
Berry's phase

in the quantum estimation theory,

and its intrinsic relation

with the complex structure

Keiji Matsumoto

METR 97-10 October 1997



Berry's phase in the quantum estimation theory,

and

its intrinsic relation with the complex structure

Keiji Matsumoto 1

Abstract

In this paper, it is pointed out that the Berry's phase is a good index
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1 Introduction

Berry's phase, discovered by M.V,Berry in 1982, convienced by many ex-

periments, is naturally interpreted as a curvature of natural connection in-

troduced on the line bundle over the space of pure states [1][2][19][20].

Berry's phase is a manifestation of non-commutative nature. Actu-

lally, various quantum mechanical phenomina, such as quantum hall e�ect,

Aharanov-Bohm e�ect, Yang-Tailor e�ect, and so on, cannot be predicted by

naive analogy of classical mechanics, and are explained in terms of Berry's

phase[19] . In the semi classical quantization, we need to add a term propo-

tional to the Berry's phase to the classical action[10]. Hence, it is reasonable

to consider that Berry's phase is a good measure of non-commutative nature

of the given system.

We shed light on this statement from the estimation theoretical point

of view: It is shown that the Berry's phase is a good index of degree of

manifestation of non-commutative nature in the quantum statistical model.

It is also pointed out that Berry's phase has intrinsic relation with the

`complex structure' of the Hilbert space.

The paper is organized as follows. Section 2 is review of quantum es-

timation theory and Berry's phase. In section 3, sections 5-6, relations

between Berry's phase and quantum estimation theory are discussed. In

section 4 and sections 7-sec:timereversal, relasions between Berry's phase

and the 'complex structure' is studied.

2 Preliminaries

2.1 Quantum measurement theory, the unbiased estimator

We denote by P1(H) the space of density operators of pure states in a

separable Hilbert space H. P1(H) is often simply denoted by P, P1.
Let 
 be a space of all possible outcomes of an experiment, and �(
) be

a �- �eld in 
. When the density operator of the system is �, the probability
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that the data ! 2 
 lies in B 2 �(
) writes

Prf! 2 Bj�g = tr�M(B); (1)

by use of the map M from �(
) to nonnegative Hermitian operator which

satis�es

M(�) = O;M(
) = I;

M(
1[
i=1

Bi);=
1X
i=1

M(Bi) (Bi \ Bj = �; i 6= j); (2)

so that (1) de�ne a probability measure (see Ref.[8], p.53 and Ref.[9], p.50).

We call the mapM the measurement, because there always exist an physical

experiment corresponds to the map M which satis�es (2) [21][16].

The purpose of the quantum estimation is to identify the density operator

of the given physical system from the data obtained by the appropriately

designed experiment. For simplicity, we usually assume that the density

operator is a member of a model, or a manifold of M = f�(�)j� 2 � �
Rmg � P , and that the parameter � is to be estimated statistically. For

example, M is the set of spin states with given wave function part and

unknown spin part. In this paper, we restrict ourselves to the pure state

model case, where any member of the model is pure state,

�(�) = �(j�(�)i)
� j�(�)ih�(�)j: (3)

To estimate the parameter, we performs an experiment to obtain the

data ! by which we calculate an estimator �̂ by estimator �̂(!). A pair

(�̂;M;
) of a space 
 of data, a measurement M , and an estimator �̂(�)
is also called an estimator. The expectation of f(!) with respect to the

probability measure (1) is denoted by E�[f(!)jM ].

The estimator (�̂;M;
) is said to be unbiased if

E�[�̂(!)jM ] = � (4)
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holds for all � 2 �. If (4) and

@iE�[�
j(!)jM ] = �ji (i; j = 1; :::;m);

where @i stands for @=@�
i, hold at a particular �, (�̂;M;
) is called locally

unbiased at �.

