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Optimality of mixed-level supersaturated designs

Abstract

Supersaturated design is an important aspect of experimental design. Several properties of su-

persaturated designs have been obtained that enable supersaturated design to be constructed while

maintaining low dependency over all pairs of columns. This paper presents generalized theorems on

the optimality of supersaturated designs. Mixed-level supersaturated designs are generated using a

construction method based on these theorems. An index is proposed for measuring the e�ciency of

supersaturated design and is applied to the constructed mixed-level supersaturated designs.

Key words and phrases: �2 statistic, dependency between two columns, saturated and orthogonal design,

lower bound of dependency

AMS 1991 subject classi�cations: Primary 62K15, Secondary 05B20

Abbreviated title: Mixed-level supersaturated design

1 Introduction

When an experiment is expensive and the number of factors is large, a useful �rst step is to identify

the active factors so that the number of factors can be limited. Supersaturated design is helpful doing

this, because it is a kind of fractional factorial design in which the number of columns is greater than or

equal to the number of rows. Supersaturated design was originated by Satterthwaite (1959) as a random

balance design and formulated by Booth and Cox (1962) in a systematic manner. The main aim of

construction of supersaturated design is to generate two-level columns while maintaining low dependency

over all pairs of columns. The dependency has been measured using the squared inner product between

two columns because the dependency between the two estimates of the e�ects of the assigned factors can

be represented by a function of the inner product. Lin (1993), Wu (1993), Iida (1994) and Deng, Lin

and Wang (1994) have constructed supersaturated designs from existing designs such as the half fraction

of the Plackett and Burman design proposed by Lin (1993). Lin (1995) and Cheng (1997) have gained

insight into the properties of the design criteria. The construction methods proposed by Nguyen (1996)

and Li and Wu (1997) are algorithmic approaches that maintain low dependency. Tang and Wu (1997)

and Yamada and Lin (1997) have constructed supersaturated designs by applying the properties of an

orthogonal base. For example, in Tang and Wu's method, the design matrices generated by permutation

of rows in an initial matrix are sequentially added, where the initial matrix is an orthogonal base.

The three-level supersaturated design de�ned by Yamada, Lin and Yasunari (1997) is a natural ex-

tension of the two-level supersaturated design. In it, the measure for dependency between two columns is

de�ned by �2 statistic which is applied to the hypothesis test in a two-way contingency table. They have

constructed three-level supersaturated designs from two-level supersaturated designs while maintaining
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low dependency. Yamada, Ikebe, Hashiguchi and Niki (1997) have shown a method for constructing a

three-level supersaturated design based on the fundamental theorem of multi-level supersaturated design

proven by Niki, Hashiguchi, Yamada and Ikebe (1997), in which the dependency is measured by �2

statistic.

In this paper, we �rst present generalized theorems on the optimality of mixed-level supersaturated

designs, where the dependency between two columns is de�ned by the �2 statistic, because it can also

be applied to mixed-level supersaturated design. Next we describe mixed-level supersaturated designs

generated using a construction method based on our theorems. Finally, we propose an index to represent

the e�ciency of supersaturated designs and apply it to the constructed mixed-level designs.

2 The construction problem

Given a pair of positive integers, n and p, we de�ne the following families:

Dn
p � fd = (d1; d2; : : : ; dn)

t 2 f0; 1gn j d1 + � � �+ dn = n=pg;
Mn

p � ffd1;d2; : : : ;dpg j d1;d2; : : : ;dp 2 Dn
p ; d1 + d2 + � � �+ dp = 1g;

Mn � Mn
1 [Mn

2 [ � � � [Mn
n:

Any element M in Mn is called a column. For any column M , p(M ) denotes the integer p such that

M 2 Mn
p , so M is called a p(M )-level column. Any multiset F of columns is called a design. A design

F = fM1;M2; : : : ;M qg corresponds to an (n � q) design matrix [f1;f2; : : : ;fq ] such that r-th column

vector fr is de�ned by 1dr1 + 2dr2 + � � � + prd
r
pr

where pr = p(Mr) and M r = fdr1;dr2; : : : ;drprg. For

any vector d 2 Dn
p , the vector d � (1=p)1 is denoted by d. For any column M 2 Mn, we de�ne

