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Abstract

In the space of density matrix, two estimation-theoretically natu-

ral geometrical structures can be introduced: Uhlmann's parallelism

and Nagaoka's quantum information geometry. In this paper, intrinsic

relation between them is cleari�ed.
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1 Introduction

Quantum estimation theory deals with the identi�cation of the density ma-

trix or given system by use of data produced by appropriately desigened ex-

periment [4][5][6]. From this quantum-estimation-theoretical point of view,

there are two natural geometridal structures in the space of full rank den-

sity matrices. One is Uhlmann's parallelism and the other is Nagaoka's

information geometry.

Uhlmann's parallelism is generalization of Berry's phase, which, by far

con�rmed by several experiments, is a holonomy of a natural connection in

the line bundle over the space of pure states [1][3][12][13]. In 1986, Uhlmann

generalized the theory to include mixed states in the Hilbert space H [14][15]

[16].

It is pointed out that the Uhlmann's parallelism is deeply concerned with

quantum estimation theory. Concretely speaking, i� Uhlmann's curvature

vanishes, SLD CR bound is attained, which implies the non-commutative

nature of quantum mechanics is not relevant in the model [8] .

In the classical estimation theory (in this paper, the estimation theory

of probability distributions is called classical estimation theory in the sense

the theory is not quantum nechabical), S. Amari and their collaborators

have shown that a `dual connection' plays important role in the higher-

order asymptotic theory. This geometrical theory of statistics is known as

`information geometry' [2]. Nagaoka, one of Amari's collaborators, formu-

lated the quantum version of information geometry and showed that the

geometry nicely characterizes models which have e�cient estimators.

This paper sheds light on the intrinsic relation between two geometries.

Also, a kind of `duality' between SLD and RLD, both of which are important

concept in the quantum estimation theory, is pointed out, and applied to

the consideration of the canonical distribution.
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2 Horizontal lift and SLD

In this paper, d � dimH is assumed to be �nite for the sake of clarity,

and desnsity matrices are full rank. The author believe the essence of the

discussion will not be damaged by this restriction.

Let Wd be the space of d� d complex and full-rank matrix W such that

trWW � = 1;

P+ the space of density operators whose rank is d, and � the map from Wd

to P+ such that

� = �(W ) �WW �:

Because �(WU) is identical to �(W ) i� U is a d � d unitary matrix, it is

natural to see the space Wd as the total space of the principal �ber bundle

with the base space P+ and the structuregroup U(d) [7]. One possible phys-

ical interpretation of W is a representation of a state vector jW i in a bigger

Hilbert space H
H0. Here, the dimension of H0 is r and the operation �(�)

corresponds to the partial trace of jW ihW j over H0.

In this section, basic concepts about the tangent bundle T (Wd) overWd,

which is a real manifold with the real parameter � = (�1; :::; �2d
2�1)T , are

introduced.

Thematrix representationM(@=@�i) of the tangent vector @=@�i (through-

out the thesis, the tangent vector is understood as the di�erential operator)

is a d� r complex matrix such that

M

�
@

@�i

�
� 2

@

@�i
W (�):

The real span of the matrix representations is

fX jRe trXW �(�) = 0;X 2M(d; r;C)g:

We introduce the inner product hh�; �iiW to T (Wd) such that,

hhX̂; Ŷ iiW

�
X
i;j

(Re(MX̂)ijRe(MŶ )ij + Im(MX̂)ijIm(MX̂)ij)

= Re tr( (MX̂)(MŶ )� );
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which is invariant under the action of U 2 U(d) to the matrix representation

of the tangent vector from right side,

U 2 U(d);

hh (MX̂)U; (MŶ )UiiWU = hhMX̂;MŶ iiW

Let us decompose TW (Wd) into the direct sum of the horizontal subspace

LSW and the vertical subspace KW where LSW is de�ned by

LSW � fX̂ jW
�(MX̂) = (MX̂)�Wg; (1)

and KW is the orthogonal complement space TW (Wd)	 LSW with respect

to the inner product hh�; �iiW . X̂ 2 KW satis�es

(MX̂)W � +W (MX̂)� = 0; (2)

or its equivalence,

��(X̂) = 0; (3)

where �� is the di�erential map of �. A member of the horizontal subspace

and the vertical subspace are called a horizontal vector and vertical vector,

respectively. The image of X̂ 2 TW (Wd) by the projection onto the horizon-

tal subspace LSW is called the horizontal component, while the image by

the projection onto the vertical subspace KW is called vertical component.