2.2 SLD CR inequality, the attainable CR type bound

Analogically to the estimation theory of probability distributions, in the

quantum estimation theory, we have the following SLD CR inequality, which

is proved for the exact state model by Helstrom [7][8], and is proved for the

pure state model by Fujiwara and Nagaoka [5]:

V�[�̂(!) jM ] �
�
JS(�)

��1
; (5)

i.e., V�[�̂(!) jM ]� (JS(�))�1 is non-negative de�nite. Here V�[�̂(!) jM ] is a

covariance matrix of an unbiased measurement M , and JS(�) is called SLD

Fisher information matrix, and is de�ned by

JS(�) � [Rehli(�)jlj(�)i] ; (6)

where jli(�)i (i = 1; :::;m) are de�ned afterward. JS�1 is called SLD CR

bound.

The horizontal lift jlXi of a tangent vector X 2 T�(�)(M) to j�(�)i, is
an element of H which satis�es

X�(�) =
1

2
(jlXih�(�)j+ j�(�)ihlX j); (7)

and

hlX j�(�)i = 0: (8)

Here, X in the left hand side (7) of is to be understood as a di�erential

operator. jli(�)i is de�ned to be a horizontal lift of @i 2 T�(�)(M) .

The inequality (5) is of special interest, because JS�1 is the one of the

best bounds in the sense that for any real hermitian matrix A which is larger
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than JS�1, there exists such an unbiased estimator M that V [�̂(!) jM ] is

not smaller than A.

However, the bound is not always attainable[12].

Theorem 1 The SLD CR bound is attainable i�

Imhli(�)jlj(�)i = 0 (9)

for any i; j.

The model is said to be locally quasi-classical at � i� (9) holds true at �.

If the model is no locally quasi-classical, therefore, we give up to �nd

a matrix which makes attainable lower bound of V [�̂(!) jM ]. and try to

determine the attainable CR type bound CR(G; �;M), which is de�ned by

CR(G; �;M) = minfTrGV�[�̂(!) jM ] jM is locally unbiased at �g (10)

for an arbitrary nonnegative symmetric real matrix G. G is called weight

matrix. To make the estimational meaning of (10) clear, let us consider the

case where G is diag(g1; g2:::; gm). Then, TrGV [�̂(!) jM ] is the weighed sum

of the covariance of the estimation of �i. If one wants to know, for example,

�1 more precisely than other parameters, then he set g1 larger than any

other gi, and pick up a measurement which minimize TrGV [�̂(!) jM ].

2.3 Berry's phase

In this section, we review the geometrical theory of Berry's phase.

Let us denote by ~H set of all the state vectors, or member of H with unit

length. Because the two state vectors correspond to the same state i� they

di�er with each other only in their phase factor, it is natural to consider ~H
as a principal �ber bundle with the base space P1 and the structure group

U(1).

A horizontal lift Ĉ = fj�(t)i j 0 � t � 1g of the curve C = f�(t) j 0 � t �
1g in P1 is de�ned to be a curve in ~H which satis�es �(t) = �(j�(t)i) and

jld=dt(t)i =
d

dt
j�(t)i: (11)

5



Then, the Berry's phase 
(C) for the curve C = f�(t) j 0 � t � 1g is de�ned
by

j�(1)i = ei
(C)j~�(0)i; (12)

where j~�(0)i satis�es �(j~�(0)i) = �(1) and

Imh�(1)j~�(0)i = 0: (13)

The model is said to be parallel i� Berry's phase for any curve in the model

vanishes.

The Berry's phase for the in�nitesimal loop

(�1; :::; �i; :::; �j + d�j ; :::; �m)  (�1; :::; �i + d�i; :::; �j + d�j; ::::; �m)

# "
� = (�1; :::; �i; :::; �j; ::::; �m) ! (�1; :::; �i + d�i; :::; �j; ::::; �m)

(14)

is calculated up to the second order of d� as

1

2
~Jijd�

id�j + o(d�)2;

where ~Jij is equal to
1
2Imhlijlji .

Geometrically,

X
i;j

~Jijd�
id�j (15)

corresponds to the curvature form.

