an in�x �.
Informally, we have

f � [x1; x2; � � � ; xn] = [f x1; f x2; � � � ; f xn]:

Reduction is the operator which collapses a list into a single value by repeated
application of some binary operator. It is written as an in�x =. Informally, for an
associative binary operator �, we have

�= [x1; x2; � � � ; xn] = x1 � x2 � � � � xn:

List homomorphisms are good characterizations of parallel computational mod-
els [Ski92, GDH94, Col95]. Intuitively, the de�nition of list homomorphisms means

2 Strictly speaking, we should write ([��; f;�]) to denote the unique function h. We can omit
the �� because it is the unit of �.
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that the value of h on the larger list depends in a particular way (using binary oper-
ation �) on the values of h applied to the two pieces of the list. The computations
of h xs and h ys are independent of each other and can thus be carried out in paral-
lel. This simple equation can be viewed as expressing the well-known divide-and-
conquer paradigm. A number of works on e�ciently mapping list homomorphisms
to particular parallel architectures can be found in [Ski92, GDH94, Gor96a]. It
follows that if we can derive list homomorphisms from sequential programs we can
have corresponding parallel programs.

De�nition 2 (Left Reduction / Right Reduction) List function h is called a left

reduction if there exists a binary operator � and a value e such that

h [ ] = e
h (xs :̂ x) = h xs � x:

Dually, h is called a right reduction if there exists a binary operator � and a value
e such that

h [ ] = e
h (x : xs) = x� h xs: 2

In contrast to the parallelism in homomorphisms, left and right reductions stip-
ulate computation order, leading to sequential programs. Obviously, it is easy to
specialize homomorphisms to left/right reductions. What is di�cult but interest-
ing is the reverse direction; going from sequential programs in left/right reductions
to parallel programs in homomorphisms. This is sort of parallelization which we
would like to do. Indeed it has attracted many researches [BSS91, GDH94, SB95,
Gor95, Gor96a] because of the attractive theorem known as the third homomor-
phism theorem, as will be discussed later.

3 From Homomorphisms to Mutumorphisms

Surprisingly, there is a a fairly well known theorem called the third homomorphism

theorem in program calculation community.

Theorem 1 (The Third Homomorphism Theorem [Bir87, Gib96]) Function h is
a homomorphism if it is a left and a right reductions. 2

It states that a function that can be computed by both a left reduction and a
right reduction is necessarily a list homomorphism which can be computed accord-
ing to any parenthesization of the list. It was conjectured by Richard Bird and was
proved �rst by Lambert Meertens in 1989. Later, it was presented systematically
by Gibbons [Gib96]. This theorem looks very attractive because it claims that if a
problem can be de�ned by two speci�c sequential programs, then it can be de�ned
by a list homomorphism which can be implemented in parallel as argued in Section
2.3.

However, there remain two major problems with this \attractive" theorem.
First, there are a lot of useful and interesting list functions that are not list ho-
momorphisms and thus have no corresponding �. One example is the function
mss known as maximum segment sum problem [Col95], which �nds the maxi-
mum of the sums of contiguous segments within a list of integers. For exam-
ple, mss [3;�4; 2;�1; 6;�3] = 7, where the result is contributed by the segment
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[2;�1; 6]. The mss is not a list homomorphism, since knowing mss xs and mss ys

is not enough to allow computation of mss (xs++ ys). Second, as pointed by Gor-
latch [Gor95, Gor96b], although the existence of an associative binary operator is
guaranteed the theorem does not address the question of the existence | let alone
the construction | of a direct and e�cient way of calculating it.

To solve these problems, rather than using list homomorphisms, we choose
mutumorphisms (mutual morphisms) [Fok89, Fok92] on append lists as our parallel
computation model.

De�nition 3 (List Mutumorphisms) The h1; � � � ; hn are called list mutumorphisms

if they are mutually de�ned in the following way:

hi [ ] = ��i

hi [x] = fi x
hi (xs++ ys) = ((�n

1hi) xs)�i ((�
n
1hi) ys)

2

List mutumorphisms (mutumorphisms for short in this paper) is a generaliza-
tion of homomorphisms, which have enough descriptive power covering all primitive
recursive functions. Moreover, it can be automatically turned into e�cient list ho-
momorphisms via tupling calculation [HIT96a, HITT97].