M � fd j d 2Mg.
Given a pair of columns, (M;M 0) 2 Mn

p �Mn
p0 , the dependency measure between them is de�ned by

�2(M;M 0) �
X
d2M

X
d

0

2M 0

��
d � d0�� n

pp0

�2��
n

pp0

�
;

where
�
d � d0� is the inner product of vectors d and d0. This de�nition directly implies that

�2(M;M 0) =
X
d2M

X
d

0

2M 0

�
d � d0

�2�� n

pp0

�
:

The dependency measure for a design F = fM1;M2; : : : ;M qg is de�ned by

�2(F) �
X

1�r<s�q

�2(Mr;M s):

From these notations and de�nitions, the problem of constructing a mixed-level design can be de-

scribed as generating of columns fM 1;M 2; : : : ;Mqg from set Mn while maintaining a low level of

�2(Mr;Ms) (1 � r < s � q).
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Remark From the de�nition of family Dn
p , the condition d1+� � �+dn = n=p implies the equal occurrence

property of columns, i.e., every column contains each level of f1; 2; : : : ; pg exactly n=p times. For example,

when p = 3 and n = 12, each level of f1; 2; 3g appears four times respectively. The equal occurrence

property was assumed in previous studies (see Booth and Cox (1962) or Lin (1993) or Wu (1993), for

example) and it is also assumed here.

3 Generalized theorems

3.1 Number of dimensions in orthogonal design

A design fM1;M2; : : : ;Mqg consisting of mutually independent columns, i.e., �2(Mr;Ms) = 0 (1 � 8r <
8s � q), is called an orthogonal design. Here we consider the maximum size of mixed-level orthogonal

design. For any S � R
n, spn(S) denotes the linear subspace spanned by S. The linear subspace

fx 2 Rn j 1tx = 0g is denoted by H, where 1 is the all-one vector.

Theorem 1 Any orthogonal design F = fM 1;M 2; : : : ;Mqg satis�es the inequality

qX
r=1

(p(Mr)� 1) � n � 1:(1)

Proof. From the de�nition, dim(Mr) = p(M r) � 1 and spn(M r) � H for all r 2 f1; 2; : : : ; qg. When

r 6= s, the assumption �2(Mr;Ms) = 0 implies spn(M r) ? spn(Ms). Thus, the equality dim(M1 [M2 [
� � � [Mq) =

Pq

r=1(p(M
r)� 1) holds, so

Pq

r=1(p(M
r)� 1) � dim(H) = n� 1. //

From Equation (1), we de�ne a measure for the degree of saturation by

v =

qX
r=1

(p(Mr)� 1)=(n� 1);

where v = 1 implies saturated design and v > 1 implies supersaturated design. As de�ned by Booth

and Cox (1962), in supersaturated design, the number of columns is greater than or equal to the number

of rows. The term \supersaturated" means that it is impossible to estimate the e�ects of the assigned

factors. In two-level design, the estimation is impossible if the number of columns is greater than or

equal to the number of rows. In mixed-level design, however, this relationship between impossibility and

the number is not maintained. We call a supersaturated design if
Pq

r=1(p(M
r) � 1) > n � 1 based on

impossibility on the estimation.

3.2 Lower bound of dependency

In this subsection, we propose a lower bound of the dependency.
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Theorem 2 Any design F = fM 1;M2; : : : ;Mqg satis�es the inequality

�2(F) � (1=2)v(v � 1)n(n� 1);(2)

where v is the degree of saturation de�ned by
Pq

r=1(p(M
r)� 1)=(n � 1).

Proof. For any column Mr 2 F , we denote p(Mr) by pr and M r by fdr1;dr2; : : : ;drprg. We set p� �
p1 + � � �+ pq . Let X be an n� p� matrix de�ned by

X =
hp

p1d
1
1;
p
p1d

1
2; : : : ;

p
p1d

1
p1
;
p
p2d

2
1;
p
p2d

2
2; : : : ;

p
p2d

2
p2
; : : : ;

p
pqd

q
1;
p
pqd

q
2; : : : ;

p
pqd

q
pq

i
:

We denote the positive semi-de�nite matrix XtX by Y and the ordered eigenvalues of Y by �1 � �2 �
� � � � �p� � 0. Because each column vector of X is contained in the (n� 1)-dimensional subspace H , the

rank of Y is less than or equal to n� 1. Thus, we have �n = �n+1 = � � � = �p� = 0.