3 SLD metric

It should be noted that the SLD FIsher information matrix is deeply con-

cerned with this �ber bundle structure. The horizontal lift Ĉ = fj�(t)i j 0 �
t � 1g of the curve C = f�(t) j 0 � t � 1g in P1 is geometrically character-

ized as

Ĉ = argmin
n
h _�(t)j _�(t)i

��� j�(t)i 2 ��1(�(t))o : (16)
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Therefore, SLD Fisher information JSt (t) of the parameter t is proportional

to `the shortest distance' between in�nitesimally distant two �bers ��1(�(t))

and ��1(�(t+ dt)).

Using this fact, SLD CR inequality in the case of one parameter pure

state model can be interpreted geometrically. Notice that by virtue of the-

orem 1, SLD CR bound is always attained in this case. Therefore, if SLD

Fisher information is smaller, it is harder to distinguish �(t) and �(t+ dt).

Because of geometrical characterization of SLD Fisher information in the

end of the last chapter, we can also say that the closer two �bers ��1(�(t))

and ��1(�(t+ dt)) are, the harder it is to distinguish �(t) from �(t+ dt).

In the following, we de�ne inner product h�; �i� in T�(M) by

h@i; @ji� =
h
JS(�)

i
ij
; (17)

because this metric (SLD metric, hereafter) seems to be estimation-theoretically

and geometrically natural.

4 D-transform

We de�ne a linear transform D� in T�(M) by

h@i;D�(@j)i� = ~Jij(�): (18)

D� is called D-transform. The non-zero eigenvalues of D� are denoted by

�i�j(�), where �j(�) is positive real number, and j runs from 1 to the half

of the rank of D-transform, and �j(�)s are sorted so that �1 � �2 � :::.
When dimM = 2,

�1(�) =
~J12(�)q
detJS(�)

; (19)

left hand side of which is Berry's along the curve which encloses unit area,

where the unit of area is naturally induced by the SLD metric.

It is worthy of remarking that the D� is related to the natural `complex

structure' of the Hilbert space H. Actually, D-transform is obtained by the

following procedure.
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First, we multiply the imaginary unit i to jlXi = M(h(jlXi)) and and

M�1 and �� are applied successively to ijlXi. since ��(M�1(ijlXi)) is not a
member of T�(M) generally, we project ��(M

�1(ijlXi)) 2 T�(P1) to T�(M)

with respect to the metric h�j�i�, and we obtain DX 2 T�(M).

Therefore, Berry's phase is deeply related to the `complex structure ' of

the Hilbert space.

multiplication of i

jlXi 2 spanRL �� �! ijlXi 2 spanRfL; iLg
" #M�1; ��

hj�i; M ��(M
�1(ijlXi)) 2 T�(P1)

" project # w.r.t. h�; �i�
X 2 T�(M) �� �! DX 2 T�(M)

D

5 Berry's phase as a measure of local non-commutative

nature

In this section, it is pointed out that Berry's phase for in�nitesimal loop

is good index of non-commutative nature of two parameters. As is already

mentioned, if the model has only one parameter, the SLD CR bound is

attainable, and the attainable CR type bound is,

CR(G; �0;M0) = TrGJS�1: (20)

In the multi-parameter case, however, the SLD CR bound is not necessarily

attainable, as an e�ect of non-commutative nature of quantum mechanics,

and

CR(G; �0;M0) � TrGJS�1: (21)

The author conjectures the di�erence between both sides of the inequality

increases as �js increase.

As a matter of fact, in the two parameter pure state model, we have the

following theorem [12].
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Theorem 2 Let M and M0 be a two parameter pure state model. Then,

if �1(�
0;M0) � �1(�;M) and JS(�0;M0) = JS(�;M), then for any weight

matrix G,

CR(G; �0;M0) � CR(G; �;M): (22)

This theorem means that in the two parameter model, if �1 is large, it

is hard to estimate �1 and �2 simultaneously.

What about the models with arbitrary number of parameters? By virtue

of theorem 1, if Berry's phase for any closed loop vanishes, the gap between

both sides of the inequality (21) vanishes.

As for general multi-parameter pure state models, we have [12],

CR
�
�; JS(�);M

�

=

�
TrRe

q
Im + iJS�1=2(�) ~J(�)JS�1=2(�)

��2

=
X
j

4

1 +
q
1� j�j(�)j2

: (23)

Though the estimation theoretical signi�cance of CR(JS) is hard to ver-

ify, the author claims that (23) support the author's conjecture.