Theorem 2 (Tupling [HIT96a]) Let h1; � � � ; hn be mutumorphisms as de�ned in
De�nition 3. Then,

�n
1
hi = ([�n

1
fi; �

n
1
�i])

and (��1
; � � � ; ��n

) is the unit of �n
1�i. 2

Therefore, like homomorphisms, mutumorphisms can be considered as a good
characterization of computational model as well. In the rest of this paper, we
shall focus on how to derive mutumorphisms from sequential programs in a very
general form that is powerful to describe most algorithms of interest.

4 Parallelization Laws

Before giving our parallelization algorithm, we shall develop several elementary
parallelization laws for parallelizing sequential programs, each of which is to capture
one basic syntactic structure of expressions in the de�nition body. We develop these
laws basically based on the parallel synthesis method (second order generalization
+ induction) [CTT97]. We omit the discussion of the detailed development process
where some extension of the parallel synthesis method has been done [HT97]. This
is beyond the scope of this paper.

4.1 Basic form

Sequential programs are usually speci�ed in the following recursive way

f (x : xs) = g x xs� f xs

reading that the result of f over a list x : xs consists of two parts: g x xs, the
result of another function being applied to the whole list, and f xs, the recursive
partial result. These two parts are then grouped together by a binary operator �.

Certainly, not all sequential programs have e�cient parallel counterparts. If the
� is associative, we then have the following divide-and-conquer parallel program
for f .
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Theorem 3 (Associativity) Given is a sequential program

f [ ] = e
f (x : xs) = g x xs� f xs

where � denotes an associative binary operator. Then, for any non-empty lists xs
and ys, we have

f [x] = g x [ ]� e
f(xs++ ys) = G xs ys� f ys

where G is a function de�ned by

G [x] z = g x z
G (xs++ys) z = G xs (ys++ z)�G ys z

Proof: We prove the new de�nition of f by induction on the length of the non-
empty list xs.

� Base: In case xs = [x], we have

f (xs++ ys) = f Assumption g
f ([x] ++ ys)

= f trivial g
f (x : ys)

= f By the given de�nition of f g
g x ys� f ys

= f De�nition of G g
G [x] ys� f ys

= f Assumption g
G xs ys� f ys

� Induction: In case xs = x : xs0, we have

f (xs++ ys) = f Assumption g
f ((x : xs0) ++ ys)

= f trivial g
f (x : (xs0 ++ ys))

= f De�nition of f g
g x (xs0 ++ ys)� f (xs0 ++ ys)

= f De�nition of G, and Inductive hypothes g
G [x] (xs0 ++ ys)� (G xs0 ys� f ys)

= f Associativity of � g
(G [x] (xs0 ++ ys)�G xs0 ys)� f ys

= f De�nition of G g
G ([x] ++xs0) ys� f ys

= f Since xs = x : xs0 g
G xs ys� f ys 2

This theorem shows a mechanical way to turn a sequential de�nition of f into
mutumorphisms which can be automatically transformed into e�cient3 homomor-
phisms by application of the tupling theorem. Notice that the sequential programs

3 By e�ciency, we mean that redundant computations due to multiple data traversals of the
input by several functions in the mutumorphisms are removed.
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that can be dealt with here are much more general than left/right reductions in
the sense that the xs is allowed to be used by g.

One problem with the theorem is the increasing size of the second parameter of
G in G's de�nition, i.e., ys++ z. This may introduce redundant computations (due
to multiple data traversals of the input data by several functions) which cannot
be eliminated by the tupling transformation. To remedy this situation, we make
explicit the computations on xs in g in Theorem 3, as shown in the following
corollary.

Corollary 4 Given is a sequential program

f [ ] = e
f (x : xs) = g x (g0 xs)� f xs

where � denotes an associative binary operator and g0 is a homomorphism ([f 0;�0]).
Then, for any non-empty lists xs and ys, we have

f [x] = g x (g0 [ ])� e
f(xs++ ys) = G xs (g0 ys)� f ys

where G is a function de�ned by

G [x] z = g x z
G (xs++ys) z = G xs (g0 ys�0 z)�G ys z

2

Although we restrict g0 to a homomorphism, it indeed covers more general
mutumorphisms, because a mutumorphism can be turned into a composition of
a projection function with a homomorphism and the projection function can be
moved to g.

On the other hand, when there is no function in g that is applied to xs in
Theorem 3, we can simply eliminate the second parameter of G, as shown in the
following.

