
A Modular Derivation Strategy

via Fusion and Tupling

Wei-Ngan Chin

National University of Singapore

Zhenjiang Hu

University of Tokyo

Masato Takeichi

University of Tokyo

Abstract

We show how programming pearls can be systematically derived via fusion, followed by
tupling transformations. By focusing on the elimination of intermediate data structures (fu-
sion) followed by the elimination of redundant calls (tupling), we can systematically realise
both space and time e�cient algorithms from naive speci�cations.

We illustrate our approach using a well-known maximum segment sum (MSS) problem,
and a lesser-known maximum segment product (MSP) problem. While the two problems
share similar speci�cations, their optimised codes are signi�cantly di�erent. This divergence
in their transformed codes do not pose any di�culty for our approach. In fact, by relying
on modular transformation techniques, we are able to systematically reuse both code and
transformation in our derivation.
Keywords: Fusion, Tupling, Program Derivation, Programming Pearls.

1 Introduction

A major impetus for highlighting programming pearls is to provide a better understanding of how elegant
and e�cient algorithms could be build. While creative algorithms are interesting to exhibit, they often
lose their links to the programming techniques that were employed in their discoveries. A more motivating
approach to programming pearls would be to formally relate creative algorithms with naive speci�cations
via program derivations.

While elegant, many examples of program derivations often require deep insights which make major
changes/jumps to the transformed code. This can make things very di�cult for human to comprehend,
and machine to implement. In this paper, we shall show that it is possible to minimise some of these
insights, and provide a systematic and modular approach towards discovering programming pearls.

Consider the maximum segment product problem. Given an input list [x1 ; : : : ; xn ], we are interested
to �nd the maximum product of all non-empty (contiguous) segments (of the form [xi ; xi+1 ; : : : ; xj ] where
1 � i � j � n) taken from the input list. An initial speci�cation for this problem can be written in a
modular fashion, as follows:

msp(xs) = max(map(prod,segs(xs)))

Here, the innermost segs call returns a complete list of all segments, while the map call applies prod to
each segment to yield its product, before the outermost max call chooses the largest value. The functions
used in the above speci�cation are given below.

segs([x]) = [x]
segs(x:xs) = inits(x:xs)++segs(xs)
inits([x]) = [x]
inits(x:xs) = [x]:map((x:),inits(xs))
map(f,Nil) = Nil
map(f,x:xs) = f(x):map(f,xs)
prod([x]) = x
prod(x:xs) = x�prod(xs)
max([x]) = x
max(x:xs) = max2(x,max(xs))
max2(x,v) = if v>x then v else x

1



The above speci�cation uses a modular approach to coding. Through the reuse of abstract functions,
such as segs, inits, map, max and prod, we are able to specify the msp function via a relatively straightfor-
ward composition of simpler functions. There are two main advantages for such high-level speci�cations.
Firstly, they are clearer for human to comprehend and more obviously correct. Secondly, their more
modular style encourages software reusability. For example, the better known maximum segment sum
problem [Ben86] can be speci�ed by replacing only the prod function with sum, as follows:

mss(xs) = max(map(prod,segs(xs)))
sum([x]) = x
sum(x:xs) = x+sum(xs)

Unfortunately, high-level speci�cations have one major drawback, namely that they can be terribly
ine�cient. Fortunately for us, it is possible to use the transformational approach to calculate e�cient
algorithms. This is potentially very useful since e�cient algorithms can be very unintuitive.

Our thesis is that high-level transformation techniques can help provide a systematic approach to
discover programming pearls. To substantiate this claim, we propose to apply two key transformation
techniques, namely (i) fusion enhanced with laws, and (ii) tupling, to help derive algorithms with good
time and space behaviours. The mild insights needed by our derivation are mainly con�ned to the fusion
technique, in the form of laws needed to facilitate its transformation.

To appreciate the virtues of the transformational approach, the initiated reader may want to try
invent an e�cient algorithm for maximum segment product, before studying the rest of this paper. We
had some di�culties, until we embark on the transformational approach.

Our main contributions in this paper are summarized as follows.

� We propose a modular derivation that supports the reuse of codes and transformation techniques.
The basis of our approach is the identi�cation of a small set of commonly used transformation
techniques. Particularly, we highlight two important transformation techniques, fusion and tupling,
which in combination can be surprisingly good for deriving very e�cient algorithms.

� Our derivation is more systematic, minimizing the use of complex laws with deeper insights, such as
Horner's rule in [Bir89], which tend to make derivation harder to carry out. Instead, our approach
relies on a set of smaller laws which are motivated by the need to perform fusion, i.e., to make
fusion transformation successful. So most of our laws are distributive in nature.

� Our derivation is also powerful . To the best of our knowledge, we demonstrate the �rst full and
systematic derivation for the maximum segment product problem, which makes unnecessary the
\suitable cunning" in the previous derivation [Bir89].

For the rest of this paper, we �rst outline an enhanced fusion technique, which depends on laws, for
its transformation (Sec 2). Later, we apply our modular approach, based on fusion and tupling, to a well-
known maximumsegment sum problem (Sec 3). We also highlight how a related but little known problem,
called maximum segment product, can be similarly derived by our approach (Sec 4). A comparison is
then made with the classical derivation via Horner's rule (Sec 5), before an ++++++++++ advice on
the use of accumulation technique (Sec 6). Lastly, a short conclusion is given (Sec 7).

