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Summary.

It is widely recognized that a key problem of parallel computation
is in the development of both e�cient and correct parallel software. Al-
though many advanced language features and compilation techniques
have been proposed to alleviate the complexity of parallel program-
ming, much e�ort is still required to develop parallelism in a formal
and systematic way. In this paper, we intend to clarify this point by
demonstrating a formal derivation of a correct but e�cient homomor-
phic parallel algorithm for a simple language recognition problem known
as bracket matching. To the best of our knowledge, our formal deriva-
tion leads to a novel divide-and-conquer parallel algorithm for bracket
matching.

Keywords: Skeleton, Parallel Functional Programming, List Ho-
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1 Introduction

The bracket matching is a kind of language recognition problems, determining
whether the brackets in a given string are correctly matched. For example, for the
language generated by the grammar

S ! S S
S ! (S )
S ! [S ]
S ! fS g
S ! any other symbol

the string \g + f[o+ o] � dg()" is accepted, whereas \bf[a)d]" is not. This problem
is of interest in parallel programming in that the problem itself is so simple but
�nding an e�cient parallel algorithm is far from being trivial.

It is known [7] that this problem can be solved in O(log n) parallel time on
O(n= logn) processors in the PRAM model, where n denotes the length of the
inputstring. But the algorithms involved are rather complicated. To remedy this
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situation, Cole [6] investigated a methodology for the development of parallel algo-
rithms based upon exploration of parallelism of homomorphisms in Bird Meertens
Formalisms [2]. He successfully applied it to derive a homomorphic parallel algo-
rithm for bracket matching. However, there still remain two major problems.

� The derivation proposed by Cole is quite informal, although much e�ort has
been made to show intuitively the correctness of the designed algorithms. As
concluded in [6], It is of interest to ask how easily the resulting algorithm

might have been derived in a more strictly formal setting.

� The derived homomorphic algorithm is not optimal ; it needs the parallel
time of O(log2 n) rather than the optimal O(logn) [7]. In a similar approach
to Cole's, a homomorphic parsing algorithm [1] is presented for operator
precedence grammars, from which a solution to the bracket matching problem
can be specialized, but it has linear time behavior in the worst case. It would
be more convincing if we could derive an optimal homomorphic algorithm.

This paper shows how these two problems can be well solved based on the
parallelization theorem [15]. In particular, we will propose a systematic and formal
derivation of, to the best of our knowledge, a novel optimal homomorphic algorithm
for bracket matching.

2 List Homomorphisms

List homomorphisms, an important concept in Bird Meertens Formalisms (BMF for
short) [2], play a central role in our derivation. To make the paper self-contained,
we brie
y explain some notational conventions of BMF that will be used later.

Function application is denoted by a space and the argument which may be
written without brackets. Thus f a means f (a). Functions are curried, and appli-
cation associates to the left. Thus f a b means (f a) b. Function application binds
stronger than any other operator, so f a � b means (f a) � b, but not f (a � b).
Function composition is denoted by a centralized circle �. By de�nition, we have
(f �g) a = f (g a). Function composition is an associative operator, and the identity
function is denoted by id. In�x binary operators will often be denoted by �;
.
Lists are �nite sequences of values of the same type. We write [ ] for the empty
list, [a] for the singleton list with element a, and x ++ y for the concatenation of
two lists x and y. The term [1]++ [2]++ [3] denotes a list with three elements, often
abbreviated to [1; 2; 3]. We also write a : xs for [a] ++xs.

List homomorphisms become more and more attractive in parallel programming
[2, 6, 9, 10, 11, 13, 15], mainly because of their distinguished properties of simplicity,
clear parallelism, and manipulability.

� First, they are the simplest recursive skeletons on join lists; function h is
a list homomorphism1, if there exist a function k and an associative binary
operator � so that h is de�ned by

h [a] = k a
h (x++ y) = h x� h y:

1 We assume that h is de�ned over nonempty lists in this paper.
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For instance the function sum that sums up all elements of a list is a list
homomorphism, in which k = id and � = +.

� Second, list homomorphisms attain a potentially high parallelism. Intuitively,
the value of h on a larger list depends in a particular way (using binary
operation �) on the values of h applied to the two pieces of the list, which
can be viewed as expressing the well-known divide-and-conquer paradigm in
parallel programming.

� Third, list homomorphisms are manipulable (suitable for program transfor-
mation), because they enjoy many nice algebraic laws, such as the homomor-
phism lemmas [2, 8], the fusion and tupling transformation laws [13], and the
parallelization theorem [15].

3 The Parallelization Theorem

The following gives a parallelization lemma. It is a special case of the general
parallelization theorem [15], but is su�ce for us to calculate parallel algorithms for
bracket matching.