Corollary 5 Given is a sequential program

f [ ] = e
f (x : xs) = g x� f xs

where � denotes an associative binary operator. Then, for any non-empty lists xs
and ys, we have

f [x] = g x� e
f(xs++ ys) = G xs� f ys

where G is a function de�ned by

G [x] = g x
G (xs++ ys) = G xs�G ys 2

To give an example of the use of the above theorem and corollaries, consider
a simple simulation program (with a single server and queue) to compute the
departure and arrival times for a sequences of events [(sn; an); � � � ; (s1; a1)], where
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a1; � � � ; an are the inter-arrival time gaps between n events, and s1; � � � ; sn are the
corresponding service time.

depart [ ] = 0
depart ((s; a) : xs) = (s+ a+ arrive xs) " depart xs
arrive [ ] = 0
arrive ((s; a) : xs) = a+ arrive xs

Here " is an associative operator which accepts two values and returns the bigger.
Applying Corollary 5 to the sequential program arrive gives

arrive [(s; a)] = a
arrive (xs++ ys) = Ga xs+ arrive ys
Ga [(s; a)] = a
Ga (xs++ys) = Ga xs++Ga ys

Notice g (s; a) = a and � = +. Although we could see that Ga is equal to
arrive, our calculation approach should avoid comparing two functions which is
impossible in general. Instead, we apply the tupling transformation to turn arrive

to the composition of a projection and a homomorphism.

arrive = �1:g
0

g0 [(s; a)] = (a; a)
g0 (xs++ ys) = g0 xs�0 g0 ys

where (x1; y1)�
0 (x2; y2) = (y1 + x2; y1 + y2):

Here, g0 [ ] = (0;�) where � stands for a \don't-care" value which is not necessary
during computation. So much for arrive. Now we turn to depart by using Corollary
4. In this case, we have g (s; a) z = s+a+�1 z and g0 as de�ned above. Therefore,
we get

depart [(s; a)] = s+ a+ 0
depart (xs++ ys) = Gd xs (g0 ys) " depart ys
Gd [(s; a)] z = s+ a+ �1 z
Gd (xs++ys) z = Gd xs (g0 xs�0 z) " Gd ys z

This is the parallel version we'd like to get in this paper, although it is currently
ine�cient as there are multiple recursive calls in the RHS which operate on the same
input. But this can be automatically improved by tupling calculation as intensively
studied in [HIT96a, HIT96c, HITT97]. For instance, we can tuple depart, Gd, and
g0, (i.e., tup xs c = (depart xs;Gd xs c; g

0 xs)), and automatically get the following
�nal e�cient parallel program for depart.

depart xs = x; where (x; y; (z; w)) = tup xs (0;�)
tup [(s; a)] (z;w) = (s+ a; s+ a+ �1 z; (a; a))
tup (xs++ ys) (z; w) = let (x1; y1; (z1; w1)) = tup xs

(x2; y2; (z2; w2)) = tup ys
in (y1 z2 " x2; y1 (w1 + z; w1 + w); (w1 + z2; w1 + w2)))

It is worth noting that tup can be parallelly implemented with multiple pro-
cessor system supporting bidirectional tree-like communication, using the time of
O(logn) where n denotes the length of the input list based on the algorithm in
[Ble89, Gib92]. Two passes are employed; an upward pass in the computation can
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be used to compute the third component of tup xs c (in order to get the values
of the underlined parts) before a downward pass is used to compute the �rst two
values of the tuple.

This example has also been studied in [GLM90] and [CTT97]. Di�erently, our
derivation turns out to be a mechanical symbolic manipulation.

4.2 Accumulation

Another important syntactic structure in a recursive de�nition is accumulating pa-

rameters which are helpful to store information for later computation. One example
is the sbp problem in the introduction, where a counter is used for accumulation.
The following theorem is a natural extension of Theorem 3 in order to deal with
accumulating parameters.

Theorem 6 (Accumulation) Given is a sequential program

f [ ] c = g1 c
f (x : xs) c = g2 x xs c� f xs (g3 x
 c)

where � and 
 are two associative binary operators. Then, for any non-empty lists
xs and ys, we have

f [x] c = g2 x [ ] c� g1 (g3 x
 c)
f(xs++ys) c = G2 xs ys c� f ys (G3 xs
 c)

where G2 and G3 are functions de�ned by

G2 [x] z c = g2 x z c
G2 (xs++ ys) z c = G2 xs (ys++ z) c�G2 ys z (G3 xs
 c)
G3 [x] = g3 x
G3 (xs++ ys) = G3 ys
G3 xs

2

Again, Theorem 6 can be improved in a similar way to what we did for Theorem
3, which will not be repeated here. It should be noted that we place the restriction
that the value is accumulated by an associative operator 
. This makes room for
parallelizing accumulation computation.