2 Enhanced Fusion with Laws

Fusion method [Chi92, TM95] is potentially a very useful and prevalent transformation technique. Given
a composition f(g(x)) where g(x) yields an intermediate data structure for use by f; fusion would attempt
to merge the composition into a specialised function p(x) with the same semantics as f(g(x)) but without
the need for an intermediate data structure.

In recent years, many attempts have been put forward to automate such fusion calculations [SF93,
GLPJ93, SS97, HIT96]. Most current attempts to automate fusion are restricted to the use of equational
de�nitions of functions to perform transformation. For example, the deforestation algorithm [Wad88]
relies on only de�ne, unfold and fold rules [BD77] in its transformation which can be carried out using
equational de�nitions of subject programs. Unfortunately, this approach is inadequate since many pro-
grams also rely on laws (useful properties between functions, such as associativity and distributivity) to
apply fusion successfully.

2



Consider a function sizetree to compute the number of leaves in a tree, by attening the leaves of the
tree into a list, and then �nding its size.

sizetree(t) = length(attree(t))
attree(Leaf(a)) = [a]
attree(Node(l,r)) = attree(l)++attree(r)
length(Nil) = 0
length(x:xs) = 1+length(xs)

To optimise this program, we could try to fuse the composition length(attree(t)). However, this cannot
be done using just the above equations via unfold/fold rules. In particular, we also require the following
distributive law of length over ++.

length(xr++xs) = length(xr)+length(xs) (1)

Using this law, the fusion derivation of sizetree can be carried out, as outlined below.

sizetree(Leaf(a)) = f instantiate t=Leaf(a) g
length(attree(Leaf(a)))

= f unfold attree g
length([a])

= f unfold length g
1

sizetree(Node(l,r)) = f instantiate t=Node(l,r) g
length(attree(Node(l,r)))

= f unfold attree g
length(attree(l)++attree(r))

= f apply law (1) : length(xr++xs)=length(xr)+length(xs) g
length(attree(l))+length(attree(r))

= f fold with sizetree twice g
sizetree(l)+sizetree(r)

What was the rationale for using a distributive law during the above fusion of length(attree(t))?
Informally, the inner function attree produces ++ calls during unfolding, which cannot be consumed by
the pattern-matching equations of the outer length function. Instead, we need the distributive law of
length over ++, to consume the ++ calls from the inner attree function for successful fusion. A more
detailed description of how laws help fusion can be found in [Chi94].

The laws needed by such enhanced fusion technique must either be supplied by programmers with
their programs, or be derived via advanced synthesis techniques, such as [Smi89, CT97]. Even if the laws
are supplied by users, they should still be veri�ed - perhaps by a theorem-prover. There is some potential
for automated help to synthesize (or check) these laws, but this issue is beyond the scope of the present
paper. In the rest of this paper, we shall assume that relevant laws will be provided and checked by users.

3 A Modular Derivation Strategy

We propose a modular derivation strategy based on two key transformation techniques, namely fusion
and tupling, which are applied in sequence. To illustrate this strategy, consider the MSS problem:

mss(xs) = max(map(sum,segs(xs)))

The above speci�cation has very bad time and space complexities. If n is the size of the input list,
then mss has a time complexity of O(n3). The reason is that segs returns O(n2) sub-lists which each
requires O(n) time to process by sum, hence the cubic time complexity.

The space usage can be broken down into three parts:

� stack space for the function calls (such as segs, map, sum).

� heap space for input and output of main function (i.e. mss).

� heap space for intermediate data structures generated (by segs, map and sum).

3



Stack space is usually pre-allocated and cheap to recover. It is principally related to the depth of
recursive calls (ignoring the e�ect of tail-call optimisation). The space occupied by input/output of the
main function is �xed, and not changed by program transformation. We shall ignore the somewhat
�xed space cost associated with the stack and input/output, but focus on the variable space cost due to
intermediate data structures. In the case of mss, the variable space cost are due to segs generating O(n2)

sub-lists of O(n) length each, while map yields another intermediate list of size n2. These intermediate
data structures result in a variable space complexity of O(n3).

Our strategy aims to derive e�cient algorithms via two key techniques : fusion, followed by tupling.
The e�ect of these two transformations are illustrated in Figure 1 for the MSS problem.

(a)
mss(xs) = max(map(sum,segs(xs)))

?

Fusion Tactic
with mis(xs)=max(map(sum,inits(xs)))

(b)
mss([x]) = x
mss(x:xs) = max2(max2(x,x+mis(xs)),mss(xs))
mis([x]) = x
mis(x:xs) = max2(x,x+mis(xs))

?

