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Abstract

Systematic parallelization of sequential programs remains a major challenge in parallel
computing. Traditional approaches using program schemes are somewhat narrow in scope,
as the properties which enable parallelism are di�cult to capture via ad-hoc schemes. We
propose a more systematic approach to parallelization based on the notion of preserving the
context of recursive sub-terms. This approach can be used to derive a class of divide-and-
conquer programs. To enhance the methodology further, we advocate the use of required
constraints to widen the class of programs that could be handled. A unique feature of our
approach is that it supports both reusability and e�ciency. In particular, both general and
specialised contraints are gathered to make this marriage possible.
Keywords: Parallelization, Context Preservation, Conditional & Tupled Recurrences, Hier-

archy of Constraints.

1 Introduction

It is well-recognised that a key problem of parallel computing remains the development of e�cient and
correct parallel software. Many advanced language features and constructs have been proposed to alleviate
the complexities of parallel programming, but perhaps the simplest approach is to stick with sequential
programs and leave it to parallelization techniques to do a more decent transformation job. This approach
could simplify the program design and debugging processes, and allows better portability to be achieved.

We shall support this call by proposing an enhanced form of parallelization to enable the derivation
of parallel programs from sequential code. A particularly important form of parallelization involves the
exploitation of associativity/distributivity present in sequential codes to allow transformation into divide-
and-conquer style algorithms. Consider the following two generic list-type functions, parameterised by
function-type meta-variables: A;B, � and 
.

homo([x]) = A(x)
homo(x:xs) = A(x)
homo(xs)
lrec([x]) = B(x)
lrec(x:xs) = B(x)�(lrec(xs)
A(x))

Both functions are expressed sequentially through singleton [x] as base case, and list constructor (x:xs)

as its recursive case. (Note that the functions are expressed using ML-like pattern-matching equations.)
In both de�nitions, a single self-recursive call is embedded within one or more outer operators, such as
� and 
. By exploiting suitable properties on these outer operators, we could derive divide-and-conquer
style algorithms for their sequential functions.

For example, if 
 is associative we can guarantee the following parallel equation for homo.

homo(xr++xs) = homo(xr)
homo(xs)

This class of functions is commonly known as join-list homomorphism [Bir87, Ski90] (herewith abbre-
viated as homomorphism). Note that ++ denotes list-splitting when used in the LHS of an equation, but
denotes list-catenation when used in the RHS.

As for lrec, it has two outer operators � and 
. To provide for its parallel equations below, � and 


should be associative, with 
 distributing backwards over � via (a�b)
c = (a
c)�(b
c). This class of
functions is typically known as �rst-order recurrence1[Sto75].

1Though recurrences are typically used to describe parameter-less equations over arrays, we have generalized them to
refer to recursive functions with one or more parameters in this paper.
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lrec(cs,x) = let (u, )=ptup(cs,x) in u
ptup([x]) = (B(x),A(x))
ptup(xr++xs) = comb2(ptup(xr),ptup(xs))

where comb2((p1,u1),(p2,u2)) = (p1�(p2
u1),u2
u1)

Note the use of a parallel tupled function ptup which essentially computes ptup(xs)=(lrec(xs),homo(xs)).
In this parallel de�nition, lrec uses the results of homo as auxiliary calls, even though this is not speci�ed
in the original sequential de�nition. Such dependance on unspeci�ed auxiliary functions complicates the
parallelization process, since inventive insights may be required. Even more problematic is the fact that
program schemes, such as homomorphism and �rst-order (or even higher-order) recurrences, are still
inadequate for directly capturing certain classes of sequential programs that could be parallelized.

Particularly problematic are functions whose outer operators involve conditional expressions and/or
tuple constructs. A simple example is the single bracketing problem (abbreviated as sbp) to check if
brackets in a given string are properly paired. De�ned below is such a function which returns 0 for
properly paired brackets, a negative result for too many close brackets, and 1 for too many open brackets.
For example, sbp(\a+(b*(c/d))") ) 0, while sbp(\a*(((b+c)") ) 1 and sbp(\a*(b+c))+(c))") ) -2.

sbp([x]) = conv(x)
sbp(x:xs) = if (sbp(xs)�0) then sbp(xs)+conv(x) else 1
conv(x) = if x==`)' then -1 else if x==`(' then 1 else 0

Notice that there are two recursive calls to sbp(xs) in the RHS of the recursive equation. The �rst
call lies in the conditional's test, while the second call has both + and if as its outer operators. To make
the outer operators of these calls explicit, we can rewrite the recursive equation as:

sbp(x:xs) = (� (�1 ,�2 ,�3 ,r). if (r��1 ) then r+�2 else �3 ) (0, conv(x), 1, sbp(xs))

The lambda expression explicitly captures the outer operators of the recursive sbp(xs). This de�nition
lies outside of both join-list homomorphism2, and �rst-order recurrence. To support its parallelization,
we require the associativity of + and also the distributive and 
attening properties of the if conditional.
Sadly, these properties are still not enough for parallelization, and we also require an extra constraint,
namely �3 � �1 + �2 , on arguments f�igi21 ::3 of the outer lambda operator. We refer to this as a required
(invariant) constraint, for parallelization, and shall elaborate why it is needed in Sec 4.

This paper is about an enhanced methodology for deriving parallel programs directly from sequential
counterparts. We focus on an important extension which relies on required constraints for successful
parallelization. Such constraints are related to loop invariants which are typically associated with the
optimization and reasoning of iterative loops. Like loop invariants, our constraints must be kept invariant
across successive recursive calls. To the best of our knowledge, this is the �rst time that invariants are
being exploited for parallelization. The main contributions of our paper are:

� We propose an enhanced approach to parallelization which could handle a wide class of functions,
not restricted to conventional program schemes. A novel aspect of our approach is that it can be
augmented with required constraints to achieve more parallelization. (Sec 2 & 4)

� We provide a set of systematic techniques to handle recursive functions with conditional and tupled
constructs. Such functions are harder to parallelize, but this di�culty can be overcome by designing
a set of suitable normalisation rules. (Sec 3)

� We advocate a modular approach to parallelization which supports both reusability and e�ciency.
Generic schemes/constraints are developed where possible for wider reusability, but specialised
schemes/constraints are also explored for better coding. (Sec 5)

We shall consider a non-trivial problem, called maximum segment product, whose parallelization is
quite complex but can nevertheless be carried out systematically with our approach. (Appendix A)

2 A Theorem for Parallelization

Most optimisation techniques, such as partial evaluation[JGS93] and deforestation[Wad88], are based on
the notion of program specialisation, whose goal is to specialise programs to their speci�c contexts of use.

2In [Col95], this function is referred to as a near-homomorphism since there exists a more general tupled function (with
sbp as a component) that is a homomorphism, but not sbp itself. In fact, this applies to the lrec function as well.
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However, parallelization is a di�erent beast as the goal is to obtain more general parallel equations from
their sequential counterparts. Due to this di�erence, we have developed a new method for parallelization
based on generalizing from sequential examples [CTH98].

Consider a version of pre�x computation, ascan, with an accumulating parameter. Given an in-
put list xs=[x1; x2; : : : ; xn], ascan(xs,w) is de�ned to compute a corresponding list of pre�x operations,
[w
x1 ;w
x1
x2 ; : : : ;w
x1
x2
 � � �
xn ].

ascan([x],w) = [w 
 x]
ascan(x:xs,w) = [w 
 x]++ascan(xs,w 
 x)

(a)
ascan(x:xs,w) = [w 
 x]++ascan(xs,w 
 x)

?

