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Abstract: In this paper, we prove that both problems for calculating the Banzhaf
power index and the Shapley-Shubik power index for weighted majority games are
N'P-complete.
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1 Introduction

Weighted voting is frequently used when there is sufficient reason to create or maintain
districts which have nontrivial variations in populations. To analyze weighted voting, there
is a weighted majority game in the game theory. Banzhaf [1] introduced an index, which
is called the Banzhaf power index, for measuring an individual’s voting power. Another
value concept for measuring voting power was introduced by Shapley and Shubik [8], which
is called the Shapley-Shubik power index. The Shapley-Shubik power index is a special
application of a more general value concept introduced by Shapley in [7].

In this paper, we prove that both problems for calculating the Banzhaf power index and

the Shapley-Shubik power index for weighted majority games are A'P-complete.

2 Preliminaries

In this section, we give some definitions and notations. There are n players denoted
by {1,...,n}. The weighted majority game is a sequence of nonnegative integers G =
(¢; w1, wa, ..., w,) satisfying the condition that w; > 0 and (1/2) Y7, w; < ¢ < 30, w;,
where each w; denotes the voting weight of player ¢ and the integer ¢ denotes the quota for

the game.
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A coalition is a subset of players. A coalition S is called a winning coalition (respectively
a losing coalition) when Y ,cgw; > ¢ (respectively > .cqw; < q).

For any coalition S of players, we say that player ¢ is a swing with respect to S if and
only if (S, SA{i}) is a pair of a losing coalition and a winning coalition (S1AS; denotes the
symmetric difference of Sy and S3). The raw Banzhaf power index denotes the vector 5 =
(51, B2y ..., 3,) such that §; is equal to the number of coalitions for which player ¢ is a swing.
The Banzhaf power index is the vector 5* = (51, 35, ..., 55) defined by 85 = 3,/ 37, /.

Given a permutation 7 defined on {1,2,...,n}, we denote x(¢) by =; for each ¢ €
{L,2,...,n}. For any permutation = on {1,2,...,n}, we say that player 7; is the pivot
player with respect to 7 if and only if the coalition S = {my,ms,...,7j_1} satisfies that S
is losing and S U {x;} is winning. The raw Shapley-Shubik power index denotes the vector
© = (¥1,92,...,9,) such that ¢; is equal to the number of permutations defined on the
set of players for which player ¢ is the pivot player. The Shapley-Shubik power index is the
vector * = (¢f, 5, ..., ¢5) defined by ¢f = ¢;/nl.

It we calculate the Banzhat power index conforming to an algorithm by the defini-
tion, then the algorithm requires O(2"n)time. Similarly, a naive algorithm for calculat-
ing the Shapley-Shubik power index requires O(n!n)time. In 1982, Lucas, Maceli, Hillicard
and Housman [5] proposed a pseudo polynomial time algorithm which calculates both the

Banzhaf power index and the Shapley-Shubik power index simultaneously.

3 Banzhaf index

We discuss the problem for calculating the Banzhaf power index.
BZ1
INSTANCE: A positive integer n and a sequence of nonnegative integers (¢; wy, ..., w,) sat-
isfying (1/2) 30w, < ¢ < Y0 w; and wy > wy > -+ > w,.
QUESTION: Does the raw Banzhaf power index (34, ..., 3,) of the weighted majority game
G = (q;w,...,w,) satisfy 3, > 07

We prove A'P-completeness of BZ1 by presenting a polynomial time reduction from the
knapsack problem (KP), which is a well-known A P-complete problem [3, 4].
KP
INSTANCE: A positive integer k and a sequence of positive integers (ay,...,a;) satisfying
that (1/2) Y5, a; is an integer.
QUESTION: Is there a subset S C {1,2,...,k} such that >;csa; = (1/2) S5, ;7

Theorem 1 BZ1 is N'P-complete.

Proof. If problem BZ1 has YES answer, then there exists a coalition for which player n is
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a swing. The coalition becomes a polynomial size certificate and so problem BZ1 is in the
class N'P.
Given a problem instance of KP, we construct a problem instance of BZ1 as follows.

Weput n=k+1,¢=(1/2)F  a; +1 and

a; (1=1,2,....,n—1),
w; = .
L (¢=n).

The above definitions imply that the quota ¢ 1s an integer satisfying

0= (1/2)) ai+1= (1/2)7§:wi—l— | = (1/2)iwi—|— (1/2) > (1/2) S w,

i=1
and so G = (¢;wy,...,w,) becomes a weighted majority game.

Assume that 3, > 0. Then there exists a coalition S* such that player n is a swing with
respect to S*. Without loss of generality, we can assume that S* does not contain player n.
Since n i1s a swing with respect to S™*,

Zai<q§ Zai—l—an: Zai—l—l.

1ES* 1ES* 1ES*
The above inequalities and the integrality of weights imply that ;e g a; = ¢—1 = (1/2) ¥, a5,
and so KP has YFES answer.

Next, we consider the case that there exists a subset S* C {1,2,...,n — 1} satisfying
that Y ;cqn a; = (1/2) S, a; = ¢ — 1. Then, it is clear that player n is a swing with respect
to S* and so 3, > 0. O

The above theorem directly implies the following.

Corollary 1 Calculating the Banzhaf power index is N'P-hard.