Tupling Tactic
with msstup(xs)=(mss(xs),mis(xs))

(c)
mss(xs) = let (u, )=msstup(xs) in u
msstup([x]) = (x,x)
msstup(x:xs) = let f(u,v)=msstup(xs); b=max2(x,x+v)g

in (max2(b,u),b)

Figure 1: Modular Derivation Strategy via Fusion & Tupling

Fusion transformation is capable of eliminating all intermediate data structures for this example.
Apart from the composition in the original de�nition of mss, we encountered another composition which
was de�ned as the following new de�nition:

mis(xs) = max(map(sum,inits(xs)))

With the help of appropriate laws, both mss and mis functions can be transformed to a pair of new
recursive functions, shown in Figure 1(b). The fused mss function does not generate any intermediate
data structures. Hence, it has a much improved O(1) variable space complexity. However, it still su�ers
from a time-complexity of O(n2) due primarily to redundant mis calls. The redundant calls can be
eliminated by tupling transformation which would introduce the following tuple de�nition:

msstup(xs) = (mss(xs),mis(xs))

Subsequent transformation yields a new recursive tupled de�nition shown in Figure 1(c). Without
any redundant calls, the new msstup de�nition has a much improved time-complexity of O(n). In the
next two sections, we present the actual derivations for obtaining these optimised programs.

4



3.1 Fusion to Remove Intermediate Data Structures

The enhanced fusion technique relies on laws, in addition to the supplied equation, for its transformation.
We would like to stress again that these laws do not come from thin air, but are instead motivated by
the need to perform fusion. In the case of mss, we need the following additional distributive laws.

map(f,xr++xs) = map(f,xr)++map(f,xs) (2)

max(xr++xs) = max2(max(xr),max(xs)) (3)

map(f,map(g,xs)) = map(f � g,xs) where (f � g)(x) = f(g(x)) (4)

max(map((x+),xs)) = x+max(xs) (5)

The �rst two laws are distributive laws of map and max over the ++ operator, while law (4) distributes
over an inner map call (or over function composition if used backwards). The last law is concerned with
the distributivity of max over an (x+) call that is being applied to each element of its input list. A more
general version of this last law can be constructed in conjunction with law (4), as follows:

max(map((x+) � g,xs)) = x+max(map(g,xs)) (6)

Fusion/deforestation method makes use of normal-order symbolic evaluation/unfolding [SGN94] to
merge functional compositions. In the case of mss, the outermost max call demands an output from an
inner map call, which in turn demands an output from segs. Thus, the innermost segs(xs) call is selected
for unfolding. This can be done via two possible instantiations to its argument, xs.

The base case instantiation and transformation can be achieved, as follows:

mss([x]) = f instantiate xs=[x] g
max(map(sum,segs([x])))

= f unfold segs g
max(map(sum,[x]))

= f unfold map g
max([sum([x])])

= f unfold max g
[sum([x])]

= f unfold sum g
x

For the recursive case instantiation, the segs function actually produces ++ calls which must be con-
sumed by map through its distributive law.

mss(x:xs) = f instantiate xs=x:xs g
max(map(sum,segs(x:xs)))

= f unfold segs g
max(map(sum,inits(x:xs)++segs(xs)))

= f apply law (2) : map(f,xr++xs) = map(f,xr)++map(f,xs) g
max(map(sum,inits(x:xs))++map(sum,segs(xs)))

Another ++ operator is produced by the distributive law of map itself. This must in turn be consumed
via the distributive law of max, as follows:

mss(x:xs) = f apply law (3) : max(xr++xs)=max2(max(xr),max(xs)) g
max2(max(map(sum,inits(x:xs))),max(map(sum,segs(xs))))

At this point, max(map(sum,segs(xs))) is a re-occurrence of the de�nition for mss which can be handled
using a fold operation. In addition, max(map(sum,init(xs))) represents a new composed expression just
encountered. We could introduce a new function, say mis, to denote it and then obtain:

mss(x:xs) = f fold with mss g
max2(max(map(sum,inits(x:xs))),mss(xs))

= f fold with a new mis function g
max2(mis(x:xs),mss(xs))

The new composition encountered is captured by the following de�nition.

5



mis(xs) = max(map(sum,inits(xs)))

We can again apply fusion transformation, by beginning with an unfold of inits(xs) using the two
possible instantiation to xs. A similar sequence of transformations via unfolding, application of laws, and
folding can yield the following equations.

mis([x]) = x
mis(x:xs) = max2(x,x+mis(xs))

The primary gain from fusion method is the complete elimination of intermediate data structures from
the composed expressions. This results in an improved time complexity of O(n2), and a much improved
variable space complexity of O(1). The �nal program, after an unfolding of mis(x:xs), is shown below.

mss([x]) = x
mss(x:xs) = max2(max2(x,x+mis(xs)),mss(xs))
mis([x]) = x
mis(x:xs) = max2(x,x+mis(xs))

3.2 Tupling to Eliminate Redundant Calls

After fusion, the transformed program may still contain redundant function calls. This ine�ciency can be
overcome by the tupling method [Chi93, HITT97]. The primary mechanism used in tupling is to gather
calls with identical arguments together. In the case of mss, we can �nd two calls with identical arguments
in its recursive equation. Tupling would gather these two calls into a tuple de�nition, as follows.

msstup(xs) = (mss(xs),mis(xs))

This can then be further transformed by using instantiations to facilitate the unfolding of one (or
more) calls in the tuple. The base case instantiation and transformation can proceed, as follows:

msstup([x]) = f instantiate xs=[x] g
(mss([x]),mis([x]))

= f unfold mss & unfold mis g
(x,x)

The recursive case instantiation and transformation can be carried out, as outlined below.

