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Abstract

This paper presents a functional-analytic framework for sampled-data control systems with gener-

alized samplers and holds. Notions of lifting-based transfer functions and their matrix representations

are introduced and several properties of the systems are derived. This framework covers a large class of

samplers and holds. In the latter half of this paper, the presented framework is applied to an analysis of

the best achievable performance of sampled-data control systems. Especially, this paper gives necessary

and su�cient conditions in order that the best achievable performance of sampled-data control systems

converges to that of continuous-time control systems as a sampling period tends to zero. This research is

motivated by the fact that, against our intuition, the best sampled-data performance does not necessarily

approach the best continuous-time performance. The conditions for the performance convergence are

obtained not only for a general case but also for special cases, which are practically important. The

conditions for the special cases have simpler forms and are easy to be tested.
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1. Introduction

A functional-analytic technique called lifting, which was introduced by Yamamoto [44, 45], enabled us

to analyze and synthesize sampled-data control systems considering not only their behavior at sampling

instants but also their intersample behavior. Thanks to intensive study in the subsequent years, our

methodology on sampled-data control systems has made large progress. Namely, the H1-synthesis problem

was solved in [5, 3, 39, 40, 24, 20], while the H2-synthesis problem in [8, 26, 4, 17]. A sampled-data L1-

synthesis was considered in [11, 2]. A sampled-data robust stabilization was studied in detail in [12] and

the references therein. In References [43, 9, 37], multirate samplers and holds were investigated along this

approach.

The objective of this paper is twofold. First, it presents a lifting-based framework for sampled-data

control systems with generalized samplers and holds. Second, based on the presented framework, this paper

analyzes the best achievable performance of sampled-data control systems. In particular, it gives necessary

and su�cient conditions in order that the best achievable performance of sampled-data control systems

converges to that of continuous-time control systems as a sampling period approaches zero. This research

is motivated by the fact that the former does not necessarily converge to the latter.

There are many papers that treat generalized holds in a lifting-based framework [18, 39, 24, 1, 28].

However, their classes of holds are too small to include even the �rst-order hold, which is often quoted as

an example of a generalized hold. On the other hand, a comparatively small number of papers considered
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generalized samplers [39, 22, 28]. Again, their frameworks are unsatisfactory because the ideal sampler,

which is the most frequently used in practice, cannot be treated there directly.

The framework proposed in this paper enlarges the class of considered samplers and holds by extending

the domain of their kernel functions from [0; � ] to [0;1), where � is the sampling period. Then, this frame-

work can model samplers and holds having memories as well as multirate samplers and holds. Moreover,

the framework can treat the ideal sampler by combining it with an anti-aliasing �lter. This idea also gives

a by-product that we can analyze and synthesize an anti-aliasing �lter by regarding it as a part of a gener-

alized sampler. Although an anti-aliasing �lter has been modeled as a part of a plant in the lifting-based

approach so far, it is appropriate to regard it as a part of a sampler. This is because one can design an

anti-aliasing �lter to improve a control performance and this feature of anti-aliasing �lters resembles that

of generalized holds. In this setup, this paper introduces a notion of lifting-based transfer functions with

their matrix representations. Based on this notion, some properties of the systems are derived. Especially,

this paper shows relationships between kernel functions and lifting-based transfer functions concerning

samplers and holds (Propositions ?? and ??) and presents a strong tool called an approximation lemma

(Proposition ??). There, duality between samplers and holds appears in a clear way.

The second objective of this paper is to investigate convergence of the best sampled-data control perfor-

mance. Intuitively, it seems obvious that the best achievable performance of sampled-data control systems

approaches that of continuous-time control systems as the sampling period goes to zero. Furthermore,

because engineers have believed this intuition, they have trusted sampled-data controllers and used them

in place of continuous-time controllers. Indeed, this intuition is shown to hold in the H2-context [35, 41]

and in the H1-context [18, 34] but only in special cases. In general, it does not hold as is seen from the

following example.