For a use of the theorem, recall the sbp problem given in the introduction. By
the technique for manipulating conditional structure in [CDG96], we can turn the
de�nition of sbp0 into the following.

sbp0 (x : xs) c = (if x =0 (0 then True else (if x =0)0 then c > 0 else True)) ^
sbp0 xs (if x =0 (0 then c+ 1 else (if x =0)0 then c� 1 else c))

Now matching it with the sequential program in Theorem 6 yields

g1 c = c = 0
g2 x xs c = if x =0 (0 then True else (if x =0)0 then c > 0 else True)
g3 x = if x =0 (0 then 1 else (if x =0)0 then (�1) else 0)
� = ^

 = +
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It follows directly from Theorem 64 that

sbp0 (xs++ ys) c = G2 xs c ^ sbp0 ys (G3 xs+ c)

where

G2 [x] c = if x =0 (0 then True else (if x =0)0 then c > 0 else True)
G2 (xs++ ys) c = G2 xs c ^ G2 ys (G3 xs+ c)
G3 [x] = if x =0 (0 then 1 else (if x =0)0 then (�1) else 0)
G3 (xs++ ys) = G3 ys+G3 xs

This result can be easily improved by tupling sbp0, G2 and G3 using the algorithm
in [HITT97]:

sbp0 xs c = s; where (s; g2; g3) = s23 xs c
s23 [x] c = if x =0 (0 then (c+ 1 = 0;True; c+ 1) else

(if x =0)0 then (c� 1 = 0; c > 0; c� 1) else (c = 0;True; c))
s23 (xs++ ys) c = let (sx; g2x; g3x) = s23 xs; (sy; g2y; g3y) = s23 ys

in (g2x c ^ sy (g3x+ c); g2x c ^ g2y (g3x+ c); g3x+ g3y)

Similar to the discussion for the �nal parallel program of depart, s23 can be par-
allelly implemented using the time of O(logn) where n denotes the length of the
input list based on the algorithm in [Ble89, Gib92].

This example is taken from [Col95] where only an informal and intuitive deriva-
tion was given. Although our derived program is a bit di�erent, it is as e�cient as
that in [Col95].

4.3 Conditional Structure

Conditional structure is important in a recursive de�nition. Related work can
be found in [FG94, CDG96], where transformation on conditional expressions is
proposed. Take a look at the following sequential program solving the least sorted

pre�x (lsp for short) problem [Gib96].

lsp [x] = [x]
lsp (x : xs) = if x < hd xs then [x] ++ lsp xs else [x]

Our parallelization law with regard to the conditional structure is as follows.

Theorem 7 (Condition) Given is a sequential program

f [ ] = e
f (x : xs) = if g1 x xs then g2 x xs� f xs else g3 x xs

where � denotes an associative binary operator. Then, for any non-empty lists xs
and ys, we have

f [x] = if g1 x [ ] then g2 x [ ]� e else g3 x [ ]
f(xs++ ys) c = if G1 xs ys then G2 xs ys� f ys else G3 xs ys

4 Note that the second parameter of G2 is a dead one (i.e., not necessary) and has been removed.
It is similar to the case in Corollary 5.
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where G1, G2 and G3 are functions de�ned by

G1 [x] z = g1 x z
G1 (xs++ ys) z = G1 xs (ys++ z) ^G1 ys z
G2 [x] z = g2 x z
G2 (xs++ ys) z = G2 xs (ys++ z)�G2 ys z
G3 [x] z = g3 x z
G3 (xs++ ys) z = if G1 xs (ys++ z) then G2 xs (ys++ z)�G3 ys z

else G3 xs (ys++ z) 2

We will not address how to improve this theorem by extracting recursive func-
tions on xs from g1, g2 and g3, and by deleting xs in case xs is not used by g1, g2
and g3, just like Corollary 4 and 5. Returning to the lsp sequential program, we
can get the following parallel program according to this theorem.

lsp (xs++ ys) = if G1 xs (hd ys) then G2 xs� f ys else G3 xs

where G1, G2 and G3 are functions de�ned by

G1 [x] z = x < z
G1 (xs++ ys) z = G1 xs (hd ys) ^G1 ys z
G2 [x] = [x]
G2 (xs++ ys) = G2 xs ++G2 ys
G3 [x] = [x]
G3 (xs++ ys) = if G1 xs ys then G2 xs�G3 ys else G3 xs

In fact, G1 xs z de�nes a predicate which is True when xs is in increasing order
and the last element of xs is less than z, G2 is an identity function, and G3 is
the same as lsp. We ask the readers to apply tupling transformation to the above
program so as to get a �nal e�cient parallel program.