Get Two Normalised Equations

(b)
ascan([x]++xs,w) = �1++ascan(xs,w 
 �2 )

where f�1=[w 
 x]; �2=xg
ascan([x,y]++xs,w)= �1++ascan(xs,w 
 �2 )

where f�1=[w 
 x]++[w 
 x 
 y]; �2=x 
 yg

?

Second-Order Generalization

(c)
ascan(xr++xs,w) = uG(xr,w)++ascan(xs,w 
 uH(xr))

?

Inductive Derivation

(d)
ascan(xr++xs,w) = ascan(xr,w)++ascan(xs,w 
 uH(xr))
uH([x]) = x
uH(xr++xs) = uH(xr)
uH(xs)

Figure 1: Steps for Example-Based Parallelization

We highlight ascan because its versatility for parallel computation is well-known[Ble89, BCH+93]. Our
method could automatically derive its parallel implementation. Its main steps are illustrated in Figure 1.
The key idea is to obtain two normalised sequential equations (see Fig. 1(b)) for ascan, whose contexts for
the recursive call and accumulative argument(s) are identical. In particular, the context for the recursive
call is (�̂h�i.�1++�), and that for the accumulative argument is (�̂h�i.�
�2 ). These contexts are identical
across both sequential equations of ascan. We refer to such contexts as recurring contexts (or R-contexts),
which contain R-holes (denoted by �) for the positions of recursive call (or accumulative argument). Such
R-contexts are recurring in nature since they allow their body to be replicated at the R-holes, when the
recursive call is unfolded.

The presence of two similar sequential equations permits a second-order generalization process to be
made where unknown functions, such as uG and uH in Fig. 1(c), are introduced. Inductive derivation
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can then provide de�nitions for the unknown functions. These unknown functions may be equivalent3 to
existing functions, and should be replaced to reduce unnecessary code, if so. In our example, uG is found
to have the same de�nition as ascan, while uH is given a new de�nition, as shown in Fig. 1(d).

To formalise this process, we have identi�ed a powerful property which guarantees parallelization,
based on the notion of preserving R-contexts across replication.

De�nition 1: Context Preservation Property
A R-context E is said to be preserved modulo replication if the following holds:

9Es: (E )TEshtiii2N ) ^ (Esh�iii2N � Esh�iii2N )TEsh
i ii2N )

where �i and �i are variables, 
i denote subterms not containing (includes referencing via local
variables) the R-hole, and � denotes composition.

Note that (E )TEshtiii2N ) denotes a normalisation process where the depth and number of occur-
rences of each R-hole is minimised[CTH98]. We refer to E as the original R-context, and Eshtiii2N as
the initial (normalised) R-context. Also, Esh�iii2N is referred as the skeletal R-context of Eshtiii2N in
which (maximal) sub-terms, i.e. ftigi2N , not containing the R-hole �, are replaced by distinct vari-
ables, f�igi2N . It is actually this skeletal R-context which is being preserved despite replication via
(Esh�iii2N � Esh�iii2N ))TEsh
iii2N . The presence of this property is su�cient to ensure parallelization.
Its presence permits both second-order generalization and the inductive derivation of unknown functions.

Example 1: Using the ascan example, the original R-context of its recursive call is E=�̂h�i.[w
x]++�.
Normalisation could not reduce the depth of �, and thus we return the same expression for the initial
R-context, namelyEshtiii2N=�̂h�i.[w
x]++�. The subterm [w
x] can be replaced by a distinct variable,
say �1 , giving the corresponding skeletal R-context as Esh�iii2N=�̂h�i.�1++�.

Based on this property, the parallelization process can be succinctly formalised by the following
theorem, originally proposed and proven in [CTH98].

Theorem 1: Context Preservation & Parallelization
Consider a linear self-recursive function where btjcnj=1 is an abbreviation for t1 ; : : : ; tn .

f(Nil,bvjcnj=1) = Ez

f(x : xs;bvjc
n
j=1) = Erhf (xs;bDrj hvj ic

n
j=1)i

This function can be successfully parallelized if the context preservation property holds for:

� The R-context of the recursive call, i.e. Er .

� Each R-context of the accumulative parameters, i.e. fDrj gj21 ::n .

Proof : Proof given in [CTH98]. 2

In the linear self-recursive class of functions, each recursive equation is only allowed a single self-
recursive call, but can have an arbitrary number of accumulative arguments, namely bvjcnj=1, which are
independent of each other. (Note that mutual-dependent parameters can always be converted to this
form by tupling the separate parameters together.) As we shall see, many sequential programs fall under
this class or can be easily converted to it.

To illustrate our theorem, consider the ascan example. The skeletal R-context of the recursive call is
�̂h�i.�1++�, while that for the accumulative argument is �̂h�i.�
�1 . Both these two skeletal R-contexts
can be preserved modulo replication, as illustrated below.

(�̂h�i.�1++�) � (�̂h�i.�1++�) )T f de�nition of � g

�̂h�i.�1++(�1++�)
)T f associativity of ++ g

�̂h�i.(�1++�1 )++�

3This is a syntactic check to determine if two functions are equivalent. Two functions are equivalent if their de�nitions
unify with each other.
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)T f form skeletal R-context g

(�̂h�i.
1++�)where 
1 = (�1++�1 )

(�̂h�i.�
�1 ) � (�̂h�i.�
�1 ) )T f de�nition of � g

�̂h�i.(�
�1 )
�1

)T f associativity of 
 g

�̂h�i.�
(�1
�1 )
)T f form skeletal R-context g

�̂h�i.�

1 where 
1 = (�1
�1 )

Since context preservation holds, our theorem guarantees its second-order generalization and inductive
derivation to yield the parallel equations shown in Fig 1(d). These parallel equations presently contain
redundant calls which can be eliminated by the automated tupling method of [Chi93, HITT97]. This
step is essential for obtaining work-e�cient parallel programs. In the case of ascan, we can obtain:

ascan(xs,w) = let (u, )=astup(xs,w) in u
astup([x],w) = ([w
x],x)
astup(xr++xs,w) = let f (u,v)=astup(xr,w); (a,b)=astup(xs,w
v) g in (u ++ a, v 
 b)

A remarkable aspect of our parallelization method is that it is extremely general. In particular, it is
equipped to handle more complex recurrences, including those with conditional and tupled constructs.
In the next section, we look at a core set of normalisation rules which facilitate parallelization.

3 Normalisation Rules

To facilitate parallelization, there is a need for a set of normalisation rules to transform our R-contexts
into some canonical form. The main principle behind our normalisation strategy is to preserve the location
and path of each R-hole in order to facilitate context preservation. To achieve this, we have proposed two
heuristics to guide our normalisation, namely:

De�nition 2: Heuristics/Guidelines for Normalisation Rules
Consider a R-context with one or more R-holes. Our normalisation shall attempt to:

� Minimise the deptha of the R-holes or their proxies.

� Minimise the number of occurrences of the R-holes or their proxies.

A proxy is a local variable which denotes either a R-hole or its component. 2

aDepth is de�ned to be the distance from the root of an expression tree. For example, the depths of
variable occurrences c,x,xs,c in (c+(x+sum(xs,c))) are 1,2,3,3 respectively.