Example 1. Let us control a plant P , whose transfer function is 1=(s� 1), using a sampled-data control

scheme and a continuous-time control scheme as Figure 1. The purpose of control is to minimize the e�ect

that a sensor noise d(t) gives to a plant output y(t) in the sense of the L2-induced norm. In the sampled-

data control system, we carry out this minimization by tuning a discrete-time controller Kd that has a

time-invariant discrete-time state-space representation. On the other hand, in the continuous-time system,

we minimize this e�ect by tuning a continuous-time controller K, which is described by a time-invariant

continuous-time state-space representation. The symbols Sid

� and Hzo

� denote the ideal sampler and the

zero-order hold, respectively, both having a sampling period � > 0. Moreover, R� is an anti-aliasing low-

pass �lter whose transfer function is 1=(�s + 1). It seems reasonable that the bandwidth of R� is taken

proportionally to the Nyquist frequency �=� because undesirable aliases that should be cut o� appear

mostly at higher frequencies than the Nyquist frequency.

Figure 2 shows simulation results, where the algorithm of [3] is used for evaluation of the best sampled-

data control performance. The solid line stands for the best achievable performance of sampled-data

control. It is observed that it does not converge to the best performance of continuous-time control even if

the sampling period approaches zero. The broken line shows the result when R� is replaced by a �lter R

whose transfer function is 1=(s + 1). In this case, the sampled-data control performance converges to the

continuous-time control performance. �

Such a non-converging phenomenon makes us doubt our con�dence in a sampled-data control scheme.

Therefore, we have to consider when this non-converging phenomenon occurs and how can be avoided.

Actually, there is another experimental result that the performance convergence is related not only to
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Figure 1. Two systems to control P : (a) a sampled-data control system; (b) a continuous-

time control system. All the signs of the adders are positive.
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Figure 2. The best achievable performances measured by the L2-induced norms. The

solid line indicates the best sampled-data control performance with R� being an anti-

aliasing �lter and the broken line shows the best sampled-data control performance with R

being an anti-aliasing �lter. The dot-dash line stands for the best continuous-time control

performance.

anti-aliasing �lters but also to generalized holds. However, these system components have never been

investigated from this viewpoint.

This paper �rst identi�es the set of plants for which we can make the best sampled-data control per-

formance converge to the best continuous-time control performance by choosing an appropriate sequence

of samplers and holds. Here, the L2-induced norm (or the H1-norm) is assumed to measure control per-

formances. Then, this paper gives a necessary and su�cient condition in order that a provided sequence of

samplers and holds guarantees convergence of the best sampled-data performance to the best continuous-

time performance for any plant in the above set. This condition is split into a condition on holds and

a condition on samplers and these two conditions are dual to each other. By noting relationships to the

2-block problem in the H1-control theory [15], we can obtain another necessary and su�cient condition,

which is easier to be tested. Moreover, in the case that kernel functions of samplers and holds have special

structures, the condition can be simpli�ed more.

The non-converging phenomenon such as observed in Example 1 was �rst reported and theoretically

analyzed by Oishi [30, 31]. The contents of the present paper have partially appeared in [32, 33]. Recently,

Hara et al. reported several interesting simulation results on sampled-data systems with small sampling

periods, which include our non-converging phenomenon [19].

Section 2 is devoted to presenting a framework for sampled-data control systems and deriving their

properties. Then, in Section 3, convergence of the best sampled-data performance is investigated. Section 4

concludes this paper.
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The notation used in this paper is as follows. The imaginary unit is denoted by i. We write C[f1g as

Ce and the set f z j jzj > � or z =1g as D� for � > 0. Especially, D1 is simply written as D. The complex

conjugate of A is denoted by A. When A is a matrix or a vector, conjugate is taken componentwise.