6 Berry's phase as a measure of global non-commutative

nature

Even if the model is locally quasi-classical at any � 2 �, the best locally

unbiased estimator (�̂;M;
) is dependent on true value of the parameter �.

Therefore, to attain the bound globally, �̂, M must be changed adoptively

as the number of data increases [15].

A locally quasi-classical model is said to be globally quasi-classical when

the measurementM in the best triplet (�̂;M;
) is independent of true value

of the parameter, for, in this case, using the globally best measurement M ,

and processing data in the way classical estimation theory tells us, the SLD

CR bound is attained globally.
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In the faithful model case, or the case where the model is consisted of the

strictly positive density operator, it is pointed out the model globally quasi-

classical i� Uhlmann's RPF(relative phase factor) vanishes for any curve in

the modelKeiji:1997a. For Uhlmann's RPF is nothing but a generalization

of Berry's phase to the non-pure model, it is of interest to study if the similar

fact holds true for the pure state model.

For simplicity, we say that the manifold N in P1 is a horizontal lift of

the modelM if

�(N ) = M; (24)

8j�(�)i 2 N ; 1

2

@

@�i
j�(�)i 2 LS j�(�)i:

The horizontal lift N exists i�M is locally quasi-classical at any point. The

model is said to be quasi-parallel i� Berry's for any curve is 0 or �.

Theorem 3 If the modelM is quasi-parallel, that model is quasi- classical.

Proof First, apply Schmidt's orthonormalization to the horizontal lift N
ofM, to obtain the orthonormal basis B = fjeii j i = 1; 2; :::g such that N is

a subset of the real span of B. We immerse Hilbert space H into L2(R; C)

as

j�(�)i =
X
i

aijeii 7!
X
i

ai(�) i(x);

where f psii(x) j i = 1; 2; :::g is an orthonormal basis in L2(R; C). Then,

letting E(dx) = jxihxjdx, the triplet (�̂(�); E ;R) is one of the best estima-

tors. This assertion is easily proved by calculating the Fisher information

matrix of the family,(
p(x ; �) =

X
i

(ai(�))
2j i(x)j2

)
(25)

of probability distributions. 2
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The converse of the latter theorem is, however, not true, because the

following counter-examples exist.

Example We consider the position shifted model which is de�ned by

Mx = �(Nx)

Nx =
n
j�(�)i

��� j�(�)i = cconst.� (x� �)2e�(x��)2+ig(x��); � 2 R
o
;

where g the function such that

g(x) =

(
0 (x � 0);

� (x < 0):

Then, as easily checked, Nx is a horizontal lift of the model Mx, and

h�(�)j�(�0)i is not real unless � = n� (n = 0; 1; :::). However, SLD CR bound

is uniformly attained by the measurement obtained by the spectral decom-

position Ex(dx) = jxihxjdx of the position operator,where jx0i = �(x� x0).
as is checked by comparing SLD Fisher information of the model Mx and

the classical Fisher information of the probability distribution familyn
p(xj�)

��� p(xj�) = jh�(�)jxij2; � 2 Ro :
Note that j�(�)i is an eigenstate of the Hamiltonian

H(�) = � �h2

2m

d2

dx2
+
�h2

m

�
2(x� �)2 + 1

(x� �)2
�
;

whose potential has two wells with in�nite height of wall between them.

Example Let H be L2([0; 2�]; C), and de�ne a one parameter modelM
such that,

M = �(N )

N =
n
j�(�)i

��� j�(�)i = const.� (2� cos!) ei�(f(!��)+�); (0 � !; � < 2�)
o
;

(26)

where � is a real number and f the function de�ned by

f(! � �) =
(

! � � (! � � � 0)

! + 2� � � (! � � < 0)
:
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Physically, (26) is an eigenstate of the Hamiltonian H such that,

H(�) = � �h2

2m

�
d

d!
� i�

�2
+
A�B cos(! � �)
2� cos(! � �) ;

which characterize the dynamics of an electron con�ned to the one-dimensional

ring which encircles magnetic 
ax � = 2��c=e, where m is the mass of the

electron, �e the charge of the electron, c the velocity of light, and A, B the

appropriately chosen constant.