When a R-context is replicated, its R-holes (or proxies) are likely to be replicated at greater depths,
and in larger numbers. The above two heuristics are aimed at transforming the replicated R-contexts
back to the original form.

We shall look at a core set of transformation rules that are guided by the above heuristics. The rules
are given in Figure 2. They are not meant to be exhaustive. To structure them, we organise them into
�ve categories, namely:

� Operator Replacement

� Flattening

� Duplicate Elimination

� Distribution

� Housekeeping
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Operator Replacement:
(1a) e1
e2 ) 
[e1; e2] IF 
 is associative & ^((e�1) _ (e�2))
(1b) e1�e2 ) �fe1; e2g IF � is associative & commutative ^((e�1) _ (e�2))
(1c) if b then e1 else e2 ) if f b ! e1; : b ! e2g IF (b�) _ (e�1) _ (e�2)
(1d) e1	e2 ) �[e1;:�e2] IF (a	b)	c = a	(b�c) ^� is associative

Flattening :

(2a) 
[~t1;
[~t2]; ~t3] ) 
[~t1; ~t2; ~t3] IF 9t 2 ~t2: t�

(2b) �f~t1;�f~t2g; ~t3g ) �f~t1; ~t2; ~t3g IF 9t 2 ~t2: t�

(2c) if B [ fbi! if fbij ! eijgj2Mg ) if B [ fbi ^ bij ! eijgj2M IF 9t 2 fbij ; eijgj2M : t�

(2d) if B [ fif fbij ! eijgj 2M ! eig ) if B [ f
W

j 2M
(bij ^ eij)! eig IF 9t 2 fbij ; eijgj2M : t�

Distributivity:
(3a) �[~a;
[b1 ; : : : ; bn ]] ) �
[ ��[~a; b1]; ::; ��[~a; bn]] IF 8a 2 ~a: :a� ^ 9i 2 1::n: b�i
(3b) 
[�[~a; b1]; ::;�[~a; bn]] ) ��[~a; �
[b1 ; : : : ; bn ]] IF 9i 2 1::n: b�i
(3c) beI hif fbi ! eigi 2N i ) if fbi ! beI heiigi 2N IF 9i 2 N: (b�i ) _ (e�i )

Duplicate Elimination:
(4a) �
[ ��[~a; b1]; ::; ��[~a; bn]] ) �[~a;
[b1 ; : : : ; bn ]] IF 9a 2 ~a: a�

(4b) if fbi ! beI heiigi 2N ) beI hif fbi ! eigi 2N i IF 8i 2 N: (:e�i ) ^ (eI
�
)

(4c) (a � e1) ^ (a � e2)) (a �min2[e1; e2]) IF (a�)
(4d) (a � e1) _ (a � e2)) (a �max2[e1; e2]) IF (a�)

Housekeeping:
(5a) if fbi ! egi 2N ) e

(5b) if B [ fTrue! eg ) e

(5c) if B [ fFalse! eg ) if B
(5d) if fbi ! eigi 2N [M ) if fbi ! eigi 2N [ f

W
j 2M

bj ! if fbi ! eigi 2Mg IF 8i 2M: (: b�i ^ : e�i )

Figure 2: Five Categories of Normalisation Rules

The operator replacement rules are aimed at giving a canonical representation to operators with
associative/commutative properties. Binary operators are converted to n-ary (pre�x) versions via (1a),
with set-notation for operators that commute via (1b). Certain operators without full associativity may
be converted to corresponding operators with the associative property. Rule (1d) shows how to change a
semi-associative	 operator. A common requirement amongst these rules is that the operators should have
at least one recurring term (or R-term), as their arguments. A R-term, denoted by t�, is an expression
which contains at least one R-hole or its proxy.

The next group of rules, 
attening, is aimed at reducing the depths of R-terms, where possible. The
rules are only applied if some inner R-terms, e.g. t2, could be lifted outwards.

A slightly more complex rule is distributivity. While associativity may be used to 
atten a nested pair
of identical operations, distributivity is needed to deal with nesting from a pair of distinct operators. The
distributive laws, often do not increase nor decrease the depths of the the subterms, [b1 ; : : : ; bn ] (see 3a
and 3b). However, it can facilitate the application of a subsequent 
attening rule, under two scenarios:

(A) The targetted R-term has the form bi = ��[t1 ; : : : ; tn ]. The distributive law can then propagate the
outer �� operator next to the inner �� operator, before 
attening is applied.

(B) The immediate outer context has the form �
[t1 ; ::; fg; ::; tn] where fg denotes the current expression.
The distributive law can then propagate the inner �
 operator outwards, next to the outer �
 operator,
before 
attening is applied.

Note that 
 and �
 represent possibly distinct operators. Also, the distributive laws (3a) and (3b) are
the converse of each other. To prevent looping, we shall apply distribution only if one of the above two
scenarios is satis�ed. Distributivity must also be alternated with 
attening to monotonically decrease
the depth of R-terms.

The rules for duplicate elimination are harder to formulate. The �rst rule (4a) is the converse of
distribution, with ~a containing one or more R-terms whose multiple occurrences must be eliminated. The
if rule (4b) deals with a conditional whose branches have identical R-term as its context. The outer if
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is pushed into the non-recursive sub-terms. More speci�c rules for removing duplicate occurrences must
also be added (e.g. 4c,4d).

Lastly, the housekeeping rules are provided for simpli�cation, and for re-grouping similar R-terms, or
non-recursive subterms together.

The normalisation rules shall now be illustrated with a segmented scan operation This operation is
particularly suited for specifying functions over irregular data structures. Irregular data structures, such
as sparse matrixes, are typically encoded using nested lists (e.g. nl = [[a1 ;a2 ]; [b1 ]; [c1 ; c2 ; c3 ]]). These
nested structures can be 
attened into more regular lists (e.g. 
 = [a1 ;a2 ; b1 ; c1 ; c2 ; c3 ]) by augmenting
with boolean-tags (e.g. bl = [True;False;True;True;False;False]) to mark the beginning of each sublist.
Using such 
attened structures, we can compute pre�xes for each sublist with the following function.

segscan([],[],w) = []
segscan(x:xs,b:bs,w) = if b==True then [x]++segscan(xs,bs,x)

else [w 
 x]++segscan(xs,bs,w 
 x)

For example, segscan(
,bl,w) would return: [w
a1 ;w
a1
a2 ; b1 ; c1 ; c1
c2 ; c1
c2
c3 ]. The segscan

function currently contains two self-recursive calls. When we apply the normalisation rules, we would
convert it into a linear self-recursive function, as shown below.

segscan(x:xs,b:bs,w) = f minimise dupl. recursive calls via (4b) g
(if b==True then [x] else [w 
 x])++segscan(xs,bs,if b==True then x else w 
 x)

With this normalisation, we can proceed to extract out the contexts of the recursive call, namely
(�̂h�i.�1++�), and the accumulative argument, �̂h�i.if �1 then �2 else � 
 �3 . The �rst R-context has
already been shown to satisfy the context preservation property. The second R-context can be checked
for the context preservation property, as illustrated below.