The horizontal lift hW is a mapping from T�(W )(P+) to TW (Wd) such

that

��

�
h
W
(X)

�
= X;

h
W
(X) 2 LSW :

Because of the following theorem, the matrix representation of the horizontal

lift ��(hW (X)) is a representation of the tangent vector X 2 T�(W )(P+).

Theorem 1 hW is a isomorphism from T�(W )(P+) to LSW .
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Proof First, notice that for any Ŷ 2 TW (Wd), W + "M(Ŷ ) also is a

member of Wd if " is small enough. Therefore, we have

��( TW (Wd) ) � T�(W )(P+):

Second, we prove that the map ��jLSW is a one to one map from LSW

to T�(W )(P+). For that, it is su�cient to prove that X̂ = 0 when X̂ 2 KW .

This statement is proved to be true because KW is orthogonal to LSW .

Finally, checking the dimension of T�(W )(P+) is equal to LSW , we have

the theorem. 2

Using the horizontal lift, the inner product h�; �i in T (P+) is deduced

from hh�; �ii:

hX;Y i�(W ) =

��
h
W
(X); h

W
(Y )

��
W
:

The horizontal lift h satis�es the following equality so that the above

de�nition of the inner product h�; �i is self-consistent:

��
h
W
X; h

W
Y

��
=

��
h
WU

X; h
WU

Y

��
; (U;U 0 2 U(n) ):

The symmetrized logarithmic derivative (SLD, in short) ofX 2 T�(W )(P+)

is the Hermitian operator LSX in H de�ned by the equation

X�(�) =
1

2
(LSX�(�) + �(�)LSX); (4)

where � is a real parameter which is assigned to a member of P+. I� the

density operator is strictly positive, SLD is uniquely de�ned by (4). LS@=@�i

is often denoted simply by LSi .

SLD is closely related to the horizontal lift by the following equation:

M

�
h
W
X

�
= LSXW: (5)
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3 De�nition of Uhlmann's parallelism

Berry's phase, by far con�rmed by several experiments, is a holonomy of a

natural connection in the line bundle over the space of pure states [1][3]. In

1986, Uhlmann generalized the theory to include mixed states in the Hilbert

space H [14][15] [16]. For notational simplicity, the argument � is omitted,

as long as the omission is not misleading.

De�ne a horizontal lift of a curve C = f�(t)jt 2 Rg in P+ as a curve

Ch = fW (t)jt 2 Rg in Wd which satis�es C = �(Ch) and

dW (t)

dt
=M

 
h

W (t)

�
d

dt

�!
: (6)

Then, the relative phase factor (RPF) between �(t0) and �(t1) along the

curve C is the unitary matrix U which satis�es the equation

W (t1) = Ŵ1U;

where Ŵ1 satis�es �(t1) = �(Ŵ1) and

Ŵ �

1W (t0) = W �(t0)Ŵ1:

RPF is said to vanish when it is equal to the identity.

4 RPF for in�nitesimal loop

The RPF for the in�nitesimal loop

(�1; :::; �i; :::; �j + d�j ; :::; �m)  (�1; :::; �i + d�i; :::; �j + d�j; ::::; �m)

# "

� = (�1; :::; �i; :::; �j; ::::; �m) ! (�1; :::; �i + d�i; :::; �j; ::::; �m)

(7)

is calculated up to the second order of d� by expanding the solution of the

equation (6) to that order:

I +
1

2
W�1FijW d�id�j + o(d�)2;

Fij = (@iL
S
j � @jL

S
i )�

1

2
[LSi ; L

S
j ]: (8)
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Note that Fij is a representation of the curvature form, and that RPF for

any closed loop vanishes i� Fij is zero at any point inM.

5 Nagaoka's quantum information geometry

In this section, we give brief review of Nagaoka's quantum information geom-

etry, which is another geometrical theory of the quantum statistical model

than Uhlmann's parallelism.