4.4 Multiple Recursive Calls

So far we have considered linear recursions, i.e, recursions with a single recursive
call in the de�nition body. In this section, we shall provide our parallelization
law for nonlinear recursions. For instance, the following l�b is a tricky nonlinear
recursion on lists, which computes the �bonacci number of the length of a given
list, mimicking the �bonacci function on natural numbers.

l�b [ ] = 1
l�b (x : xs) = l�b xs+ l�b0 xs
l�b0 [ ] = 0
l�b0 (x : xs) = l�b xs

To handle nonlinear recursive sequential programs, we need to make use of dis-
tributive property in order to parallelize them.

Theorem 8 (Distributivity) Assume that f1 and f2 are mutually recursive func-
tions de�ned by

f1 [ ] = e1
f1 (x : xs) = g1 x xs� (g11 
 f1 xs)� (g12 
 f2 xs)
f2 [ ] = e2
f2 (x : xs) = g2 x xs� (g21 
 f1 xs)� (g22 
 f2 xs)
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where � is associative and commutative, and 
 is associative and distributive w.r.t
�, i.e., for any x, y and z,

x
 (y � z) = (x
 y)� (x
 z):

Then, for any non-empty lists xs and ys, we have

f1 [x] = g1 x [ ]� (g11 
 e1)� (g12 
 e2)
f1 (xs++ ys) = G1 xs ys� (G11 xs
 f1 ys)� (G12 xs
 f2 ys)
f2 [x] = g2 x [ ]� (g21 
 e1)� (g22 
 e2)
f2 (xs++ ys) = G2 xs ys� (G21 xs
 f1 ys)� (G22 xs
 f2 ys)

where

G1 [x] z = g1 x z

G1 (xs ++ ys) = G1 xs (ys� z)� (G11 xs
G1 ys z)� (G12 xs
G2 ys z)
G2 [x] z = g2 x z

G2 (xs ++ ys) z = G2 xs (ys� z)� (G21 xs
G1 ys z)� (G22 xs
G2 ys z)
G11 [x] = g11
G11 (xs++ys) = (G11 xs
G11 ys)� (G12 xs
G21 ys)
G12 [x] = g12
G12 (xs++ys) = (G11 xs
G22 ys)� (G12 xs)
G22 ys)
G21 [x] = g21
G21 (xs++ys) = (G21 xs
G11 ys)� (G22 xs 
G21 ys)
G22 [x] = g22
G22 (xs++ys) z = (G21 xs
G12 ys)� (G22 xs
G12 ys)

2

We have two remarks. First, Theorem 8 can be easily generalized from two
functions that are mutually de�ned to n functions. Second, like Theorem 3 Theo-
rem 8 only gives a parallelization rule for recursions with multiple calls in a very
basic form. Other syntactic structures, like accumulating parameters and condi-
tional structure, can be dealt in a similar way as we did before, which will not be
made detailed in this paper. The interested readers are referred to [HT97].

Let's use this theorem to parallelize l�b function. To use the theorem, we should
notice that e1 = 1, e2 = 0, g1 x xs = g2 x xs = 0, g11 = g12 = g21 = 1, g22 = 0,
� = +, and 
 = �. And we can get the following parallel program after noticing
that G1 xs = G2 xs = 0.

l�b [x] = 1
l�b (xs++ ys) = (G11 xs� l�b ys) + (G12 xs� l�b0 ys)
l�b0 [x] = 1
l�b0 (xs++ ys) = (G21 xs� l�b ys) + (G22 xs� l�b0 ys)

where
G11 [x] = 1
G11 (xs++ys) = (G11 xs�G11 ys) + (G12 xs�G21 ys)
G12 [x] = 1
G12 (xs++ys) = (G11 xs�G22 ys) + (G12 xs�G22 ys)
G21 [x] = 1
G21 (xs++ys) = (G21 xs�G11 ys) + (G22 xs�G21 ys)
G22 [x] = 0
G22 (xs++ys) z = (G21 xs�G12 ys) + (G22 xs�G12 ys)
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which is an e�cient O(log n) parallel program. It would be interesting to see
that we have actually derived an O(logn) sequential algorithm for computing the
standard �b function. This could be seen if we replace all xs and ys in the program
by the length of xs and ys respectively.