(�̂h�i.if �1 then �2 else � 
 �3 ) � (�̂h�i.if �1 then �2 else � 
 �3 )
)T f de�nition of � g

(�̂h�i.if �1 then �2 else (if �1 then �2 else � 
 �3 ) 
 �3 )
)T f operator replacements (1a), (1c) g

(�̂h�i.if f �1 ! �2 ; :�1 ! 
[if f �1 ! �2 ; :�1 ! 
[�,�3 ]g,�3 ])
)T f distribute inner if outwards (3c) g

(�̂h�i.if f �1 ! �2 ; :�1 ! if f �1 ! 
[�2 ,�3 ]; :�1 ! 
[
[�,�3 ],�3 ]g)
)T f 
atten if (2c) and 
 (2a) g

(�̂h�i.if f �1 ! �2 ; :�1 ^ �1 ! 
[�2 ,�3 ];
:�1 ^ :�1 ! 
[�,�3 ,�3 ]g)

)T f regroup if via (5d) g

(�̂h�i.if f �1 _ �1 ! if f �1 ! �2 ; :�1 ! 
[�2 ,�3 ]g; :(�1 _ �1 ) ! 
[�,
[�3 ,�3 ]]g)
)T f restore original operators using the converse of (1a),(1c) g

(�̂h�i.if �1 _ �1 then (if �1 then �2 else �2 
 �3 ) else � 
 (�3 
 �3 ) ) )
)T f form a skeletal R-context g

(�̂h�i.if 
1 then 
2 else (� 
 
3 )) where f 
1=�1 _ �1 ; 
3=�3 
 �3 ;

2=if �1 then �2 else �2 
 �3 g

Since context preservations hold, we know the following second-order generalization is valid.

segscan(xr++xs,br++bs,w) = uG(xr,br,w)++segscan(xs,bs,if uH(xr,br) then uJ(xr,br) else w 
 uK(xr,br))

Inductive derivation then yields de�nitions for the unknown functions, resulting in:

segscan(xr++xs,br++bs,w) = segscan(xr,br,w)++segscan(xs,bs,if uH(xr) then uJ(xr,br,w) else w 
 uK(xr))
uH([b]) = (b==True)
uH(br++bs) = uH(br) ^ uH(bs)
uK([x]) = x
uK(xr++xs) = uK(xr) 
 uK(xs)
uJ([x],[b],w) = if (b==True) then x else w 
 x
uJ(xr++xs,br++bs,w) = if uH(br) then uJ(xr,br,w) else uJ(xr,br,w) 
 uK(xs))

4 Constraint-Enhanced Parallelization

While our Parallelization Theorem may be quite general, there are still important classes of sequential
programs where it fails. The main reason is its weakness at manipulating R-holes (particularly a powerful
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way to reduce the number of R-holes) to ensure context preservation. To remedy this situation, we shall
add suitable constraints to strengthen the opportunites for context preservation. It turns out that some
context preservations for parallelization could only be achieved under a certain (invariant) constraint.

A simple example is the sbp function given in Sec 1. The context for the recursive call is actually:
(�̂h�i.if ���1 then �+�2 else �3 ) where f�1=0; �2=conv(x); �3=1g

Unlike the R-context of segmented scan, the skeletal version of this R-context is harder to preserve
since its R-hole appears twice in its conditional's test and one of its branches. We may attempt to
normalise its replicated R-contexts, as follows:

(�̂h�i.if ���1 then �+�2 else �3 ) � (�̂h�i.if ���1 then �+�2 else �3 )
)T f de�nition of � g

(�̂h�i.if (if ���1 then �+�2 else �3 )��1 then (if ���1 then �+�2 else �3 )+�2 else �3 )
)T f 
oat out (���1 ) & simplify g

�̂h�i.if (���1 ) then if �+�2��1 then (�+�2 )+�2 else �3

else if �3��1 then �3+�2 else �3

)T f 
atten nested if g

�̂h�i.if f (���1 ) ^ (�+�2��1 ) ! (�+�2 )+�2 ;
(���1 ) ^ :(�+�2��1 ) ! �3 ;
:(���1 ) ^ (�3��1 ) ! �3+�2 ;
:(���1 ) ^ :(�3��1 ) ! �3 g

)T f transitivity of � & re-group if g

�̂h�i.if (��min2(�1 ,�1 -�2) then �+(�2+�2)
else if f (���1 ) ^ :(�+�2��1 ) ! �3 ;

:(���1 ) ^ (�3��1 ) ! �3+�2 ;
:(���1 ) ^ :(�3��1 ) ! �3 g

)T f 
oat non-recursive test (�3��1 ) and simplify g

�̂h�i.if (��min2(�1 ,�1 -�2) then �+(�2+�2)
else if (�3��1 ) then (if f (���1 ) ^ :(�+�2��1) ! �3 ;

:(���1) ! �3+�2 g)
else �3

Unfortunately, we are still unsuccessful as there are �ve occurrences of �, instead of two in the initial R-
context. To allow context preservation to succeed, we need to simplify/normalise the following conditional
by eliminating one of its two branches.

if f (���1 ) ^ :(�+�2��1 ) ! �3 ;

:(���1) ! �3+�2 g (1)

Doing this allows us to remove three extraneous occurrences of �. We �rst normalise the predicate
conditions associated with the two branches.

In the �rst branch, we have:

(�3��1 ) ^ (���1 ) ^ :(�+�2��1 )
` (�3��1 ) ^ (���1 ) ^ (�+�2>�1 )
` (�3��1 ) ^ (�1>�1 -�2 )
` (�3<�1+�2 )

In the second branch, we have:

:(�3��1 ) ^ :(���1 )
` (�1<�3 ) ^ (�1<�)

The simpli�cation carried out is basically a normalisation via SUP-INF procedure [Ble75] which
attempts to remove variables, � and �1 , leaving behind predicates exclusively in terms of f�igi21 ::3 . Only
the predicate condition for the �rst branch can be successfully simpli�ed, but not the second branch.
This means that the �rst branch can be eliminated by supplying a negated test, namely :(�3<�1+�2 ),
as the required constraint. Adding this constraint allows the conditional of (1) to simplify to �3+�2 .

Note that the required constraint does not come from `thin air' but is instead guided by the need for
context preservation. For the R-context of sbp, we now have:

(�̂h�i.if ���1 then �+�2 else �3 ) � (�̂h�i.if ���1 then �+�2 else �3 ) st (�3��1+�2 )

)T (�̂h�i.if ��
1 then �+
2 else 
3 )
where f 
1=min2(�1 ,�1 -�2 ); 
2=�2+�2 ; 
3=if (�3��1 ) then �3+�2 else �3g
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Note that (e st p) denotes an expression e under constraint p. As the constraint is assumed to be valid
for one of the two R-contexts used, it shall be proven to be valid for all R-contexts encountered by the
recursive parallel program. In particular, it must be valid for the initial R-context, and each R-context
that is yielded by context preservation. This requirement will help ensure that all R-contexts have the
required constraint. It can be expressed by the following constraint-based context preservation.