Lemma 1 (Parallelization) Given is a program

f [a] c = g0 a c
f (a : x) c = g1 a c � f x (g2 a
 c)

where � and 
 are two associative binary operators. Then, for any non-empty lists
x0 and x, we have

f [a] c = g0 a c
f (x0 ++x) c = G1 x

0 c� f x (G0
2 x

0 
 c)

where G1 and G2 are functions de�ned by

G1 [a] c = g1 a c
G1 (x

0
1 ++x02) c = G1 x

0
1 c � G1 x

0
2 z (G2 x

0
1 
 c)

G2 [a] = g2 a
G2 (x

0
1 ++x02) = G0

2 x
0
2 
G0

2 x
0
1

2

We will not recap the proof of the lemma as given in [15]. Instead, we demon-
strate how it works for calculating parallel algorithms. We consider a simpli�ed
bracket matching problem: determining whether a single type (rather than many
types) of brackets, '(' and ')', in a given string are correctly matched. This problem
has a straightforward linear sequential algorithm, in which the string is examined
from left to right. A counter is initialized to 0, and increased or decreased as
opening and closing brackets are encountered.

sbp0 [ ] c = c == 0
sbp0 (a : x) c = if a == '(' then sbp0 x (c+ 1)

else if a == ')' then c > 0 ^ sbp0 x (c� 1)
else sbp0 x c:
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Unifying three occurrences of the recursive call into a single one using the Normal-
izing transformation of conditional structures [5] gives

sbp0 (a : x) c = (if a == '(' then True

else if a == ')' then c > 0 else True)
^
sbp0 x ((if a == '(' then 1
else if a == ')' then � 1 else 0) + c):

Now we can apply the lemma by introducing two functions g1 and g2 to abstract
two subexpressions

sbp0 (a : x) c = g1 a c ^ sbp0 x (g2 a+ c)
g1 a c = if a == '(' then True

else if a == ')' then c > 0 else True

g2 a = if a == '(' then 1
else if a = ')' then � 1 else 0

and obtain
sbp0 (x0 ++x) c = G1 x

0 c ^ sbp0 x (G2 x
0 + c)

where
G1 [a] c = if a == '(' then True

else if a == ')' then c > 0
else True

G1 (x
0
1 ++x02) c = G1 x

0
1 c ^ G1 x

0
2 (G2 x

0
1 + c)

G2 [a] = if a == '(' then 1
else if a == ')' then (�1) else 0

G2 (x
0
1 ++x02) = G2 x

0
2 +G2 x

0
1

This is the parallel version we aim to get in this paper, although it is currently
ine�cient because of multiple traversals of the same input list by several functions.
But this can be automatically improved by the tupling calculation as intensively
studied in [14]. For instance, we can obtain the following program by tupling sbp0,
G1 and G2.

sbp0 x c = s where (s; g1; g2) = tup x c
tup [a] c = if a == '(' then (c+ 1 == 0;True; 1)

else if a == ')' then (c� 1 == 0; c > 0;�1)
else (c == 0;True; 0)

tup (x++ y) c = let (sx; g1x; g2x) = tup x c
(sy; g1y; g2y) = tup y (g2x + c)

in (g1x ^ sy; g1x ^ g1y; g2y + g2x)

It seems not so apparent that the above gives an e�cient parallel program.
Particularly, the second recursive call tup y (g2x + c) relies on g2x, an output from
the �rst recursive call tup x c. Nevertheless, this version of tup can be e�ciently
implemented in parallel on a multiple processor system supporting bidirectional
tree-like communication with O(log n) complexity where n denotes the length of the
input list, by using an algorithm similar to that in [4]. Two passes are employed;
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an upward pass in the computation is used to compute the third component of
tup x c before a downward pass is used to compute the �rst two values of the tuple.

To summarize the above, we can get the following performance lemma.

Lemma 2 (Performance) In Lemma 1, the parallelized f can be implemented us-
ing O(max(tg0 ; tg1 ; tg2)+max(t�; t
)� logn) parallel time on (n= logn) processors
in the PRAM model, where n denotes the length of the input list, and the notation
top denotes the time for computing op. 2

4 Derivation

We return to our main topic; deriving an e�cient homomorphic parallel algorithm
for bracket matching (of many types of brackets). We start with a naive sequential
program, and then try to parallelize it using the parallelization lemma. The key
to our derivation is a new idea for constructing an e�cient associative operator to
combine two stacks.