msstup(x:xs) = f instantiate xs=x:xs g
(mss(x:xs),mis(x:xs))

= f unfold mss & mis g
(max2(max2(x,x+mis(xs)),mss(xs)),max2(x,x+mis(xs)))

= f gather mss and mis calls using let g
let (u,v)=(mss(xs),mis(xs)) in (max2(max2(x,x+v),u),max2(x,x+v))

= f fold with msstup g
let (u,v)=msstup(xs) in (max2(max2(x,x+v),u),max2(x,x+v))

= f share a common sub-expression g
let f(u,v)=msstup(xs); b=max2(x,x+v)g in (max2(b,u),b)

Note how the use of a gathering step for calls with identical arguments, results in a tuple of two calls,
which can later be folded against msstup. The redundant occurrences of mis call was eventually shared
by such a tuple gathering step. The end result is an e�cient linear time O(n) algorithm for maximum
segment sum, shown below.

mss(xs) = let (u, )=msstup(xs) in u
msstup([x]) = (x,x)
msstup(x:xs) = let f(u,v)=msstup(xs); b=max2(x,x+x)g in (max2(b,u),b)

4 Maximum Segment Product

Let us now turn our attention to a related but lesser known problem for �nding maximumsegment product
(MSP). This MSP problem was proposed by Richard Bird in the 1989 STOP Summer School [Bir89].
It is of interests because its speci�cation is closely related to the MSS problem, but yet its e�cient
implementation is considerably more complex.

6



For its speci�cation and transformation, we can reuse all functions and laws used by mss, with the
exception of equations/laws related to sum and +. Speci�cally, the distributive law of max over map with
(x+) needs to be replaced by corresponding laws over (x�). Interestingly, this property must be speci�ed
by a pair of laws, namely:

max(map((x�),xs)) = if x�0 then x�max(xs) else x�min(map(f,xs)) (7)

min(map((x�),xs)) = if x�0 then x�min(xs) else x�max(map(f,xs)) (8)

Note the need for a dual function to max, namely min, to �nd the minimum value from a given list.

min([x]) = x
min(x:xs) = min2(x,min(xs))
min2(x,v) = if v<x then v else x

Why is min needed? Consider the expression x�b where b is taken from a list. If x is negative, then the
value of x�b would be maximal if the selected element b is of smallest value. Thus, min and its auxiliary
function min2 are needed. More practical versions of the above pair of laws are obtained by combining
them with law (4), as shown below.

max(map((x�) � f,xs)) = if x�0 then x�max(map(f,xs)) else x�min(map(f,xs)) (9)

min(map((x�) � f,xs)) = if x�0 then x�min(map(f,xs)) else x�max(map(f,xs)) (10)

With the help of these two extra laws, we can perform a similar fusion transformation on the naive
speci�cation for msp. Recall:

msp(xs) = max(map(prod,segs(xs)))

The base case equation is easily derived, as follows.

msp([x]) = f instantiate xs=[x] g
max(map(prod,segs([x])))

= f unfold segs g
max(map(prod,[x]))

= f unfold map g
max([prod([x])])

= f unfold max g
[prod([x])]

= f unfold prod g
x

The recursive case equation can be derived, as outlined below.

msp(x:xs) = f instantiate xs=x:xs g
max(map(prod,inits(x:xs)++segs(xs)))

= f apply law (2) : map(f,xr++xs)=map(f,xr)++map(f,xs) g
max(map(prod,inits(x:xs))++map(prod,segs(xs)))

= f apply law (3) : max(xr++xs)=max2(max(xr),max(xs)) g
max2(max(map(prod,inits(x:xs))),max(map(prod,segs(xs))))

= f fold with msp g
max2(max(map(prod,inits(x:xs))),mss(xs))

= f fold with a new defn for mip g
max2(mip(x:xs),mss(xs))

A new composed expression was encountered. This was de�ned as mip.

mip(xs) = max(map(prod,inits(xs)))

Its base case equation is derived as:

mip([x]) = x

The recursive case equation can also be derived, with the help of laws, as shown below.

7



mip(x:xs) = f instantiate xs=x:xs g
max(map(prod,inits(x:xs)))

= f unfold inits g
max(map(prod,[x]:map((x:),inits(xs))))

= f unfold map g
max(prod([x]):map(prod,map((x:),inits(xs))))

= f unfold max g
max2(prod([x]),max(map(prod,map((x:),inits(xs))))

= f unfold prod g
max2(x,max(map(prod,map((x:),inits(xs))))

= f apply law (4) : map(f,map(g,xs)) = map(f � g,xs) g
max2(x,max(map(prod � (x:),inits(xs)))

= f unfold prod g
max2(x,max(map((x�) � prod,inits(xs)))

= f apply law (9) of max over (x�) g
max2(x,if x�0 then x�max(map(prod,inits(xs))) else x�min(map(prod,inits(xs))))

= f fold mip g
max2(x,if x�0 then x�mip(xs) else x�min(map(prod,inits(xs))))

= f introduce new mipm de�nition g
max2(x,if x�0 then x�mip(xs) else x�mipm(xs))

= f apply law (11) to oat if outwards g
if x�0 then max2(x,x�mip(xs)) else max2(x,x�mipm(xs))

The last step oats an inner if out of the outermost max2 call. This transformation can be e�ected by
the following generic law where E[] denotes an arbitrary expression context with a hole. (Its oatation
can facilitate the elimination of common if test during tupling transformation, as shown later.)