When we are interested in the players with large voting weights, we need to consider the
following problem.

BZ2

INSTANCE: A positive integer n and a sequence of nonnegative integers (¢; wy, .. ., w,,) sat-
isfying (1/2) >0 w; < ¢ < Y0 w; and wy > wy > -+ > w,.

QUESTION: Does the raw Banzhaf power index (3, ..., 3,) of the weighted majority game
G = (q;w,...,w,) satisfy By > (57

Theorem 2 BZ2 is N'P-complete.

Proof. For any coalition S, we define the coalition S as follows:

S ({1,2} N5 =0),
$={ sA{1,2} ({1,2}n5s|=1),
s ({1,2} N S| = 2).
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Clearly from the definition, (?) = S. We can show easily that if player 2 is a swing with
respect to S, then player 1 is a swing with respect to S. It implies that when §; > (,, there
exists a coalition S™ such that player 2 is not a swing with respect to S™ and player 1 is a
swing with respect to S*. Then the coalition S* becomes a polynomial size certificate and
so BZ2 is in the class N'P.

To show the N'P-completeness, we construct the following weighted majority game G

from a problem instance of KP. We assume that a; > ay > -+ > ag. Then we put n = k+2,

Yiiai+l (i=1),
wi = Y a (1 =2),
;o (t=3,4,...,n),

and ¢ = (3/2) %, a; + 1. Clearly from the definition, G' = (q;wy,...,w,) becomes a
weighted majority game. Then it is easy to show that 3, > f; if and only if KP has YES
answer. 0
The above theorem implies that it is hard to calculate the Banzhaf power index even if we
restrict to the players with large index values. Since #; > 1/n, we can decide whether 3, > /3,
by calculating all the elements of the Banzhaf power index satisfying that corresponding
values are greater than or equal to 1/n. Thus, the problem for calculating all the elements

of the Banzhaf power index satisfying that corresponding values are greater than or equal

to 1/n is N'P-hard.

4 Shapley-Shubik index

We consider the following problem.
SS1
INSTANCE: A positive integer n and a sequence of nonnegative integers (¢; wy, ..., w,) sat-
isfying (1/2) X0 w; < ¢ < Y0 w; and wy > wy > -+ > w,.
QUESTION: Does the raw Shapley-Shubik power index (g1, ..., ¢,) of the weighted major-
ity game G = (q;wy, ..., w,) satisfy ¢, > 07

We prove N'P-hardness of SS by presenting a polynomial time reduction from problem

KP described in the previous section.
Theorem 3 SS1 is N'P-complete.

Proof. Assume that problem SS1 has YES answer. Then there exists a permutation for
which player n is the pivot player. The permutation becomes a polynomial size certificate
and so problem SS1 is in the class A/P.

For any problem instance of KP, we construct the weighted majority game G with n =

k + 1 players defined in the proof of Theorem 1.
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Assume that ¢, > 0. Then there exists a permutation 7* such that player n is the pivot
player with respect to n*. Let S = {#],#3,..., 77} where 7 is the integer satisfying =* = n.
Then the equality > icsa; = azr + ary + -+ + azs_ holds. Since n is the pivot player with

respect to T,

Zai<q§2ai—|—an:Zai—l—l.

€S 1€S €8
The above inequalities and the integrality of weights imply that ;e a; = ¢—1 = (1/2) =8, ay,
and so KP has YFES answer.

Next, we consider the case that there exists a subset S C {1,2,...,k} satisfying that
Sies@ = (1/2)XF  a;. Let 7 be a permutation satisfying the condition that there exists
an integer 7 such that 7, = n and S = {7y, my, ..., m_1}. Then, it is clear that player n = =;
is the pivot player with respect to 7 and so ¢, > 0. a

The above theorem directly implies the following.

Corollary 2 Calculating the Shapley-Shubik power index is N'P-hard.

When we are interested in the players with large voting weights, we need to consider the
following problem.

SS2

INSTANCE: A positive integer n and a sequence of nonnegative integers (¢; wy, ..., w,) sat-
fefying (1/2) S0y wi < g € Y0y ws and w2 w0y > - >,

QUESTION: Does the raw Shapley-Shubik power index (g1, ..., ¢,) of the weighted major-
ity game G' = (q; wy, ..., w,) satisfy ¢y > @7

Theorem 4 SS2 is N'P-complete.

Proof. For any permutation 7, ¥ denotes the permutation obtained from = by exchanging
the positions of player 1 and player 2. Clearly from the definition, ﬁ = 7. We can show
easily that if player 2 is the pivot player with respect to w, then player 1 is the pivot player
with respect to 7. It implies that when ¢y > ¢, there exists a permutation 7* such that
player 2 is not the pivot player with respect to #* and player 1 is the pivot player with
respect to 7*. Then the permutation 7* becomes a polynomial size certificate and so SS2 is
in the class N'P.

To show the NP-completeness, we construct the weighted majority game G’ defined in
Theorem 2. Then it is easy to show that ¢, > ¢, if and only if KP has YES answer. a

The above corollary implies that it is hard to calculate the Shapley-Shubik power index
even if we restrict to the players with large index values. The problem for calculating all the
elements of the Shapley-Shubik power index satistying that corresponding values are greater

than or equal to 1/n is also N"P-hard.
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