In the Nagaoka's geometry, metric tensor is chosen to be SLD Fisher

information matrix. Letting LS denote the linear mapping from the tangent

vector to its SLD, e-parallel transport
`(e) is de�ned as follows:

L
S

 a(e)

�!�

X

!
� L

SX � tr(�LSX): (9)

Note that in the faithful model, LS is one to one mapping, and the equation

(9) de�nes the connection uniquely. The dual
`(m) of e-parallel transport

with respect to SLD inner product is called m-parallel transport,

8X;Y 2 T�(P+)

*a(m)

�!�

X;
a(e)

�!�

Y

+
�

= hX;Y i�:

For the autoparallel manifold in e-connection, the e- covariant derivative

is calculated as

L
S
�
r

(e)
X Y

�
= XLSY � tr�XLSY ;

and the tortion of e-connection T (e) as,

L
S
�
T (e)(X;Y )

�
= L

S
�
r

(e)
X Y �rYX � [X;Y ]

�
= XLS(Y )� Y LS(X); (10)

or, equivalently,

T (e)(X;Y )�(�) =
1

4
[[LSX ; L

S
Y ]; �]; (11)

where X and Y are understood as di�erential operators.
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Nagaoka showed that these e- and m-connections nicely characterize

the estimation theoretical properties of models, in a di�erent manner than

Uhlmann's parallelism. Is there any relation between the two geometrical

structures?

6 w-connection in W

To elucidate the relations between Uhlmann's parallelism and Nagaoka's

information geometry, we consider the geometry of the tangent bundle over

the total space Wd.

the logarithmic derivative L(X̂) of X 2 TW (Wd) is a d � d complex

matrix which satis�es the equation,

L(X̂)W =M(X̂): (12)

L(@=@�i) is often denoted by L@=@�i for simplicity. Notice the logarithmic

derivative is uniquely de�ned.

The real span of the logarithmic derivatives of at � is

fL jRe tr(L�(W (�))) = 0; L 2Md(C)g:

We introduce the w-connection in T (Wd) by the w-parallel transport

de�ned by

L

0
@ a(w)

W0!W1

X̂

1
A � LX̂ �Re tr(�(W1)LX̂): (13)

This w-parallel transport is left invariant under the action of U 2 U(d) in

the following sense:

L

0
@ a(w)

W0!W1

X̂

1
A = L

0
@ a(w)

W0U!W1

X̂

1
A = L

0
@ a(w)

W0!W1U

X̂

1
A :

The covariant derivative r(w) and the tortion w-tortion T (w)(X̂; Ŷ ) are

easily calculated for the w-autoparallel submanifold of Wd as

L

�
r

(w)

X̂
Ŷ
�

= X̂L(Ŷ )�Re tr
�
�(W )X̂L(Ŷ )

�
I
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LT (w)(X̂; Ŷ ) = L

�
r

(w)

X̂
Ŷ �r

(w)

Ŷ
X̂ � [X̂; Ŷ ]

�
=

1

2
[LX ; LY ]�Re tr

n
�(W )(X̂LY � Ŷ LX)

o
I;

(14)

where the tangent vector X̂ is understood as a di�erential operator, and I

is the identity in the Hilbert space H. The latter equation is equivalent to

MT (w)(X̂; Ŷ ) =
1

2
[LX ; LY ]W �Re tr

n
�(W )(X̂LY � Ŷ LX)

o
W; (15)

which is of use when the theory is generalized to non-faithful models.

7 Projection of geometric structures

In the beginning, we show that the Nagaoka's information geometry is nat-

urally induced from the geometry of the T (W).

As in the de�nition, the metric h�; �i in Nagaoka's quantum information

geometry is induced from the natural metric hh�; �ii in T (W).

Not only the metric h�; �i, but also the transport
`(e) is induced from`(w) :

� = �(W ) � = �(V )`(w)

X̂ = h
W
(X) 2 TW (W) �� �!

a(w)

W!V

X̂ 2 TV (W)

h " # ��

X 2 T�(P+) �� �!
a(e)

�!�

X 2 T�(P+)

`(e)

(16)

The horizontal lift h satis�es the following requirements so that the def-

inition of the transport
`(e) by the diagrams above are consistent:

��

 a(w)

W!V

h
W
(X)

!
= ��

 a(w)

WU!V U 0

h
WU

(X)

!
;
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Because of the diagram, it is quite easy to see that if the submanifold N

of W is w-autoparallel, the modelM = �(N ) is e-autoparallel.