E[if e1 then e2 else e3] = if e1 then E[e2] else E[e3] (11)

Another composition x�min(map(prod,inits(xs))) was encountered. This was de�ned to be:

mipm(xs) = min(map(prod,inits(xs)))

Its fusion derivation for mipm is very similar to mip. The base case instantiation simpli�es to:

mipm([x]) = x

The recursive case instantiation and transformation is outlined below.

mipm(x:xs) = f instantiate xs=x:xs g
min(map(prod,inits(x:xs)))

= f unfold inits g
min(map(prod,[x]:map((x:),inits(xs))))

= f unfold map g
min(prod([x]):map(prod,map((x:),inits(xs))))

= f unfold min g
min2(prod([x]),min(map(prod,map((x:),inits(xs))))

= f unfold prod g
min2(x,min(map(prod,map((x:),inits(xs))))

= f apply law (4) : map(f,map(g,xs)) = map(f � g,xs) g
min2(x,min(map(prod � (x:),inits(xs)))

= f unfold prod g
min2(x,min(map((x�) � prod,inits(xs)))

= f apply law (10) of min over (x�) g
min2(x,if x�0 then x�min(map(prod,inits(xs))) else x�max(map(prod,inits(xs))))

= f fold with mipm & mip g
min2(x,if x�0 then x�mipm(xs) else x�mip(xs))

= f apply law (11) to oat if outwards g
if x�0 then min2(x,x�mipm(xs)) else min2(x,x�mip(xs))

The completely fused program for msp, after unfolding mip(x:xs) in the RHS of msp and oating its
inner conditional, is:

msp([x]) = x

8



msp(x:xs) = if x�0 then max2(max2(x,mip(xs)),msp(xs)) else max2(max2(x,mipm(xs)),msp(xs))
mip([x]) = x
mip(x:xs) = if x�0 then max2(x,x�mip(xs)) else max2(x,x�mipm(xs))
mipm([x]) = x
mipm(x:xs) = if x�0 then min2(x,x�mipm(xs)) else min2(x,x�mip(xs))

From the current program, tupling analysis of [Chi93, HITT97] would reveal that there are redundant
calls to mip and mipm. They can be eliminated by introducing the following tuple de�nition.

msptup(xs) = (msp(xs),mip(xs),mipm(xs))

Subsequently, tupling transformation can be applied as follows:

msptup([x]) = f instantiate xs=[x] g
(msp([x]),mip([x]),mipm([x]))

= f unfold msp, mip & mipm g
(x,x,x)

msptup(x:xs)= f instantiate xs=x:xs g
(msp(x:xs),mip(x:xs),mipm(x:xs))

= f unfold msp, mip, mipm and oats/shares common if over tuple structure g
let (u,v,w)=msstup(xs) in
if x�0 then (max2(max2(x,x�mip(xs)),msp(xs)),max2(x,x�mip(xs)),min2(x,x�mipm(xs)))
else (max2(max2(x,x�mipm(xs)),msp(xs)),max2(x,x�mipm(xs)),min2(x,x�mip(xs)))

= f gather msp, mip and mipm calls using let g
let (u,v,w)=(msp(xs),mip(xs),mipm(xs)) in
if x�0 then (max2(max2(x,x�v),u),max2(x,x�v),min2(x,x�w))
else (max2(max2(x,x�w),u),max2(x,x�w),min2(x,x�v))

= f fold with msptup g
let (u,v,w)= msptup(xs) in
if x�0 then (max2(max2(x,x�v),u),max2(x,x�v),min2(x,x�w))
else (max2(max2(x,x�w),u),max2(x,x�w),min2(x,x�v))

= f abstract & share common sub-expressions g
let f(u,v,w)= msptup(xs); r=x�v; s=x�w; b=max2(x,r); d=max2(x,s)g in
if x�0 then (max2(b,u),b,min2(x,s))
else (max2(d,u),d,min2(x,r))

The �nal optimised program is:

msp(xs) = let (u, , )=msptup(xs) in u
msptup([x]) = (x,x,x)
msptup(x:xs) = let f(u,v,w)= msptup(xs); r=x�v; s=x�w; b=max2(x,r); d=max2(x,s)g in

if x�0 then (max2(b,u),b,min2(x,s))
else (max2(d,u),d,min2(x,r))

The derived algorithm for msptup is somewhat more complex than that for msstup, even though their
initial speci�cations are very similar. Fortunately, for us, we used essentially the same transformation
techniques, namely fusion followed by tupling, to systematically obtain both space and time e�cient
algorithms. Speci�cally, fusion helps to eliminate unnecessary intermediate data structures (improving
on space), while tupling helps to eliminate redundant calls (improving on time). As a result, the optimised
algorithm has a variable space complexity of O(1), and a time complexity of O(n).

Due to our use of two modular transformation techniques, we need only provide two extra (straight-
forward) laws to allow distribution of max (and min) over products. Such laws are su�cient for us to
systematically derive a more intricate, but yet e�cient algorithm for the MSP problem. An alternative
derivation proposed by Bird, requires a somewhat deeper insight based on Horner's rule. This approach
is considerably more complex for the MSP problem since the corresponding Horner's rule have to be
invented over tupled functions. In our case, this is naturally taken care of by the tupling method. A
more detailed comparison is undertaken in the next section.