It is easily checked that N is a horizontal lift of the modelM, and that

the modelM is not parallel unless � = n� (n = 0; 1; :::). However, consider

the projection valued measure E! such that

E!(d!) = j!ih!jd!;

where j!0i = �(! � !0). Then, it is easily checked that the classical Fisher

information of the probability distribution familyn
p(!j�)

��� p(!j�) = jh�(�)j!ij2; 0 � !; � < 2�
o

is equal to the SLD Fisher information ofM.

7 The antiunitary operator

As is pointed out in the section 4, Berry's phase seems to have some intrinsic

relation with the `complex structure'. In this section, we study this point

using the antiunitary operator.

The transformation A

j~ai = Ajai; j~bi = Ajbi

is said to be antiunitary i�

h~aj~bi = hajbi;
A(�jai+ �jbi) = �Ajai+ �Ajbi;

where z means complex conjugate of z (see Ref [17] p.266).
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Theorem 4 The model is quasi-parallel i� the horizontal lift of the model

is invariant by some antiunitary operator.

Proof Suppose that any member of the manifold N = fj�ig in ~H is

invariant by the antiunitary operator A, and let j~�i = Aj�i; j~�0i = Aj�0i.
Then, we have

h�j�0i = h ~�0j~�i = h�0j�i 2 R:

Conversely, if h�j�0i is real for any j�i; j�0i 2 N , by Schmidt's orthonormal-

ization, we can obtain the orthonormal basis B = fjii j i = 1; 2; :::; dg such
that N is subset of the real span of B, which means any member of N is

invariant by the antiunitary operator KB, which is de�ned by,

KB
X
i

�ijii =
X
i

�ijii:

2

8 Time reversal symmetry

As an example of the antiunitary operator, we discuss time reversal opera-

tor (see Ref.[17], pp. 266-282). The time reversal operator T is an antiu-

nitary operator in L2(R3; C) which transforms the wave function  (x) 2
L2(R3; C) as:

T (x) =  (x) = Kfjxig (x):

The term `time reversal' came from the fact that if  (x; t) is a solution of

the Sch�odinger equation

i�h
@ 

@t
=

 
� �h2

2m
r2 + V

!
 ;

then  (x;�t) is also its solution.
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The operator T is sometimes called motion reversal operator, since it

transforms the momentum eigenstate eip�x=�h corresponding to eigenvalue p

to the eigenstate e�ip�x=�h corresponding to eigenvalue �p.
De�ne the position shifted model by

Mx = f�(�) j �(�) = �( (x� x0) ); x0 2 R3g;
and suppose that any member of the horizontal lift Nx of the model Mx

has time reversal symmetry. Then, since time reversal operator T is an-

tiunitary, the modelMx is quasi-classical in the wider sense. The spectral

decomposition of the position operator gives optimal measurement.

Now, we discuss the generalization of time reversal operator. The antiu-

nitary transform

T� : eip�x=�h ! ei�(p) e�ip�x=�h

is also called motion reversal operator, or time reversal operator.

If any member  (x�x0) of the horizontal lift Nx of the position shifted

modelMx is invariant by the time reversal operator T�,Z
R3

 (x� x0) (x� x00) dx 2 R (27)

holds true for any x0; x
0
0, which is equivalent to the premise of theorem 3.

Conversely, if (27) holds true, Fourier transform of (27) leads to

j	(p)j2 = j	(�p)j2;
where

	(p) =
1p
2�

Z
 (x)e�ip�x=�hdx:

Therefore, any member of Nx is transformed to itself by the time reversal

operator T� such that

T� : eip�x=�h ! ei(�(p)+�(�p) ) e�ip�x=�h;

where

ei�(p) =
	(p)

j	(p)j :

14



Theorem 5 A position shifted model is quasi-parallel if and only if there

exists the time reversal operator which transforms any member of the hori-

zontal lift Nx to itself.
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