4.1 Speci�cation

Compared to the bracket matching of a single type of brackets, arbitrary bracket
types complicates the bracket matching problem. But a simple straightforward
linear time sequential algorithms still exists by using a stack. Opening brackets are
pushed, and a closing brackets are matched with the current stack top. Failure is
indicated by a mismatch, or by a nonempty stack when a match is required or at
the end of the scan of the input. Thus we come to the following straightforward
speci�cation.

bm [ ] s = isEmpty s
bm (a : x) s = if isOpen a then bm x (push a s)

elseif isClose a then noEmpty s ^ match a (top s) ^
bm x (pop s)

else bm x s

Here we use several boolean functions; isOpen and isClose are to determine if a
symbol is an opening or an closing bracket, match to determine if two symbols are
bracket-matched, e.g., match 0[0 0]0 gives True whereas match 0(0 0]0 gives F lase,
and isEmpty and noEmpty to determine if a stack is empty or not.

4.2 Linearization

We intend to use the parallelization lemma to derive a parallel algorithm from the
speci�cation. Comparing the speci�cation with the program that can be accepted
by the parallelization lemma indicates that three occurrences of the recursive call
should be uni�ed into a single one, and that we a de�nition of bm for the case of a
singleton list should be given. The formal can be done in a similar way as for sbp0,
and the latter can be done by a simple in-lining.

bm [a] s = g0 a s
bm (a : x) s = g1 a s ^ bm x (g2 a s)
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where

g0 a s = if isOpen a then False
elseif isClose a then match a (top s) ^ isEmpty (pop s)
else isEmpty s

g1 a s = if isOpen a then True
elseif isClose a then noEmpty s ^ match a (top s)
else True

g2 a s = if isOpen a then push a s
elseif isClose a then pop s
else s:

4.3 Deriving an associative operator

Now the function bm is in an accepted form that the parallelization lemma can be
applied, provided that there exists an associative operator 
 such that g2 can be
expressed by

g2 a s = g02 a 
 s:

Fortunately, we know that an associative operator can be systematically derived
from many algebraic data types [16, 15]. Let the stack be de�ned by 2

Stack = Empty j Push Char Stack j Pop Stack

from which we know that an associative operator 
 (also called zero-replacement

function which inductively replaces zero-constructor Empty by another stack) can
be derived using the standard technique [16, 15].

Empty 
 s = s
(Push a s0)
 s = Push a (s0 
 s)
(Pop s0)
 s = Pop (s0 
 s)

It is left for reader to check that 
 is indeed associative and has Empty as its
identity unit. Consequently, we can extract s out of g2 using 
 and obtain

g2 a s = g02 a
 s
g02 a = if isOpen a then push a Empty

elseif isClose a then pop Empty
else Empty

From the the stack property Pop � Push a = id, we can see that our stack can
be kept in the following normal form

Push a1 (Push a2 (� � � (Push an (Pop (Pop(� � � (Pop Empty))))))) (1)

that is, the occurrences of the Pop constructor, if there are, should appear inside the
Push constructors, but not vice visa. With this normal form, we give de�nitions

2 Notice that we include Pop as a data constructor that is usually considered as a destructor of
the stack. By doing so, we can postpone constructing stack.
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for those functions that manipulate the stack.

push a s = Push a s
pop s = Pop s
top (Push a s) = a
isEmpty Empty = True
isEmpty = Flase
noEmpty = not � isEmpty

4.4 E�ciently Implementing 


Applying the parallelization lemma will soon give our homomorphic algorithm.
But according to the performance lemma we expect that 
 to be implemented
in constant parallel time, in order to obtain an O(logn) parallel algorithm. As a
matter of fact, the present de�nition is unsatisfactory; it is sequential. We shall
show how to implement 
 e�ciently in parallel.

Recall that our stack has the form of (1), which can be represented by a list of
a1; � � � ; an and the number of the Pop constructor, i.e.,

([a1; � � � ; an]; n;m)

where m denotes the number of Pop's. Note that to simplify our later presentation,
we include the second element n so that the length of the �rst component can be
computed incrementally. With this representation, we can implement the stack
constructors as follows.

Empty = ([ ]; 0; 0)
Push c (cs; n;m) = ([c] ++ cs; n+ 1;m)
Pop (c : cs; n+ 1; m) = (cs; n;m)
Pop ([ ]; 0;m) = ([ ]; 0;m+ 1)

And
(cs1; n1;m1)
 (cs2; n2;m2)
= if m1 � n1 then (cs1; n1;m1 � n2 +m2)
else (cs1 ++ drop (n2 �m1) cs2; n1 + n2 �m1;m2)

where drop n xs drops o� the �rst n elements, Because drop and ++ can be im-
plemented in parallel using constant time, it follows that 
 can be implemented in
constant parallel time.