5 Classical Derivation via Horner's rule

The MSS (and to a lesser extent the MSP) problem is not new. Formal derivation to obtain e�cient linear-
time algorithm was �rst developed by Bird [Bir88], but the problem originated from Bentley [Ben86].

9



The traditional derivation for the MSS problem has been based on function-level reasoning via the
Bird-Meerstens Formalism (BMF). A major theme of the BMF approach is to capture common patterns
of computations via higher-order functions, and to make heavy use of laws/theorems concerning these
operations. Often, algebraic properties on the components of higher-order operations are required as
side-conditions.

An important example is the Horner's rule to reduce the number of operations used for polynomial-like
evaluation. This rule/law instantiated to three terms can be stated as:

(a1 
 (a2 
 a3 ))� ((a2 
 a3 )� a3 ) = ((a1 � 1
)
 a2 � 1
)
 a3

The algebraic side-conditions required are that both � and 
 are associative, 1
 be the left identity
of 
, and 
 distributes through �. To generalise to n terms, we could express this rule as:

(� =) map(
 =, tails([a1 ; : : : ; an ])) = �� !=
1


[a1 ; : : : ; an ] (12)

where the operators �� , =, != and tails are de�ned by:

a �� b = (a 
 b) � 1

� = [x] = x
� = (xs++ys) = (� = xs) � (� = ys)
� !=

e
Nil = e

� !=
e
(xs++[y]) = (� !=

e
xs) � y

tails(Nil) = Nil
tails(x:xs) = (x:xs):tails(xs)

Horner's rule is a key insight used in the calculational derivation of mss in [Bir88]. We re-produce this
classical derivation below.

mss(xs) = (max2 =)(map((+ =),segs'(xs)))
= f unfold segs'(xs)=atten(map(tails,inits(xs))) g

(max2 =)(map((+ =),atten(map(tails,inits(xs)))))
= f apply law : map(f,atten(xss))=atten(map(nxs.map(f,xs),xss)) g

(max2 =)(atten(map(nz.map((+ =),z),map(tails,inits(xs)))))
= f apply law : max(atten(xss))=max(map(max,xss)) g

(max2 =)(map((max2 =),map(nz.map((+ =),z),map(tails,inits(xs)))))
= f apply law : map(f,map(g,xs)) = map(f � g,xs) twice g

(max2 =)(map(ny. (max2 =)(map(nz.map((+ =),z),tails(y))), inits(xs)))
= f apply Horner's rule : (� =)map(
 =,tails xs) = �� !=

1

xs g

(max2 =)(map(�� !=
0
, inits(xs))) where a �� b = max2(a+b,0)

= f apply scan law : map(� !=
0
,inits(xs))=� !==

0
xs g

(max2 =)(�� !==
0
xs)

Note that we used a non-recursive de�nition of segs' which returns segments in a di�erent order (from
segs given in Sec. 1). Also, a number of other functions are used, including:

� !==
e
Nil = [e]

� !==
e
(xs++[y]) = (� !==

e
xs) ++ [last(� !==

e
xs) � y]

last(xs++[y]) = y
atten(Nil) = Nil
atten(xs:xss) = xs++atten(xss)

The �nal algorithm obtained for mss has a linear time complexity, and also a linear (variable)
space complexity due to an intermediate list from (�� !==

0
xs). This slightly worse space behaviour

may be improved by fusion transformation. Although this classical derivation, based on Horner's rule,
looks more concise that our proposed derivation, it requires larger derivation steps (i.e. more complex
laws/theorems).

Often, suitable algebraic properties are also required as side-conditions to such laws/theorems. They
may be di�cult to check, and especially hard to ensure. For example, the Horner's rule for MSS problem
requires that + distributes through max2, and that the identity of +, namely 0, be present. (The use
of 0 as the identity of + actually results in a less de�ned mss algorithm since it becomes ill-de�ned for
lists with only negative numbers. But this shortcoming is often tolerated.) Worse still is the possibility

10



that distributive property required may not be immediately detected, but support for such property may
come from generalised/tupled functions instead. Consider the MSP problem. The � operator does not
distribute over max2 for negative numbers, but we do have:

max2(a,b)�c = if x�0 then max2(a�c,b�c) else min2(a�c,b�c)

min2(a,b)�c = if x�0 then min2(a�c,b�c) else max2(a�c,b�c)

As Bird reported : \These facts are enough to ensure that, with suitable cunning, Horner's rule can be
made to work"[Bir89]. Instead of max2 and * as the � and 
 operators for its Horner's rule, he suggested
that the following tupled functions be used instead.