De�nition 3: Constraint-Based Context Preservation
A R-context E is said to be context preserved modulo replication under required constraint P , if the
following holds:

9Es: (E )TEshtiii2N ) ^ P(ti)i2N^

(Esh�iii2N � Esh�iii2N ) st (P(�i)i2N ^ P(�i)i2N ))T (Esh
i ii2N st P(
i )i2N )

Notice that the P constraint must be shown to hold for the initial R-context, namely Eshtiii2N via
P(ti)i2N , and is again shown to hold for each new R-context generated, namely Esh
i ii2N via P(
i )i2N ,
assuming that it holds for Esh�iii2N and Esh�iii2N . As a result, there are two additional checks which
must be satis�ed before a constraint can be used for our enhanced parallelization. They are:

1. Invariance of the required constraint, i.e. P(�i)i2N ^ P(�i)i2N ! P(
i )i2N .

2. Pre-condition of the required constraint for the initial R-context, i.e. P(ti)i2N .

We illustrate how these checks are performed using sbp as an example. To check if the constraint is
invariant during context preservation, we attempt to simplify the invariant condition below:

�3��1+�2 ^ �3��1+�2 ` 
3�
1+
2

` (if (�3��1 ) then �3+�2 else �3 )�min2(�1 ,�1 -�2 )+(�2+�2 )
` if f (�3��1 ) ^ (�1��1 -�2) ! �3 � �1 ;

(�3��1 ) ^ (�1��1 -�2) ! �3 ��1+�2 ;
(�3>�1 ) ^ (�1��1 -�2) ! �3� �1+�2 ;
(�3>�1 ) ^ (�1��1 -�2) ! �3� �1+�2+�2 g

` if f (�3��1 ) ^ (�1��1 -�2) ! True ;
(�3��1 ) ^ (�1��1 -�2) ! True ;
(�3>�1 ) ^ (�1��1 -�2) ! True;
(�3>�1 ) ^ (�1��1 -�2) ! True g

` True

From the initial R-context of sbp, the required constraint is satis�ed as its precondition since:

�3��1+�2 ` 1�0+conv(x)
` 1� (if x==`)' then -1 else if x==`(' then 1 else 0)
` (if x==`)' then 1�-1 else if x==`(' then 1�1 else 1�0)
` (if x==`)' then True else if x==`(' then True else True)
` True

Both checks can be systematically carried out via our normalisation procedure for conditional expres-
sions given in Sec 3, in conjunction with simpli�cation of inequalities. They help us con�rm that the
required constraint is maintained before and throughout context preservation, and could therefore be
used for the parallelization of the sbp function.

We now present a corresponding theorem for our constraint-enhanced parallelization.

Theorem 2: Constraint-Enhanced Parallelization
Consider a linear self-recursive function.

f(Nil,bvjc
n
j=1) = Ez

f(x : xs;bvjc
n
j=1) = Erhf (xs;bDrj hvj ic

n
j=1)i

This function can be successfully parallelized if the constraint-based context preservation property
holds for:

� The R-context of the recursive call, Er , under an required constraint P .

� Each R-context of the accumulative parameters, fDrj gj21 ::n , under required constraints
fPj gj21 ::n , respectively.
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Proof : Follows from Theorem 1 with the addition of required constraints. 2

As the conditions of Theorem 2 are satis�ed, our method can derive the parallel algorithm below.

sbp([x]) = conv(x)
sbp(xr++xs) = if sbp(xs)�uH(xr) then sbp(xs)+uG(xr) else uK(xr)
uH([x]) = 0
uH(xr++xs) = min2(uH(xs),uH(xr)-uG(xs))
uG([x]) = conv(x)
uG(xr++xs) = uG(xs)+uG(xr)
uK([x]) = 1
uK(xr++xs) = if uK(xs)�uH(xr) then uK(xs)+uG(xr) else uK(xr)

None of the functions are equivalent to another. For a more work-e�cient parallel algorithm, all four
functions must be tupled together.

5 Bene�ts of Modularity

The overall context preservation task is non-trivial, and may involve substantial normalisation e�orts.
To keep things simple, we have an approach that is modular since the R-contexts for recursive calls and
accumulative arguments can be checked separately. Our approach is unique in that it could support both
reusability and e�ciency { two key topics to be described next.

5.1 Support for Reusability

We shall support reusability by keeping each R-context which satis�es context preservation in a library.
Such R-contexts could be reused, when applicable. For example, the recursive calls of ascan and segscan

shares the same R-context, (�̂h�i.�1++�), which need only be checked once for context preservation and
stored in a library for subsequent reuse.

Likewise, we may also reuse R-contexts with required constraints, where applicable. As a simple
example, consider the minimum segment sum problem[Col95].

mss([x]) = x
mss(x:xs) = min2(mis(x:xs),mss(xs))
mis([x]) = x
mis(x:xs) = if x+mis(xs)�x then mis(xs)+x else x

To parallelize mss, we must �rst parallelize its auxiliary recursive function mis. Its initial R-context
can be normalised to: (�̂h�i.if ���1 then �+�2 else �3 ) where f�1=0; �2=x; �3=xg.

The skeletal R-context obtained is identical to the corresponding one for sbp. As a result, we could
reuse the R-context of sbp with its required constraint. Both context preservation and invariance check
for the required constraint have been proven, and need not be repeated. However, the initial R-context
for mis di�ers slightly from sbp. We must therefore check to see if the pre-condition for its required
constraint holds, as follows:

�3��1+�2 ` x�0+x
` True

As its pre-condition holds, our parallelization theorem could be used to assert the following parallel
equations for mis (after discovering that one of the newly introduced function is equivalent to mis).

mis([x]) = x
mis(xr++xs) = if mis(xs)�uH(xr) then mis(xs)+uG(xr) else mis(xr)
uH([x]) = 0
uH(xr++xs) = min2(uH(xs),uH(xr)-uG(xs))
uG([x]) = x
uG(xr++xs) = uG(xs)+uG(xr)

With mis parallelized, we could proceed to transform its parent function mss using the associative
property of min2, and its distributivity over +. Due to space constraint, we shall not show its derivation
and normalisation, but simply give its �nal parallel equations below.

10



mss([x]) = x
mss(xrxs) = min[mss(xr),uT(xr)+mis(xs),mss(xs)]
uT([x]) = x
uT(xr++xs) = min2(uT(xr)+uG(xs),uT(xs))

5.2 Support for E�ciency

There is an on-going tension between generality/reusability on the one end, and e�ciency on the other.
Often, techniques/programs that are general tend to be more widely applicable, but are likely to yield
less e�cient code, and vice versa. We shall show how we could minimise this tension by searching to
exploit specialised scenarios, where possible.

During constraint-based context preservation, we often end up with inequality constraints which may
represent the weakest requirement for parallelization, but are helpful towards reusability of the corre-
sponding R-contexts. However, it is sometimes bene�cial to also exploit stronger equality constraints
under applicable conditions.

Consider the two initial R-contexts for sbp and mis below.

(�̂h�i.if ���1 then �+�2 else �3 ) where f�1=0; �2=conv(x); �3=1g

(�̂h�i.if ���1 then �+�2 else �3 ) where f�1=0; �2=x; �3=xg

The inequality constraint (�3��1+�2 ) is applicable to both R-contexts, but we may wish to exploit
a specialised equality constraint (�3==�1+�2 ) that is only applicable for the R-context of mis, since its
pre-condition is satis�ed as follows:

�3==�1+�2 ` x==0+x
` True

This equality constraint should be exploited where possible, as we may obtain more e�cient parallel
algorithm (with fewer new functions introduced) as a side-bene�t. Before that, we must also check if the
invariance of this equality constraint can be maintained for the skeletal R-context, as follows:

�3==�1+�2 ^ �3==�1+�2 ` 
3==
1+
2

` (if (�3��1 ) then �3+�2 else �3 )==min2(�1 ,�1 -�2 )+(�2+�2 )
` if f (�3��1) ^ (�1��1 -�2 ) ! �3 == �1 ;

(�3��1) ^ (�1��1 -�2 ) ! �3 ==�1+�2 ;
(�3>�1) ^ (�1��1 -�2 ) ! �3==�1+�2 ;
(�3>�1) ^ (�1��1 -�2 ) ! �3==�1+�2+�2 g

` if f (�3��1) ^ (�1��1 -�2 ) ! True ;
(�3��1) ^ (�1��1 -�2 ) ! True ;
(�3>�1) ^ (�1��1 -�2 ) ! True;
False ! �1==�1+�2 g

` True

With this equality constraint, we could eliminate one of the f
igi21 ::3 subterms by appropriate sub-
stitutions. Which should we eliminate? We choose 
1 to eliminate, since 
3 has potential to be identical
to the initial R-context of mis, while 
2 is simpler in form. Doing so results in the following specialised
context preservation.