Some elementary calculations leads to the following theorem, which il-

lustrates the relation between the two geometries.

Theorem 2 LetM be a submanifold of P+ which is induced from w-autoparallel

submanifold N of W by M = �(N ) and X and Y tangent vectors to P+

such that,

X =
X
i

xi
@

@�i
;

Y =
X
i

yi
@

@�i
:

T (w)(h(X); h(Y )) is decomposed into the sum such that

LT (w)(h(X); h(Y )) = L
ST (e)(X;Y )� FXY ;

FXY =
X
i;j

Fijx
iyj;

where L�1(LST (e)(X;Y )) is a horizontal vector and L�1FXY is a vertical

subspace.

In other words, the horizontal component of the w-tortion is the e-tortion

and the vertical component is the curvature form of the Uhlmann paral-

lelism.

8 The duality of SLD and RLD

First, we de�ne the right logarithmic derivative (RLD, in short), which

played quite important role in the estimation theory of the Gaussian model,

which is a superposition of the coherent states by the Gaussian kernel (see

Ref. [17] and pp. 80-90 of Ref. [6]).

RLD LRi (�) of the parameter �i is de�ned by the equation

@�(�)

@�i
= LRi (�)�(�);
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and RLD L
RX of the tangent vector by the equation

X̂�(�) = (LRX)�(�):

Our question is why we need two types of logarithmic derivatives, SLD

and RLD namely, and what the relations between them. To answer the

question, we interpret the total space Wd, like in the section 3, as the space

of the state vector j�i in the bigger Hilbert space H 
 H0, where we took

the dimension of H0 to be d, the dimension of H. Let us call H the observed

system, and H0 the hidden system, and the partial trace over H and H0 are

denoted by � and �0, respectively.

In terms of W , � and �0 write

�(W ) = WW � = �;

�0(W ) = W �W = �;

and �� and �
0
� write

��(X̂)� =
1

2
( (MX̂)W � +W (MX̂)� );

�0�(X̂)� =
1

2
( (MX̂)�W +W �(MX̂) ); (17)

The RLD subspace LRW of TW (Wd) is the space of all vectors which

satis�es,

L(X̂) = L
R(��(X̂)); (18)

or, its equivalence,

(MX̂)W � =W (MX̂)�: (19)

Then, from (17), (19) and (1), we have

LRW = fX̂ j L(X̂) = L
S(�0�(X̂))g; (20)

LSW = fX̂ j L(X̂) = L
R(�0�(X̂))g: (21)
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In other words, looking from the hidden system, the RLD subspace looks

like the horizontal subspace, and the horizontal subspace looks like the RLD

subspace. We call the fact (21) the duality between SLD and RLD.

The orthogonal complement subspace SKW of the RLD subspace is also

dual of KW in the following sense. SKW is the space of all the tangent

vectors which satis�es

LX̂ = �(LX̂)� (22)

or, equivalence,

(MX̂)W � +W (MX̂)� = 0; (23)

which yields

�0�(X̂) = 0: (24)

Metaphorically speaking, (3) and (24) implies that SKW looks like KW seen

from the hidden system.

(22) means that for any member X̂ of SKW , ��(X̂) corresponds to a

unitary motion of the observed system. The dual of this statement is also

valid: for any member X̂ of KW , �0�(X̂) corresponds to a unitary motion of

the hidden system. This statement re
ects the physical fact that the unitary

motion of the hidden system do not a�ect the observed system.