5 Parallelization Algorithm

Several important parallelization laws have been given in the previous section. In
this section, we are going to propose our parallelization algorithm based on these
laws. Basically, we have to make clear the following issues.

� How to recognize associative and distributive operators in a program?

� How to apply these parallelization laws in a systematic way?

� How to turn a sequential program into the speci�c form that our laws can be
applied?

5.1 Recognizing Associative and Distributive Operators

Central to our parallelization laws is the use of associativity of a binary operator
� as well as distributivity of 
. As the �rst step, we must be able to recognize
them in a program. There are several ways. We may restrict our application
scope so that all associative and distributive operators can be made explicit, e.g.
in [FG94, CTT97]. Or, we may adopt some arti�cial methods like anti-uni�cation
[Hei94] to synthesize them. However, these approaches are not so satisfactory to be
used practically in a parallelization system. In this paper, rather than recognizing
all associative and distributive operators, we are interested in the associative and
distributive operators that are derivable from the resulting data type of the given
sequential program.

Associative Operators from Data Types

The use of the associative binary operator � in our parallelization laws indicates
that it should have the type

R! R! R

where R is the type of the given function that are to be parallelized. Such binary
functions are no1t uncommon. In fact every type R which has a zero constructor CZ

(a constructor with no arguments like [ ] for lists) has a function that is associative,
and that has the zero CZ for both a left and right identity. Such function � is
called zero replacement function in [SF94]:

x� y

which replaces all CZ in x with y. Rather than being involved in complicated
discussions, let's look at several examples. For the type of cons lists, we have a �
de�ned by

[ ]� y = y
(x : xs)� y = x : (xs� y)
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which is the list append operator ++ ; for the type of natural numbers, we have a
� de�ned by

0� y = y
(Succ n)� y = Succ (n� y)

which the integer addition +; and for the type of booleans, we have two such oper-
ators �1 and �2 corresponding to choosing True and Flase as a zero respectively,
which are de�ned by

True�1 y = y
Flase�1 y = Flase

and
True�2 y = True
Flase�2 y = y

It is not di�cult to see that they are exactly the boolean ^ and _.

Distributive Operators

Now that we have derived associative operators from data types. Associating with
some associative operator �, we may derive a most natural distributive operator

. We avoid formal addressing here. For example, for the type of natural numbers,
associating with + we have a distributive operator 
 de�ned by:

(x
) 0 = 0
(x
) (Succ n) = x+ x
 n

Clearly, 
 is our familiar �. This natural distributive operator is useful when we
deal with nonlinear recursions like the l�b function.

The ideas of derivation of associative and distributive operator from data types
are not new [SF93, SF94]. However, previous studies were essentially for the pur-
pose of automatic construction of monadic operators from type de�nitions. We
brought them here for our parallelization purpose.

5.2 Main Algorithm

In order to simplify our presentation and to make it clear the point of our paral-
lelization algorithm, we shall consider input programs to be single (not mutual)
recursions. So an input to our algorithm is the following sequential de�nition

f : [A]! C ! R
f [ ] c = g1 c
f (x : xs) c = body

where body is an expression. The accumulating parameter is probably unnecessary
which can then be eliminated. We shall use scan (or called pre�x sums) [Ble89,
FG94, Gor95] as our running example.

scan [ ] = [ ]
scan (x : xs) = x : (x+) � scan xs

The parallelization algorithm consists of �ve steps, as summarized below.
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Step 1: Making Associative Operator Explicit

First of all, we need to make the associative operator � be explicit in our program.
Such � is not an arbitrary associative operator; rather it is the zero replacement
operator derivable from the resulting type R which has a zero constructor CZ . To
this end, we represent (recursive) data constructors, used for producing the result,
in terms of �. For instances, when R is the cons list type (whose zero constructor
is [ ] and whose associate operator is ++), we have the rule

x : e) [x] ++ e

where we extract the list e from the constructor expression x : e. When R is the
type of natural numbers, we have

Succ e) (Succ 0) + e:

Returning to our running example, we should get

scan [ ] = [ ]
scan (x : xs) = [x] ++ (x+) � scan xs

Step 2: Normalizing body

In order to apply our parallelization laws, we shall turn the de�nition body into
our required forms. Based on the associative property of � and the following rule
concerning if expressions:

if p then e1 � e2 � e2 else e
0
1
� e0

2
� e0

3

) (if p then e1 else e
0
1
)� (if p then e2 else e

0
2
)� (if p then e3 else e

0
3
)

we can transform body into the following normal form.

e1 � e2 � � � � � en

where ei is

(i) an expression without recursive calls (to f), or

(ii) a recursive call (to f), or

(iii) a function application, say g e, where e is an expression of (ii) and g is another
function, or

(iv) an if expression, say if e10 then e20 else e30, where e20 or e30 are expressions
of form (ii) or (iii).