Because Y is symmetric, the multi-set of the eigenvalues of Y tY becomes f�21; �22; : : : ; �2p�g, so we have

�21 + �22 + � � � + �2n�1 = �21 + �22 + � � �+ �2p� = tr(Y tY ) =

p�X
i=1

p�X
j=1

(yij)
2

=

qX
r=1

prX
i=1

qX
s=1

psX
j=1

�p
prd

r
i �
p
psd

s
j

�2
=

qX
r=1

prX
i=1

qX
s=1

psX
j=1

prps

�
dri � dsj

�2

=

qX
r=1

qX
s=1

n�2(Mr ;M s) = 2n
X

1�r<s�q

�2(Mr;Ms) + n

qX
r=1

�2(Mr ;M r)

= 2n
X

1�r<s�q

�2(Mr;Ms) + n

qX
r=1

n(pr � 1) = 2n
X

1�r<s�q

�2(Mr ;Ms) + n2v(n� 1):

From this we obtain

�2(F) =
X

1�r<s�q

�2(Mr ;Ms) = (1=(2n))
�
(�21 + �22 + � � �+ �2n�1)� n2v(n � 1)

�
:

A lower bound of the value �21+ �22+ � � �+�2n�1 is obtained as the optimal value of the convex quadratic

programming problem:

minimize �21 + �22 + � � � + �2n�1

subject to �1 + �2 + � � � + �n�1 = tr(Y ):

The de�nition of Y implies that

tr(Y ) =

qX
r=1

prX
i=1

�p
prd

r
i �
p
prd

r
i

�
=

qX
r=1

prX
i=1

pr(n=p
2
r)(pr � 1) =

qX
r=1

n(pr � 1) = nv(n� 1):

The above convex quadratic programming problem has a unique optimal solution:

��1 = ��2 = � � � = ��n�1 = tr(Y )=(n� 1) = nv:

The optimal value is equal to (nv)2(n� 1), which implies

�2(F) � (1=(2n))
�
(nv)2(n� 1)� n2v(n� 1)

�
= (1=2)n(n� 1)v(v � 1):==
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3.3 Condition to attain lower bound

In this subsection, we consider a design that attains the lower bound proposed above. To obtain this

design, we need the following two lemmas.

Lemma 1 For any column M 2 Mn, every vector m 2 spn(M ) satis�es

X
d2M

�
d �m�d =

n

p(M )
m:

Proof. For simplicity, we denote p(M) by p. For any d0 2M , we have the following equality:

0
@X
d2M

�
d �m�d � d0

1
A =

X
d2Mnfd

0

g

�
d �m� �d � d0�+ �d0 �m��d0 � d0�

=

0
@� X

d2Mnfd0

g

d �m
1
A (n=p2) +

�
d
0 �m

�
(n=p2)(p � 1)

=
�
d0 �m

�
(n=p2) +

�
d0 �m

�
(n=p2)(p� 1) =

�
(n=p)m � d0

�
:

Because m 2 spn(M ), the above equality implies the desired result. //

Lemma 2 Let F = fM1;M2; : : :M qg be a saturated and orthogonal design. Every column M 2 Mn

satis�es the equality
qX

r=1

�2(M;M r) = n(p(M) � 1):

Proof. We denote p(M) by p and p(Mr) by pr. For each d 2M and Mr 2 F , we denote the projection
of d to spn(Mr) by d

(r)
. Because F is saturated and orthogonal, vectors d

(1)
;d

(2)
; : : : ;d

(q)
are mutually

orthogonal and d
(1)

+ d
(2)

+ : : :+ d
(q)

= d. Thus, we have

qX
r=1

�2(M;M r) =

qX
r=1

(ppr=n)
X
d2M

X
d0

2Mr

�
d � d0

�2

=

qX
r=1

(ppr=n)
X
d2M

X
d

0

2Mr

�
d
(r) � d0

��
d
(r) � d0

�

=

qX
r=1

(ppr=n)
X
d2M

0
@
0
@ X
d

0

2Mr

d
0 � d(r)

1
Ad0 � d(r)

1
A

=

qX
r=1

(ppr=n)
X
d2M

�
(n=pr)d

(r) � d(r)
�
=

qX
r=1

p
X
d2M

�
d
(r) � d(r)

�

= p
X
d2M

qX
r=1

�
d
(r) � d(r)

�
= p

X
d2M

�
d � d� = p

X
d2M

(n=p2)(p� 1) = n(p� 1):==

The above lemmas imply the following theorem.