4.5 Applying the parallelization lemma

Now we are ready to apply the parallelization lemma, and obtain the following
parallel algorithm for bracket matching.

bm [a] s = g0 a s
bm (x0 ++x) s = G1 x

0 s ^ bm x (G0
2 x

0 
 s)
G1 [a] s = g1 a s
G1 (x1 ++x2) s = G1 x1 s ^G1 x2 (G

0
2 x1 
 s)

G0
2 [a] = g02 a

G0
2 (x1 ++x2) = G2 x2 
G2 x1
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bracketMatching :: String ! Bool

bracketMatching x = tup x Empty

tup [a] s = if isOpen a then (False; T rue; push a Empty)
elseif isClose a then (match a (top s) ^ isEmpty (pop s);

noEmpty s ^ match a (top s);
pop Empty)

else (isEmpty s; T rue; Empty)
tup (x++ y) s = let (bmx; g1x; g

0

2x) = tup x c

(bmy; g1y; g
0

2y) = tup y (g02x 
 s)
in (g1x ^ bmy ; g1x ^ g1y; g

0

2y 
 g02x)

where

Empty = ([ ]; 0; 0)
push a (x; n;m) = ([a] ++x; n+ 1;m)
pop (a : x; n+ 1;m) = (x; n;m)
pop ([ ]; 0;m) = ([ ]; 0;m+ 1)
isEmpty s = if s == ([ ]; 0; 0) then True else False
noEmpty s = not(isEmpty s)

and
(x1; n1;m1) 
 (x2; n2;m2)
= if m1 � n1 then (x1; n1;m1 � n2 +m2)
else (x1 ++ drop (n2 �m1) x2; n1 + n2 �m1;m2)

Fig. 1 The Final Program for Bracket Matching

It is not di�cult to check that g0; g1; g
0
2;^;
 can be implemented using constant

parallel time. It soon follows from the performance lemma that the �nal program is
a O(log n) parallel program. To be more explicit, we summarize our �nal algorithm
in Figure 1, by applying the tupling transformation, and substituting all functions
with their �nal de�nitions.

In fact, as discussed in [12], this program can be automatically translated into
an e�cient NESL code [3], which can run on various of parallel architectures in
practice. The NESL code is given in the appendix.

5 Conclusion

In this paper, we show, by a case study, that the parallelization lemma is very useful
for formal derivation of parallel algorithms, besides its e�ectness in constructing
parallelization compiler as studied in [12]. In particular, we formally derive a novel
but e�cient parallel homomorphic algorithm for bracket matching, which would
be di�cult with other approaches [10, 11].
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A Our Parallel Program for Barcket Matching in NESL

The following gives our NESL code for Bracket Matching. It is an O(log n) parallel
program according to the performance model of NESL.

% ======== Stack Datatype ===========%

datatype Stack ([Char], Int);

function isEmpty (s) : Stack -> Bool =
let
Stack (pu, po) = s

in
(#pu == 0 and po == 0);

function noEmpty (s) : Stack -> Bool =
not (isEmpty (s));

function push (c, s) : (Char, Stack) -> Stack =
let
Stack (pu, po) = s

in
Stack ([c] ++ pu ,po);

function pop (s) : Stack -> Stack =
let
Stack (pu, po) = s

in
if #pu == 0
then
Stack (pu, po + 1)

else
Stack (drop (pu, 1), po);

function top (s) : Stack -> Char =
let
Stack (pu, po) = s

in
pu[0];

empty = Stack (dist (`x, 0), 0);

function otimes (x, y) : (Stack, Stack) -> Stack =
let
Stack (xpu, xpo) = x;
Stack (ypu, ypo) = y

in
if xpo >= #ypu
then
Stack (xpu, xpo + ypo - #ypu)

else
Stack (xpu ++ drop (ypu, xpo), ypo);

% =========== Main Algorithm ===========%

function otimes_rev (x, y) : (Stack, Stack) -> Stack =
otimes (y, x);

function isOpen (c) : Char -> Bool =
(c == `( or c == `[ or c == `{);

function isClose (c) : Char -> Bool =
(c == `) or c == `] or c == `});

function match (c1, c2) : (Char, Char) -> Bool =
(c1 == `( and c2 == `)) or (c1 == `[ and c2 == `]) or (c1 == `{ and c2 == `});

function bm (x, st) : ([Char], Stack) -> Bool =
let
g20 = {if isOpen (a)

then
push (a, empty)
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else if isClose (a)
then
pop (empty)

else
empty

: a in x};
(g21, e) = scan (otimes_rev, empty, g20);
s0 = {otimes (g21e, st) : g21e in g21};
b0 = {if isOpen (a)

then
F

else if isClose (a)
then
(if noEmpty (s) then (match (top (s), a) and isEmpty (pop (s))) else F)

else
isEmpty (s)

: s in s0; a in x};
g10 = {if isOpen (a)

then
T

else if isClose (a)
then
(if noEmpty (s) then match (top (s), a) else F)

else
T

: s in s0; a in x};
g11 = and_scan (g10);
b1 = {g11e and b0e : g11e in g11; b0e in b0}

in
b1[#b1 - 1];

function bracketMatching (str) : [Char] -> Bool = bm (str, empty);