Looking at the scan example, we simply normalize the body to

[x] ++ (x+) � scan xs

in which the �rst underlined expression is of from (i) and the second can be con-
sidered as a function application g (scan xs) where g r = (x+) � r.

Step 3: Removing Recursive Calls by Fusion

Recall that the parallelization laws require that recursive calls be exposed to as-
sociative operators in the body rather than being wrapped in a function applica-
tion, and that the predicate part in a if expression does not contain any recursive
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call. However, as seen in Step 2, the normalized body may contain some expres-
sions violating this requirement. Fortunately, we may apply fusion calculation
[TM95, HIT96b, OHIT97] to remove the recursive calls and turn transform the
unexpected expressions into expected ones.

As an example, consider our running example of scan where the recursive call
scan xs does not directly expose to the associative operator ++ ; being included in
the expression (x+) � scan xs. Let scan0 xs x = (x+) � scan xs. We apply the
fusion calculation to scan0 and obtain the following result.

scan (x : xs) = [x] ++ scan0 xs x
scan0 [ ] y = [ ]
scan0 (x : xs) y = [x+ y] ++ scan0 xs (x+ y)

The new scan0 can be parallelized by Theorem 6, leading to a parallel scan.
One question remained is whether this fusion succeeds and if it succeeds whether

the fused program are suited for parallelization. Our current parallelization algo-
rithm will give up if the fusion calculation fails. If it succeeds, our parallelization
algorithm will parallelize the fused program as well.

Step 4: Applying Parallelization Laws

Now we are ready to use the parallelization laws to derive a parallel f . There are
three cases according to the structure of the normalized body.

� First, the transformed body has no recursive call to f . In this case, we step
to parallelize other functions in the body. For instance, for the following new
scan de�nition

scan (x : xs) = [x] ++ scan0 xs x

we should turn to parallelize scan0.

� Second, the transformed body has a single recursive call to f (a direct recursive
call or a recursive call inside a if structure), denoted by E[f] here and after.
We have three subcases.

{ body = e � E[f ]. We apply Theorem ?? or 7 for parallelization,
while trivially introducing a function from the expression e by de�n-
ing g x xs = e. For the example of scan' whose body is

[x+ y] ++ scan0 xs (x+ y)

we apply Theorem 6 to it while noticing g2 x xs c = [x + c], g3 x = x,
� = ++ , and 
 = +, and we get the following parallel version for scan0

after the elimination of the second parameter of G2.

scan0 (xs++ ys) c = G2 xs c++ scan0 ys (G3 xs+ c)
G2 [x] c = [x+ c]
G2 (xs++ys) c = G2 xs c++G2 ys (G3 xs)
G3 [x] = g3 x
G3 (xs++ys) = G3 ys+G3 xs

{ body = E[f ]� e. De�ning a new associative operator �̂ by x�̂y = y�x,
we turn the body into the �rst subcase, i.e., body = e�̂E[f ].
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{ body = e1 � E[f ] � e2. Here, we need to check if � is commutative. If
so, we exchange the positions of e2 and e3, transforming it to the �rst
subcase. Otherwise, we give up parallelizing.

� Third and last, the transformed body has over one recursive calls, say two for
simplicity. In this case, we require that � should be commutative and should
have a corresponding distributive operator 
 with the identity unit say �
.
If this requirement is satis�ed, we can transform body to the form

e� E1[f ]�E2[f ]

Then we can introduce a new function f 0 (in fact, f 0 is the same as f) and
have

f (x : xs) c = e� E1[f ]�E2[f
0]

f 0 (x : xs) c = e�E1[f ]�E2[f
0]

Now we are able to apply, e.g., Theorem 8 (see more discussion in Section
4.4), for parallelizing mutually de�ned functions f and f 0.

Step 5: Optimizing by Tupling Calculation

As demonstrate in the examples of the depart and the sbp', we need to perform
tupling calculation based on Theorem 2 in order to obtain �nal e�cient parallel
programs. More detailed studies on tupling calculation can be found in [HIT96a,
HITT97].