Theorem 3 Let F be a design and fF1;F2; : : : ;Fvg be a partition of F such that each member of the

partition is a saturated and orthogonal design. Then we have the equality �2(F) = (1=2)n(n� 1)v(v�1).
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Proof. Because each member of the partition is saturated and orthogonal, �2(F1) = �2(F2) = � � � =
�2(Fv) = 0. Therefore, we have the following:

�2(F) =
X

1�r<s�v

X
M2Fr

X
M 02Fs

�2(M;M 0) =
X

1�r<s�v

X
M2Fr

n(p(M )� 1)

=
X

1�r<s�v

n(n� 1) = (1=2)v(v � 1)n(n� 1):==

A saturated and orthogonal design satis�es Equation (2) by equality. A design matrix F � = [F 1;F 2; : : : ;F v]

attains the lower bound, where F 1;F 2; : : : ;F v are saturated and orthogonal designs.

3.4 Relationships to previous studies

The above theorems can be regarded as a generalization of previous studies to mixed-level supersaturated

design, where the dependency is de�ned by the �2 statistic. Speci�cally, Tang and Wu (1997) have shown

a lower bound of the average squared inner product over all pairs in a design, where this average is

sometimes denoted by E(s2). In addition, they have shown that a supersaturated design partitioned into

saturated and orthogonal designs is optimum in terms of the E(s2) criterion. Based on this property, they

developed a method for constructing a design by sequentially adding matrices generated by permutation

of rows in an initial matrix that is a saturated and orthogonal design. Their algorithm is justi�ed by the

property on the E(s2) criterion. Theorems 2 and 3 can be regarded as a generalization of the results of

Tang and Wu (1997).

Lemma 2 is an extension to mixed-level design of the property of multi-level supersaturated design

proven by Niki, Hashiguchi, Yamada and Ikebe (1997). Yamada, Ikebe, Hashiguchi and Niki (1997)

have shown a method for constructing three-level supersaturated designs by sequentially adding matrices

generated by permutation of rows in an initial design matrix that is a three-level saturated and orthogonal

design. Theorems 2 and 3 ensure the optimality of their three-level designs in terms of �2-dependency,

although they did not give a theoretical justi�cation for their algorithm.

4 Construction and evaluation

4.1 Construction

In this section we describe the construction of a mixed-level supersaturated design consisting of two-

level and three-level columns with n=12 runs based on the theorems shown in Section 3. A design

consisting of p-level columns is called a p-level design. Theorems 2 and 3 imply that a supersaturated

design partitioned into saturated and orthogonal designs is optimal in terms of �2-dependency. However,

there is no three-level orthogonal design with n = 12 runs, although there are two-level saturated and

orthogonal designs with n = 12 runs. Therefore, we construct mixed-level design F = F2 [F3, where F2
is a two-level saturated and orthogonal design and F3 is a three-level design.
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Let F2 = fM1
2 ;M

2
2 ; : : : ;M

n�1
2 g and F3 = fM1

3 ;M
2
3 ; : : : ;M

q
3 g. When F2 is a saturated and orthogonal

design, Lemma 2 says that
Pn�1

r=1 �
2(M3;M

r
2 ) is a constant for any M3 2 M12

3 . We hereby introduce

criterion

maxf�2(Mr
2 ;M

s
3 ) j 1 � r � n� 1; 1 � s � qg:

For two three-level columns, we introduce criterion

maxf�2(Mr
3 ;M

s
3 ) j 1 � r < s � qg:

The following lemma is convenient for constructing two-level and three-level supersaturated designs.