(�̂h�i.if ���3 -�2 then �+�2 else �3 ) � (�̂h�i.if ���3 -�2 then �+�2 else �3 )

)T (�̂h�i.if ��
3 -
1 then �+
2 else 
3 )
where f 
2=�2+�2 ; 
3=if (�3��3 -�2 ) then �3+�2 else �3g

Using this specialised R-context, we could now derive the following more compact code for mis.

mis([x]) = x
mis(xr++xs) = if mis(xs)+uG(xr)�mis(xr) then mis(xs)+uG(xr) else mis(xr)
uG([x]) = x
uG(xr++xs) = uG(xs)+uG(xr)

Due to the specialised constraints, we have used two functions rather than three used previously.
Again, tupling can be applied to give a more work-e�cient parallel code.
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5.3 Hierarchy of Equality Constraints

To support the reuse of R-context with equality constraints, we shall organise these constraints into a
hierarchy. At the base of this hierarchy will be a set of required constraints which have been selected to
ensure context preservation. Above this will be equality constraints, which satisfy the invariance property.
(In this paper, we are only interested in specialising via equality constraints. However, extensions to other
types of constraints are also possible.)

The constraints in our hierarchy shall be connected by arrows to denote dependencies. All specialised
constraints are ultimately dependent on the required constraints since they represent the minimal re-
quirement for context preservation. The specialised constraints themselves may either be independent,
mutually dependent, or dependent on each other. A specialised constraint C1 is said to be dependent on
another specialised constraint C2 , if it depends on the latter for its invariance check.

The hierarchy of constraints can support a family of more specialised R-contexts for use in paral-
lelization. In particular, two independent constraints may be used separately to support two di�erent
R-contexts, or jointly to support a more specialised R-context. Also, dependent constraints may be added
to provide more specialised R-contexts, where applicable. Mutual-dependent constraints must always be
used jointly.


3==
1 +
2 Equality Constraint

?


3�
1 +
2 Required Constraint

Figure 3: A Simple Hierarchy of Constraints

For example, the skeletal R-context of sbp and mis shall have a hierarchy of two constraints shown in
Figure 3. Required constraint (
3�
1 + 
2 ) is at the base, with the equality constraint (
3 == 
1 +
2 )

being its special case. It can be used to support sbp-like functions with just the required contraint, or to
support more specialised R-contexts, such as in mis-like functions, with both the equality and required
constraints. This is a very simple hierarchy. An example of a more complex hierarchy of constraints is
given in Figure 4. There, C1 & C2 are mutually-dependent, and so are C3 & C4 . Also, C6 depends on
C5 , which in turn depends on both C1 and C2 .

Two issues remain on how the specialised/equality constraints are collected, and applied.

De�nition 4: Collection of Equality Constraints
Specialised equality constraints can be collected in two ways:

1. If the required constraint is an inequality, we can assert its equality as a special case, after a
suitable invariance check. (An example of this is shown earlier for mis.)

2. If two 
 sub-terms of the �nal R-context are syntactically uni�able, we may use their substi-
tutions from uni�cation as specialised equality constraints. (An example is the R-context of
miptup to be described in the Appendix.)

Once the specialised equality constraints have been collected, we should �nd the largest set of equality
constraints that is applicable for a given initial R-context, as follows:

De�nition 5: Applicability of Equality Constraints
A given set of mutual-dependent equality constraints is said to be applicable to an initial R-context, if
it is satis�ed as the latter's pre-condition. The set of applicable equality constraints shall be checked
in a bottom-up order according to the constraints' hierarchy.
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6 Related Works

Generic program schemes have been advocated for use in structured parallel programming, both for im-
perative programs expressed as �rst-order recurrences through a classic result of [Sto75] and for functional
programs via Bird's homomorphism [Ski90]. Unfortunately, most sequential speci�cations fail to match
up directly with these schemes. To overcome this shortcoming, there have been calls to constructively
transform programs to match these schemes, but these proposals [Roe91, GDH96] often require deep
intuition and the support of ad-hoc lemmas { making automation di�cult. Another approach is to pro-
vide more specialised schemes, either statically [PP91] or via a procedure [HTC98], that can be directly
matched to sequential speci�cation. Though cheap to operate, the generality of this approach is often
called into question.

On the imperative language (e.g. Fortran) front, there have been signi�cant interests in the paral-
lelization of reduction-style loops. A work similar to ours was independently conceived by Fischer &
Ghoulum [FG94, GF95]. By modelling loops via functions, they noted that function-type values could be
reduced (in parallel) via associative function composition. However, the propagated function-type values
could only be e�ciently combined (reduced) if they have a template closed under composition. This
requirement is similar to the need to �nd a common R-context under recursive call unfolding [Chi92b].
Being based on loops, their framework is less general and less formal. No speci�c techniques, other than
simpli�cation, have been o�ered for checking if closed template is possible. Also, without constraints,
their approach fails to handle certain classes of programs.

The power of constraints have not escaped the attention of traditional work on �nding parallelism
in array-based programs. Through the use of constraints, Pugh showed how exact dependence analysis
can be formulated to support better vectorisation and be e�ciently computed[Pug92]. Our work is
complimentary to Pugh's in two respects. Firstly, we may take advantage of practical advances in his
constraint technology to support normalisation and invariance/precondition checks. Secondly, we tackle
a di�erent class of reduction-style sequential algorithms, with inherent dependences across recursion.
Thus, instead of checking for the absence of dependence, we transform the sequential dependences into
divide-and-conquer counterparts with the help of properties, such as associativity and distributivity.

7 Concluding Remarks

We have formally presented an enhanced method for parallelizing sequential programs. The method relies
on the successful preservation of the replicated R-contexts for the recursive call and each accumulative
argument. The notion of context preservation is central to our parallelization method. To enhance
this methodology further, we introduced a key innovation based on the use of required and specialised
constraints. To support our extension, a set of powerful normalisation rules have been proposed.

We are currently working on implementation techniques to apply context preservation and invari-
ance/precondition checks automatically. Apart from the heuristic of minimising both the depths and
number of occurrences of R-holes, we have also turned to a technique, called rippling [BvHSI93], which
has been very successful in automated theorem-proving. In our case, we use rippling to repeatedly
minimise the di�erence between actual expression and targeted R-context, until context preservation is
achieved. It may also be possible for our method to recover from failures when a given R-context could
not be preserved. In particular, the resulting context may suggest either a new or generalized R-context
to be attempted. This much enhanced potential for parallelization is made possible by our adoption of
small but expressive transformation rules, together with appropriate theorems and strategies for guiding
their applications.