Lemma 1 The intersection of the LSW and LRW is given by

LSW \ LRW

= fX̂ j [LS(��(X̂)); �(W )] = 0; (LX̂)� = LX̂; g

= fX̂ j [LS(�0�(X̂)); �0(W )] = 0; (LX̂)� = LX̂; g: (25)

The intersection of the KW and SKW is given by

KW \ SKW

= fX̂ j [L(X̂); �(W )] = 0; (LX̂)� = �LX̂; g

= fX̂ j [L0(X̂); �0(W )] = 0; (LX̂)� = �LX̂; g; (26)
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where L0(X̂) is de�ned by

L
0(X̂) �W�1

M(X̂)

The former statement of the theorem means that for any vector X̂ 2

LSW \ LRW , ��(X̂) and �0�(X̂) correspond to the change of eigenvalues of

�(W ) and �0(W ), respectively. The latter statement implies that for any

vector X̂ 2 KW \ SKW , ��(X̂) and �0�(X̂) correspond to the change of the

phase of the eigenvectors of of �(W ) and �0(W ), respectively.

Proof (18) yields

��(X̂) = (LX̂)�(W ) = �(W )(LX̂)�;

which, combined with (5), yields

[(LX̂); �(W )] = 0

Because L(X̂) = L
S(��(X̂) holds true for any X̂ 2 LSW , we have the �rst

equality in (25). The second equality in (25) and the equalities in (26) are

obtained in the same manner. 2

9 Canonical distribution

In this section, as an application of the duality of SLD and RLD, we try an

estimation theoretical characterization of the canonical model.

One conspicuous feature of the canonical distribution model is that only

the eigenvalue of the density matrix is dependent on the parameter, and

that the eigenvector is left unchanged even if the parameter changed. Other

thermodynamical models, for example, the T � p model(
�(T; p)

����� �(T; p) =
X
!

j!ih!j exp

�
�

1

kBT
(E! � pV! �G(T; p) )

�)
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and the grand canonical model(
�(T; �)

����� �(T; �) =
X
!

j!ih!j exp

�
�

1

kBT
(E! � �N! + Y (T; �) )

�)

also share this feature. Here, H is the Hamiltonian and E! the !th eigen-

value of H , and j!i the !th eigenvector of H. We call the model which has

this feature the classical model.

Let us require �rst that the canonical distribution is a pure state in

the composite Hilbert space H 
 H0, where H is for the system and H0

for the heat bath ( taking trace over the heat bath, we have the canonical

distribution). In other words, we assume that the pure state model

N �
�
jW (T )ihW (T )j j jW (T )i 2 H 
H0

	
; (27)

the partial trace � over the hidden system H0 reduces to the canonical model

M. We denote by M0 the model induced from N by the partial trace �0

over the observed system H.

Second, we assume the following situation: the optimization of the mea-

surement in the estimator of the temperature over any of the following three

range

1. all the measurements in H

2. all the measurements in H0

3. all the measurements in H
H0

achieves exactly the same extent of the e�ciency. In usual situation, we can

achieve more e�ciency in the case of 3 than the other cases, for the range of

the optimization is larger. However, as for the macroscopic parameter like

the temperature, it is natural to assume that the measurement of the total

system do not bring about more information than the measurement of the

system. In addition, the measurement of the temperature in the system and

the heat bath must yield same amount of information, because they are in

the thermal equilibrium. In this situation, we say that the modelM and N

are maximally entangled.
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Theorem 3 The modelM andM0 induced by the projection � and �0 from

the pure state model N are classical i� they are maximally entangled.

To prove the theorem, we need the following fact in the pure state esti-

mation theory, which is explained in the later chapters in detail.

Fact The attainable lower bound of the variance of the unbiased estimator

of the pure state model (27) is given by 1=trA(T )A�(T ), where A(T ) is the

matrix representation of the tangent vector d=dT jW 2 TW (W) to the W.

Proof of the theorem Here, we assume dimH0 is equal to d = dimH. For

the e�ciency of the estimation in the case of 1 is equal to that in the case of

3, d=dT jW 2 TW (W) need to be a member of the horizontal subspace LSW ,

because the length of the horizontal component of d=dT jW 2 TW (W) gives

the SLD Fisher information of the modelM.

Mostly in the same manner, it can be proved that d=dT jW 2 TW (W) is

the member of LRW for the e�ciency of the estimation in the case of 2 to

be equal to that in the case of 3. Therefore,

d

dT

����
W
2 LSW \ LRW ;

which, mixed with lemma 1 leads to the statement of the theorem. 2

This theorem, which also applies to the grand canonical model and the

T � p model, characterize the entanglement between the heat bath and the

system.
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