Lemma 3 Let F2 = fM1
2 ;M

2
2 ; : : : ;M

n�1
2 g be a two-level saturated and orthogonal design. There is no

three-level design F3 = fM1
3 ;M

2
3 ; : : : ;M

q
3 g such that maxf�2(Mr

2 ;M
s
3 ) j 1 � r � n � 1; 1 � s � qg <

2n=(n� 1).

Proof. The condition maxf�2(Mr
2 ;M

s
3 ) j 1 � r � n� 1; 1 � s � qg < 2n=(n� 1) impliesPn�1

r=1 �
2(Mr

2 ;M
s
3 ) < 2n, while Lemma 2 implies

Pn�1
r=1 �

2(Mr
2 ;M

s
3 ) = 2n. Contradiction.//

Lemma 3 shows that there is no columnM3 inM12
3 that satis�es maxf�2(Mr

2 ;M3) j 1 � r � n�1g <
2n=(n � 1) = 24=11. Because the variations in �2(M2;M3) are f0; 2:0; 6:0; 8:0g and 6.0 comes after 2.0,

we hereby explore three-level columns fM1
3 ;M

2
3 ; : : : ;M

q
3 g under the condition maxf�2(Mr

2 ;M
s
3 ) j 1 �

r � n� 1; 1 � s � qg = 6:0.

The (12� 11) matrix

F 2 =

2
66666666666666664

1 1 1 1 2 1 1 2 2 2 2
1 1 1 2 1 2 2 1 1 2 2
1 1 2 1 1 2 2 2 2 1 1
1 2 2 2 1 1 1 1 2 1 2
1 2 1 2 2 1 2 2 1 1 1
1 2 2 1 2 2 1 1 1 2 1
2 1 2 1 2 1 2 1 1 1 2
2 1 1 2 2 2 1 1 2 1 1
2 1 2 2 1 1 1 2 1 2 1
2 2 1 1 1 2 1 2 1 1 2
2 2 1 1 1 1 2 1 2 2 1
2 2 2 2 2 2 2 2 2 2 2

3
77777777777777775

is a saturated and orthogonal design matrix. The algorithm for constructing design matrix F = [F 2;F 3]

is as follows. At the start of the algorithm, we set design F3 = �. In each iteration, when a three-level

column M3 is found that satis�es

maxf�2(Mr
2 ;M3) j 1 � r � n� 1g � 6:0 and maxf�2(Mr

3 ;M3) j Mr
3 2 F3g � �2c;

M3 is added to the set F3. We examine all columns in the set M12
3 in an arbitrary order. The threshold

value �2c is selected from f1:5; 3:0; 6:0; 11:5; 12:0; 15:0; 24:0g which is the set of variations of �2(Mr
3 ;M

s
3 ).

Table 1 shows the matrices constructed using the algorithm. The left portion, consisting of �ve columns,

is generated to satisfy the two conditions: maxf�2(Mr
2 ;M

s
3 ) j 1 � r � n � 1; 1 � s � qg � 6:0 and

maxf�2(Mr
3 ;M

s
3 ) j 1 � r < s � qg � �2c = 1:5.
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4.2 Evaluation

Theorem 2 is useful for evaluating the dependency because the lower bound can be applied to any type

of supersaturated design. We de�ne an index for measuring design e�ciency for given design F by

(1=2)n(n� 1)v(v � 1)

�2(F) ;

where we call �2-e�ciency. This index measures the degree of attainment compared with an optimal

design in terms of �2-dependency. It derives from an analogy to well-known design indices, such as D-

e�ciency and G-e�ciency. For example, when �2-e�ciency is equal to 1, the design is optimal in terms

of �2-dependency. Table 2 shows the number of columns, the degree of saturation v, the lower bounds,

�2(F) and �2-e�ciency for design matrices shown in Table 1. The frequencies of the �2 values are shown

in Table 3. For example, there are 55 pairs of columns where one column is selected from F 2 and the

other one from F 3a. Also, 9 pairs of �2 values are 0's, 39 pairs of �2 values are 2's and 7 pairs of �2

values are 6's. According to �2-e�ciency, [F 2;F 3b] and [F 2;F 3c] are relatively better than [F 3b] and

[F 3c], respectively. This is because adding a saturated and orthogonal design is advantageous in terms

of �2-e�ciency.