The maximum singular value of a matrix A is expressed by �(A). The asterisk (�) stands for a complex-

conjugate-transpose matrix or an adjoint operator. The symbol `2 denotes the set of square-summable

one-sided sequences. We let L2 and L2[0; � ) express the sets of Lebesgue-square-integrable functions de�ned

on [0;1) and on [0; �), respectively. The elements of `2, L2, and L2[0; � ) may be vector-valued functions.

When there is a fear of confusion, the dimension of these spaces is explicitly described as (`2)n. In general,

the norm of a space X is written as k �kX . The symbol k �k denotes the L
2-induced norm unless speci�ed in

other way. Let H1 be the Hardy space composed of functions analytic and bounded in Re s > 0. (For ease

of distinction, the Hardy space that will be de�ned later regarding D in place of Re s > 0 is denoted byH1

with a bold italic font.) An element of H1 may be a matrix-valued function. The norm associated with

H1 is de�ned as kQkH1 := sup
Re s>0

�fQ(s)g. The symbol RH1 expresses the subset of H1 that consists

of real rational functions only. For a time-invariant continuous-time operator P , its transfer function is

de�ned based on the Laplace transform and is written as bP (s); for a time-invariant discrete-time operator

Pd, its transfer function is written as �Pd(z), which is de�ned from the z-transform. Here, z corresponds to

the unit-time advance operator. Finally, F(G;K) is the lower linear fractional transform.

2. A framework for sampled-data control systems

3. Convergence of sampled-data control performance

4. Conclusion

In the former half of this paper, a framework for sampled-data control systems is presented. Our framework

is general enough to cover systems with various generalized samplers and holds and can be used for analysis

of anti-aliasing �lters as well. Furthermore, it has a good property of duality between samplers and holds.

Although duality was presented also in the frameworks of [22, 28], our duality holds for a larger class of

samplers and holds and appears in more aspects of the theory such as the kernel functions of samplers and

holds, their state-space representations, the matrix representations of their transfer functions, and their

conditions for convergence.

Based on our framework, established methodologies for analysis and synthesis of sampled-data control

systems can be extended to more general system con�guration. Moreover, this framework gives a solid

basis to consider more advanced problems on sampled-data systems such as analysis and design of sampling

periods, anti-aliasing �lters, and generalized holds aiming at further improvement of control performance.

Especially, notions of lifting-based transfer functions and their matrix representations by use of operators

Es
m and eEs

m are considered to be useful. An approximation lemma (Proposition ??) shows a profound

relationship between sampled-data control systems and continuous-time control systems. This lemma plays

an important role not only in this paper but also in [34], where robust stability of sampled-data systems is

considered.

The latter half of this paper is devoted to a convergence analysis of the best sampled-data control

performance. First, this paper gives a theoretical bound that the sampled-data control performance can

achieve when controllers and sampling environments can be chosen as free parameters. Then, it presents
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a necessary and su�cient condition in order that a provided sampling environment sequence ensures con-

vergence to this theoretical bound for all plants. If we concentrate only on the plants such that recovery

of the best continuous-time control performance is possible, the above condition is necessary and su�cient

for convergence to the best continuous-time performance. This condition is made easier to be tested by use

of techniques for the 2-block problem in the H1-control theory. For special types of samplers and holds,

this condition is further simpli�ed.

It has been believed to be obvious that the best sampled-data control performance converges to the

best continuous-time control performance as the sampling period approaches zero. However, the results of

this research tell us that this property is more delicate than it appears at �rst glance. For example, the

hold Htr

� is similar to the zero-order hold Hzo

� in the point that their kernel functions change their shapes

proportionally to the sampling period. However, the former does not satisfy the condition for convergence

whereas the latter does. Without knowing the condition (b) of Theorem ??, we cannot see what is critically

di�erent in these two devices. On the other hand, our results suggest what is important for samplers and

holds in order to improve control performance. Namely, it is better that kernel functions of samplers and

holds do not have large spectra above the Nyquist frequency. Moreover, we have observed that Hankel

norms related to samplers and holds are also important. These knowledges can be a clue to solve more

advanced problems on sampled-data control systems mentioned above.
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