References

[BCH+93] G.E. Blelloch, S Chatterjee, J.C. Hardwick, J. Sipelstein, and M. Zagha. Implementation of a portable
nested data-parallel language. In 4th Principles and Practice of Parallel Programming, pages 102{111,
San Diego, California (ACM Press), May 1993.

[Ben86] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.

[Bir87] Richard S. Bird. An introduction to the theory of lists. In Logic of Programming and Calculi of
Discrete Design (Springer Verlag, ed M Broy), pages 3{42, 1987.

13



[Ble75] W.W. Bledsoe. A new method for proving certain Presburger formulae. In Proc of ICJAI, pages
15{21, 1975.

[Ble89] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Trans. on Computers, 38(11):1526{1538,
November 1989.

[BvHSI93] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Rippling: A heuristic for guiding inductive
proofs. Arti�cial Intelligence, 62:185{253, 1993.

[Chi92a] Wei-Ngan Chin. Safe fusion of functional expressions. In 7th ACM LISP and Functional Programming
Conference, pages 11{20, San Francisco, California, June 1992. ACM Press.

[Chi92b] Wei-Ngan Chin. Synthesizing parallel lemma. In Proc of a JSPS Seminar on Parallel Programming
Systems, World Scienti�c Publishing, pages 201{217, Tokyo, Japan, May 1992.

[Chi93] Wei-Ngan Chin. Towards an automated tupling strategy. In ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 119{132, Copenhagen, Denmark, June
1993. ACM Press.

[Col95] Murray I. Cole. Parallel programming with list homomorphism. Parallel Processing Letters, 5(2):191{
203, 1995.

[CTH98] W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation. In IEEE
Intl Conference on Computer Languages, Chicago, U.S.A. (submitted), May 1998. IEEE Press.
http://www.iscs.nus.edu.sg/~chinwn/iccl98.ps.

[FG94] A.L. Fischer and A.M. Ghuloum. Parallelizing complex scans and reductions. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 135{136, Orlando, Florida,
ACM Press, 1994.

[GDH96] Z.N. Grant-Du� and P. Harrison. Parallelism via homomorphism. Parallel Processing Letters, 6(2):279{
295, 1996.

[GF95] A.M. Ghuloum and A.L. Fischer. Flattening and parallelizing irregular applications, recurrent loop
nests. In 3rd ACM Principles and Practice of Parallel Programming, pages 58{67, Santa Barbara,
California, ACM Press, 1995.

[HIT96] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms from recursive de�nitions.
In ACM SIGPLAN International Conference on Functional Programming, pages 73{82, Philadelphia,
Pennsylvannia, May 1996. ACM Press.

[HITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates multiple traversals. In
2nd ACM SIGPLAN International Conference on Functional Programming, pages 164{175, Amster-
dam, Netherlands, June 1997. ACM Press.

[HTC98] Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms. In 25th Annual ACM
Symposium on Principles of Programming Languages, San Diego, California, January 1998. ACM
Press (to appear).

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

[PP91] SS. Pinter and RY. Pinter. Program optimization and parallelization using idioms. In ACM Principles
of Programming Languages, pages 79{92, Orlando, Florida, ACM Press, 1991.

[Pug92] William Pugh. The omega test: A fast practical integer programming algorithm for dependence
analysis. Communications of ACM, 8:102{114, 1992.

[Roe91] Paul Roe. Parallel Programming using Functional Languages (Report CSC 91/R3). PhD thesis,
University of Glasgow, 1991.

[Ski90] D. Skillicorn. Architecture-independent parallel computation. IEEE Computer, 23(12):38{50, Decem-
ber 1990.

[Sto75] Harold S. Stone. Parallel tridiagonal equation solvers. ACM Transactions on Mathematical Software,
1(4):287{307, 1975.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In ACM Conference on
Functional Programming and Computer Architecture, pages 306{313, San Diego, California, June 1995.
ACM Press.

[Wad88] Phil Wadler. Deforestation: Transforming programs to eliminate trees. In European Symposium on
Programming, Nancy, France, (LNCS, vol 300, pp. 344{358), March 1988.

14



A Maximum Segment Product : A Final Example

Our constraint-enhanced parallelizationmethod is not merely a nice theoretical result, but also practically
useful for deriving parallel algorithms for more complex programs. In particular, we could systemati-
cally handle recursive functions with conditional and tupled constructs that are often much harder to
parallelize. We shall examine a little known problem, called maximum segment product [Ben86], whose
parallelization requires deep human insights otherwise.

Given an input list [x1 ; : : : ; xn ], we are interested to �nd the maximum product of all non-empty
(contiguous) segments, of the form [xi ; xi+1 ; : : : ; xj ] where 1 � i � j � n, taken from the input list. The
simplest way of specifying msp is via the following generate-and-test algorithm.

msp(xs) = max(map(prod,segs(xs)))

Here, segs(xs) returns all segments for xs, while map(prod,segs(xs)) applies prod to each sublist from
segs(xs), before max chooses the largest value. While clear, this speci�cation is grossly ine�cient but could
be transformed by fusion method [Chi92a, TM95, HIT96] to the following sequential recursive algorithm.

msp([x]) = x
msp(x:xs) = max2(mip(x:xs),msp(xs))
mip([x]) = x
mip(x:xs) = if x>0 then max2(x,x�mip(xs)) else max2(x,x�mipm(xs))
mipm([x]) = x
mipm(x:xs) = if x>0 then min2(x,x�mipm(xs)) else min2(x,x�mip(xs))

The functions mip and mipm are mutually recursive and do not belong to the linear self-recursive
class. Nevertheless, we could use the automated tupling method of [Chi93] to introduce:

miptup(xs) = (mip(xs),mipm(xs))

before transforming it to:

miptup([x]) = (x,x)
miptup(x:xs) = let (u,v)= miptup(xs) in

if x>0 then (max2(x,x�u),min2(x,x�v)) else (max2(x,x�v),min2(x,x�u))

We focus on the parallelization of miptup as it must be parallelized before its parent msp function.
With this de�nition, we could proceed to extract its R-context4 (shown below) to see if it could be
parallelized.

�̂h�i. let (u,v)=� in if �1>0 then (max2(�2 ,�3�u),min2(�4 ,�5�v)) else (max2(�6 ,�7�v),min2(�8 ,�9�u))
where f �1=x; �2=x st x>0; �3=x st x>0; �4=x st x>0; �5=x st x>0;

�6=x st x�0; �7=x st x�0; �8=x st x�0; �9=x st x�0 g

Application of context preservation can now proceed as follows:

(�̂h�i. let (u,v)=� in if �1>0 then (max2(�2 ,�3�u),min2(�4 ,�5�v)) else (max2(�6 ,�7�v),min2(�8 ,�9�u)))

� (�̂h�i. let (u,v)=� in if �1>0 then (max2(�2 ,�3�u),min2(�4 ,�5�v)) else (max2(�6 ,�7�v),min2(�8 ,�9�u)))
)T f tupled & conditional normalisation g

(�̂h�i. let (u,v)=� in
if f (�1>0) ^ (�1>0) ! (max2(�2 ,�3�max2(�2 ,�3�u)),min2(�4 ,�5�min2(�4 ,�5�v)));

(�1>0) ^ :(�1>0) ! (max2(�6 ,�7�min2(�4 ,�5�v)),min2(�8 ,�9�max2(�2 ,�3�u)));
:(�1>0) ^ (�1>0) ! (max2(�2 ,�3�max2(�6 ,�7�v)),min2(�4 ,�5�min2(�8 ,�9�u)));
:(�1>0) ^ :(�1>0) ! (max2(�6 ,�7�min2(�8 ,�9�u)),min2(�8 ,�9�max2(�6 ,�7�v))) g

In the middle of the normalisation, we need to distribute � into max2 and min2, but this could only
be done with the following distributive laws.

c�max2(a,b) = max2(c�a,c�b) if c�0

c�max2(a,b) = min2(c�a,c�b) if c�0

c�min2(a,b) = min2(c�a,c�b) if c�0

c�min2(a,b) = max2(c�a,c�b) if c�0

4Note that the skeletal R-context always have its variables uniquely re-named to help support reusability and the context
preservation property.
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Each of these laws has a condition attached to it. If this condition is not present in the R-context, we
must add them as required constraint before the corresponding distributive law could be applied. Doing
so results in the following successful context preservation.