It is worth noting that our parallelization algorithm is correct and guarantees
to terminate. Although it gives up in case the conditions in the algorithm cannot
meet, our parallelization algorithm can be applied to a wider class of recursive
functions including many interesting programs, such as scans, lsp, and depart,
which are considered to be di�cult by some of the previous approaches.

6 Related Work

It has been attracting much attention to make use of list homomorphisms in paral-
lel programming [Ski92, Col95, Gor95, Gor96a, GDH94, HIT96a, HIT96c], because
they ideally suit the divide-and-conquer parallel paradigm. In fact, list homomor-
phisms are good characterizations of parallel computational models, and there are
a number of researches [Ski92, GDH94, Gor96a] on e�ciently mapping list homo-
morphisms to particular parallel architectures. Our work has been much in
uenced
by these work. We are particularly interested in how to derive list homomorphisms.

One popular way, known as calculational way [Ski90, Ski92], for derivation of
homomorphism is the use of program calculational laws in Bird Meertens Formal-
ism [Bir87]. It forces the initial programs to be described in terms of a small set of
specialized homomorphisms such as map and reduction, from which a more com-
plicated homomorphism are derived based on calculational laws such as promotion

rules. As illustrated in the paper, homomorphisms are rather limiting, excluding
many interesting programs. To remedy this situation, Cole [Col95] proposed the
idea of near homomorphism (or called almost homomorphism), a composition of
projection function with a homomorphsm, and gave a quite informal way showing
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how to write a new homomorphism to solve a problem. This idea was then formal-
ized by [HIT96a, HIT96c] where any natural programs de�ned over append lists
can be structured to be a composition of mutumorphisms and then be turned into
near homomorphisms. Basically, all the above approaches require programs to be
initially de�ned over append lists, the parallel view of lists.

What is more challenging is to derive homomorphisms from sequential programs
de�ned over cons or snoc lists, the sequential view of lists. To this end, some skele-
tons of sequential programs are de�ned whose list homomorphisms can be easily
derived, e.g., in [GDH94, Gor96a]. However, the prepared skeletons are slightly less
general and depend heavily on associativity of the operators in them where how
to �nd or determine an associative operator was not clear. Compared to them,
our approach does not restricted to any skeletons, giving a general parallelization
algorithm. Furthermore, our approach gives a way to recognize the associative
operator from the resulting data type.

Another idea in the calculational approach to derivation of list homomorphims
from sequential programs is the use the third homomorphism theorem [Gib96].
Barnard et al [BSS91] tried it for the language recognition problem. As pointed
by [Gor95], although the existence of an associative binary operator is guaran-
teed, the theorem does not address any e�cient way of calculating it. Gorlatch
[Gor95, Gor96a] proposed an idea of synthesizing list homomorphisms by general-
izing both leftward and rightward reduction functions. Since his idea was studied
in an informal way, and the generalization algorithm was not given, it is not so
clear how to do it in general.

Our work was greatly inspired by the parallel synthesis algorithm in [CDG96,
CTT97]. After determining a desired pre-parallel form for the initial recursive
equation based on the idea of synthesis from examples, sort of arti�cial intelligence
method, it uses the second order generalization to obtain a template equation and
uses an inductive derivation to derive unknown functions in the template. We
brought the transformations of the second order generalization and the inductive
derivation here for building our basic parallelization laws. What is di�erent is that
rather than determining a desired pre-parallel form from examples which requires
heuristics, we propose a constructive way to do so as seen in our parallelization
algorithm.

In traditional imperative languages there are also many ongoing e�orts at devel-
oping sophisticated techniques for parallelizing iterative loop [FG94]. This method
is based on a parallel reduction of function composition which are associative. It
de�ne a certain template form which can be e�ciently parallelized. However, it
needs a bit human insight to derive such template form from programs.

This work can be considered as a complementary of our previous work [HIT96a,
HIT96c]. Previous work starts from the speci�cation of a form which can be turned
into mutumorphisms, while this work shows how to derive mutumorphisms from
sequential speci�cations.
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7 Conclusions

In this paper, we propose a calculational framework for parallelizing any naive
sequential programs. Particularly, we give a constructive parallelization algorithm,
by developing a set of elementary but powerful parallelization laws and deriving
associative and distributive operators from the resulting data type. We illustrate
with several interesting problems that our parallelization algorithm can be applied
to a wide class of programs.

As to the future work, the current parallelization algorithm can be improved in
two respects. One is to reduce the number of new functions introduced. The other
is to enhence the power of the fusion calculation [TM95, OHIT97], enlarging the
application scope of our parallelization algorithm.
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