(a1; b1) � (a2; b2) = (min2(a1; a2),max2(b1; b2))
(a,b) 
 c = if c � 0 then (a�c,b�c) else (b�c,a�c)

Generalised in this way, it is possible to prove that 
 distributes backwards through �, as follows:

((a1 ; b1 )� (a2 ; b2 ))
 c = ((a1 ; b1 )
 c)� ((a2 ; b2 )
 c))

Inventive insights are needed to come up with such tupled functions for MSP-like problems. In addi-
tion, the original de�nition of msp has to be rewritten to use such tupled functions before its calculational
derivation can be applied. The main di�culty stems from the highly abstract nature of Horner's rule and
its algebraic side-conditions. Fortunately, our proposal avoids this problem by decomposing the deriva-
tion into fusion (which requires the distributive conditions), followed by tupling (to eliminate redundant
calls). Such separation can help break-up di�cult theorems/insights required through the use of simpler
transformation techniques, where possible.

6 Avoiding Accumulation to Save Tupling

The perceptive reader may noticed that our speci�cation of mss di�ers slightly from [Bir89]. Speci�cally,
the classical de�nition of mss generates segments via:

segs'(xs) = atten(map(tails,inits(xs)))

In contrast, we actually started with the following de�nition before it was fused to the recursive
de�nition given in Sec 1.

segs(xs) = atten(map(inits,tails(xs)))

Both seg' and seg yields the same set of segments, except that these segments are returned in a di�erent
order. Unfortunately, this innocous change seems to have an e�ect in the kind of derivation which can
be performed.

For example, if segs were used by the classical derivation, we will need a di�erent type of Horner's and
scan rules, which are oriented for right-to-left reduction, as opposed to left-to-right ones. f� Is this correct?

g Correspondingly, if segs' were used by our modular approach to derivation, we may require equations
based on right-to-left evaluation, typically referred to as snoc-based equations (which deconstruct a given
list backwards), instead of the usual cons-based equations.

At this point, two questions may puzzle the reader? How do we obtain such snoc-based equations?
And when should we use them?

The snoc-based equations can be obtained as a by-product of parallelization. Given a cons-based
equation, the inductive parallelizationmethod presented in [HTC98] is capable of (automatically) deriving
a ++-based parallel equation. This can subsequently be instantiated to the snoc-based equation. As an
example, consider the cons-based version of inits function given in Sec 1. Using the method of [HTC98],
it is possible to derive the following ++-based parallel equation:

inits(xs++ys) = inits(xs)++map((xs++),inits(xs))

By instantiating ys to [y], we can now obtain the following snoc-based equation:

inits(xs++[y]) = inits(xs)++[xs++[y]]

11



Our second question was when should we use such snoc-based equations? We should consider them
when our fusion technique is about to fail through the application of an accumulation tactic, which is
known be unfriendly to tupling! For example, consider the fusion of segs' below.

segs'(x:xs) = f instantiate xs=x:xs g
atten(map(tails,inits(x:xs)))

= f unfold inits g
atten(map(tails,[x]:map((x:),inits(xs))))

= f unfold map g
atten(tails([x]):map(tails,map((x:),inits(xs))))

= f unfold atten g
tails([x])++atten(map(tails,map((x:),inits(xs))))

= f apply law (4) : map(f,map(g,xs)) = map(f � g,xs) g
tails([x])++atten(map(tails � (x:),inits(xs)))

After several steps, we are still unable to fold as we encountered a slightly enlarged expression of the
form atten(map(tails � (x:),inits(xs)). As reported elsewhere [Bir84] and [?]f� Please pass your reference in

NGC g ), this calls for the use of an accumulation tactic to overcome the problem of meeting ever larger
expressions during transformation. Speci�cally, we need to de�ne:

asegs'(w,xs) = atten(map(tails � (w++),inits(xs)))

With a new generalised parameter w, we can now re-apply fusion to obtain:

asegs'(w,[x]) = tails(w++[x])
asegs'(w,x:xs) = tails(w++[x])++asegs'(w++[x],xs)

In general, this accumulation tactic is bad for two reasons. Firstly, the presence of an accumulating
(list) parameter has indicated that fusion has not been totally successful (at least it can be said to
have failed for the accumulating parameter). Secondly, the resulting function (with an accumulating
parameter) is actually unsuitable for tupling since its redundant calls may now have in�nitely many
variants of the accumulative arguments during transformation. This reduces the chances of successful
folding. As a result, we are unable to apply tupling to asegs' (or its mss counterpart) to eliminate the
redundant tails calls (or its mis-like counterparts).

Hence, we should avoid (or delay) the application of accumulating tactic, where possible. One way
to avoid the accumulation tactic is to turn to snoc-based equations, whenever the use of accumulation is
inevitable. In the case of seg', the corresponding fusion transformation using snoc-based equations can
proceed (without accumulation), as follows:

segs'(xs++[y]) = f instantiate xs=xs++[y] g
atten(map(tails,inits(xs++[y])))

= f unfold inits g
atten(map(tails,inits(xs)++[xs++[y]]))

= f apply law (2) : map(f,xr++xs) = map(f,xr)++map(f,xs) g
atten(map(tails,inits(xs))++map(tails,[xs++[y]]))

= f apply law : atten(xr++xs) = atten(xr)++atten(xs) g
atten(map(tails,inits(xs)))++atten(map(tails,[xs++[y]]))

= f fold with segs' g
segs'(xs)++atten(map(tails,[xs++[y]]))

= f unfold map g
segs'(xs)++atten([tails(xs++[y])])

= f unfold atten g
segs'(xs)++ [tails(xs++[y])]

With this version of segs', the main mss function can now be optimised by fusion to yield:

mss([x]) = x
mss(xs++[y]) = max2(mss(xs),max2(mis(xs)+y,y))
mis([x]) = x
mis(xs++[y]) = max2(mis(xs)+y,y)

The redundant calls in the above fused program can now be eliminated via tupling without being
hindered by the presence of accumulating parameters. Our advice is therefore : to avoid/delay the
application of accumulation tactic, where possible. As suggested here, one way to achieve this is to rely
on snoc-based equations, should the cons-based counterparts be found to be inadequate for fusion.