)T f add selected constraints & normalise further g

(�̂h�i. let (u,v)=� in
if f (�1>0) ^ (�1>0) ! (max2(max2(�2 ,�3��2 ),(�3��3 )�u)),min2(min2(�4 ,�5��4 ),(�5��5 )�v)));

(�1>0) ^ :(�1>0) ! (max2(max2(�6 ,�7��4 ),(�7��5 )�v)),min2(min2(�8 ,�9��2 ),(�9��3 )�u)))
:(�1>0) ^ (�1>0) ! (max2(max2(�2 ,�3��6 ),(�3��7 )�v)),min2(min2(�4 ,�5��8 ),(�5��9 )�u)));
:(�1>0) ^ :(�1>0) ! (max2(max2(�6 ,�7��8 ),(�7��9 )�u)),min2(min2(�8 ,�9��6 ),(�9��7 )�v))) g
st f�3�0; �5�0; �7�0; �9�0 g

)T f re-group branches & form skeletal R-context g

�̂h�i. let (u,v)=� in if 
1>0 then (max2(
2 ,
3�u),min2(
4 ,
5 �v))
else (max2(
6 ,
7 �v),min2(
8 ,
9�u))

where f 
1=�1��1 ; 
2=if �1>0 then max2(�2 ,�3��2 ) else max2(�6 ,�7��8 );

3=if �1>0 then �3��3 else �7��9 ;

4=if �1>0 then min2(�4 ,�5��4 ) else min2(�8 ,�9��6 );

5=if �1>0 then �5��5 else �9��7 ;

6=if �1>0 then max2(�2 ,�3��6 ) else max2(�6 ,�7��4 ) ;

7=if �1>0 then �3��7 else �7��5 ;

8=if �1>0 then min2(�4 ,�5��8 ) else min2(�8 ,�9��2 );

9=if �1>0 then �5��9 else �9��3 g

We are now left with two checks on the pre-condition and invariance of the required constraints. Both
checks are valid and can be mechanically performed. The reader may like to try them out as an exercise.
For example, the invariance check is:

(�3�0 ^ �5�0 ^ �7�0 ^ �9�0 ) ^ (�3�0 ^ �5�0 ^ �7�0 ^ �9�0 )

! (
3�0 ^ 
5�0 ^ 
7�0 ^ 
9�0 )

While our R-contexts have been renamed and normalised for greater reusability, they may yield
somewhat less e�cient codes. To improve matter, we shall search for equality constraints that could be
used. We may attempt to unify some of the f
igi21 ::9 subterms in the resulting R-context. In particular,
four equality constraints may be attempted in the �rst round, namely C1 = (
3 == 
5 ), C2 = (
7 == 
9 ),
C3 = (
2 == 
6 ), C4 = (
4 == 
8 ). The checks for invariance do hold for the above equality constraints
with C1 mutually-dependent on C2 , and C3 mutually-dependent on C4 .

In the second round, we substitute the equality constraints collected and perform normalisation to
obtain the following new sub-terms for our R-context.


2=if �1>0 then max2(�2 ,�3��2 ) else max2(�2 ,�7��4 );

3=if �1>0 then �3��3 else �7��7 ;

4=if �1>0 then min2(�4 ,�3��4 ) else min2(�4 ,�7��2 );

7=if �1>0 then �3��7 else �7��3 ;

This time round, uni�cation is only possible for C5 = (
3 == 
7 )5 whose invariance can be shown to
hold. In the �nal round, the 
3 sub-term is simpli�ed, as follows:


3 = if �1>0 then �3��3 else �3��3 ;
= �3��3

This now allows the equality constraint C6 = (
1 == 
3 ) to hold via uni�cation. The equality con-
straints are now gathered into a hierarchy, shown in Figure 4.

Depending on the number of applicable equality constraints, a family of parallel algorithms is be-
ing covered by the same skeletal R-context and its hierarchy of constraints. Consider a hypothetically
generalized function.

gmiptup(x:xs) = let (u,v)=gmiptup(xs) in
if a1�x>0 then (max2(a2�x,a3�x�u),min2(a4�x,a5�x�v))
else (max2(a6�x,a7�x�v),min2(a8�x,a9�x�u))

5This equality constraint may appear to contradict with the required constraint C0. However, as the equality con-
straints are being used independently of the required constraints and in checking for syntactically equivalent functions, this
contradition can be safely ignored.
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C6 :
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-

�

C2 :
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9

C3 :


2==
6

-

�

C4 :


4==
8

C0 : 
3�0 ;
5�0 ;
7�0 ;
9�0 Required Constraint

Figure 4: A More Complex Hierarchy of Constraints

This de�nition has the same skeletal R-context as miptup. If a3 = a5 and a7 = a9 , we could exploit
the equality constraints of C1 and C2 . If a2 = a6 and a4 = a8 , we could exploit the equality constraints
of C3 and C4 . In addition, if a3 = a7 we could apply the constraint C5 , but constraint C6 could only be
used if we also have a1 = a3 too.

The function miptup is actually a special case of gmiptup, where all the gathered equality constraints
are applicable. Also, two unknown functions derived happens to be identical to the components of miptup

and could thus be replaced. As a result, we can derive a very compact and e�cient parallel algorithm
shown below.

miptup([x]) = (x,x)
miptup(xr++xs) = let f(a,b)=miptup(xr); (u,v)= miptup(xs) in

if uH(xr)>0 then (max2(a,uH1(xr)�u),min2(b,uH1(xr)�v))
else (max2(a,uH1(xr)�v),min2(b,uH1(xr)�u))

uH1([x]) = x
uH1(xr++xs) = uH1(xr)�uH1(xs)

With these equations, we could proceed to parallelize the parent function msptup using context preser-
vation and normalisation. The �nal equations are presented below.

msp(xr++xs) = let f(a,b)=miptup(xr); (u,v)= miptup(xs) in
max[msp(xr),msp(xs),mfp(xr)+a,mfp(xr)+b,mfpm(xr)+a,mfpm(xr)+b]

mfp([x]) = x
mfp(xr++xs) = if uH1(xs)>0 then max2(mfp(xr)�uH1(xs),mfp(xs))

else max2(mfpm(xr)�uH1(xs),mfp(xs));
mfpm([x]) = x
mfpm(xr++xs) = if uH1(xr)>0 then min2(mfpm(xr)�uH1(xs),mfpm(xs))

else min2(mfp(xr)�uH1(xs),mfpm(xs))
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