12



7 Discussion and Concluding Remarks

Fusion transformation is considered to be one of the most important derivation technique in the construc-
tive algorithmics [Bir89, Fok92], with many useful fusion theorems being developed for deriving various
classes of e�cient programs (A good summary of these theorems can be found in [Jeu93]). In contrast,
the importance of tupling transformation technique [Fok89] for program derivation was hardly addressed,
let alone a good combination of fusion and tupling.

In this paper, we have proposed a new strategy for algorithm derivation through two key transforma-
tion techniques. The main advantage of our proposal is a clear division of program derivation into two
phases, for the eliminations of intermediate data and redundant calls, respectively. While the steps taken
may be longer than the traditional BMF approach, the opportunities for mechanisation are much higher
since we rely on less insightful laws/theorems to perform these transformations. In particular, simple laws
are only used in the enhanced fusion process, while tupling depends on only equational de�nitions for its
transformation. This combination of fusion (with laws) and tupling is particularly powerful. Other mod-
ular transformation techniques are likely to be helpful too. Finding a good collection of these techniques
could be instrumental towards an improved methodology for developing useful programming pearls.

References

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal
of ACM, 24(1):44{67, January 1977.

[Ben86] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.

[Bir84] Richard S. Bird. The promotion and accumulation strategies in transformational programming. ACM
Trans. on Programming Languages and Systems, 6(4):487{504, October 1984.

[Bir88] Richard S. Bird. Lectures on Constructive Functional Programming. Springer-Verlag, 1988.

[Bir89] Richard S. Bird. Lecture notes on theory of lists. In STOP Summer School on Constructive Algorith-
mics, Abeland, pages 1{25, 9 1989.

[Chi92] Wei-Ngan Chin. Safe fusion of functional expressions. In 7th ACM LISP and Functional Programming
Conference, pages 11{20, San Francisco, California, June 1992. ACM Press.

[Chi93] Wei-Ngan Chin. Towards an automated tupling strategy. In ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 119{132, Copenhagen, Denmark, June
1993. ACM Press.

[Chi94] Wei-Ngan Chin. Safe fusion of functional expressions II: Further improvements. Journal of Functional
Programming, 4(4):515{555, October 1994.

[CT97] W.N. Chin and A. Takano. Deriving laws by program specialization. Technical report, Hitachi Ad-
vanced Research Laboratory, July 1997.

[Fok89] M. Fokkinga. Tupling and mutumorphisms. Squiggolist, 1(4), 1989.

[Fok92] M. Fokkinga. Law and Order in Algorithmics. Ph.D thesis, Dept. INF, University of Twente, The
Netherlands, 1992.

[GLPJ93] A. Gill, J. Launchbury, and S. Peyton-Jones. A short-cut to deforestation. In 6th ACM Conference on
Functional Programming Languages and Computer Architecture, Copenhagen, Denmark, June 1993.
ACM Press.

[HIT96] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms from recursive de�nitions.
In ACM SIGPLAN International Conference on Functional Programming, pages 73{82, Philadelphia,
Pennsylvannia, May 1996. ACM Press.

[HITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates multiple traversals. In
2nd ACM SIGPLAN International Conference on Functional Programming, pages 164{175, Amster-
dam, Netherlands, June 1997. ACM Press.

[HTC98] Z. Hu, M. Takeichi, and WN. Chin. Parallelization in calculational forms. In 25th Annual ACM
Symposium on Principles of Programming Languages, San Diego, California, January 1998. ACM Press
(to appear).

[Jeu93] J. Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science, Utrecht University,
1993.

[SF93] T. Sheard and L. Fegaras. A fold for all seasons. In 6th ACM Conference on Functional programming
Languages and Computer Architecture, Copenhagen, Denmark, June 1993. ACM Press.

13



[SGN94] M.H. S�rensen, R. Gl�uck, and Jones N.D. Towards unifying deforestation, supercompilation, partial
evaluation and generalised partial computation. In European Symposium on Programming (LNCS 788),
Edinburgh, April 1994.

[Smi89] Douglas R. Smith. KIDS - a semi-automatic program development system. Technical report, Kestrel
Institute, October 1989.

[SS97] H. Seidl and M.H. S�rensen. Constraints to stop higher-order deforestation. In 24th ACM Symposium
on Principles of Programming Languages, Paris, France, January 1997. ACM Press.

[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In ACM Conference on Func-
tional Programming and Computer Architecture, pages 306{313, San Diego, California, June 1995.
ACM Press.

[Wad88] Phil Wadler. Deforestation: Transforming programs to eliminate trees. In European Symposium on
Programming, Nancy, France, (LNCS, vol 300, pp. 344{358), March 1988.

14