5 Concluding Remarks

We have presented generalized theorems that provide a theoretical background for supersaturated design.

Speci�cally, a lower bound of �2-dependency for any type of supersaturated design has been proposed,

compared to previous studies which obtained a similar lower bound for two-level supersaturated designs.

We showed that a mixed-level supersaturated design attains the lower bound if the design is partitioned

into saturated and orthogonal designs. This suggests the possibility of construction of an optimal mixed-

level supersaturated design in terms of �2-dependency through the sequential addition of design matrices

generated by permutation of rows in an initial mixed-level saturated and orthogonal design matrix.

We have constructed mixed-level supersaturated designs with n = 12 runs, and we have derived �2-

e�ciency as an index for measuring the degree of attainment compared with an optimal design in terms

of �2-dependency. We evaluated the constructed designs based on �2-e�ciency. The construction of

better designs in terms of �2-e�ciency may be possible and it is a topic for future research.
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Table 1: Explored three-level design matrices.
F 3a(�2c = 1:5) F 3b(�2c = 3:0) F 3c(�2c = 6:0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1
1 2 2 1 2 1 2 2 2 1 1 2 1 1 1 1 1 2 2 2 2 2
1 3 3 3 3 1 2 2 2 2 2 1 1 2 2 2 2 1 1 1 2 2
2 1 2 2 3 2 1 2 3 1 3 3 2 1 2 2 3 2 3 3 1 1
3 1 3 3 2 3 2 1 3 2 3 3 3 3 2 3 2 2 1 3 2 3
2 2 1 3 1 2 2 3 1 3 3 1 2 2 2 3 1 3 2 2 1 3
2 2 2 3 3 2 3 1 2 3 2 3 2 3 3 2 2 1 2 3 3 2
2 3 3 1 2 2 3 3 3 2 1 2 2 3 3 3 3 3 3 1 2 1
3 2 3 2 1 3 3 2 1 3 1 3 3 2 3 1 2 2 3 2 3 2
3 3 1 1 3 3 3 3 2 1 3 1 3 2 3 3 3 3 2 3 3 3
3 3 2 2 1 3 1 3 3 3 2 2 3 3 1 2 3 3 3 2 3 3

F 3c(�
2
c = 6:0) (continued)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 3 3
2 2 2 2 3 3 3 1 1 2 2 2 3 3 3 1 1 3 3 1 1
2 2 2 3 1 2 2 2 3 2 3 3 1 2 3 1 3 1 1 1 2
1 3 3 3 2 1 2 2 3 3 1 1 3 2 2 3 2 1 3 1 1
3 1 3 3 2 2 3 1 2 1 2 3 2 3 3 3 3 3 1 2 3
3 2 1 1 2 1 3 3 2 3 1 3 1 2 1 2 1 2 3 3 2
3 3 2 3 3 3 1 3 3 1 2 1 3 3 1 2 1 3 2 2 3
1 3 3 2 1 3 1 3 2 2 3 3 2 1 2 3 3 3 1 3 3
2 1 3 1 3 3 3 2 1 3 3 2 3 1 2 1 3 2 2 2 1
3 3 1 2 3 2 2 3 3 3 3 2 2 3 3 3 2 1 3 3 2

Table 2: Evaluation of constructed supersaturated design.
Three-level Mixed-level

F 3a F 3b F 3c [F 2;F 3a] [F 2;F 3b] [F 2;F 3c]
Number of columns 5 7 31 15 18 42
Degree of saturation 0.91 1.27 5.64 1.91 2.27 6.64
Lower bound - 22.9 1724.7 114.5 190.9 2468.7
�2(F) 15.0 48.0 1905.0 135.0 216.0 2649.0
�2-e�ciency - 0.47 0.91 0.85 0.88 0.93

Table 3: Frequency of �2 values.
(i) �2(M2;M3)

�2 [F 2;F 3a] [F 2;F 3b] [F 2;F 3c]
0 9 17 51
2 39 48 249
6 7 12 41

(ii) �2(M3;M3)
�2 [F 2;F 3a] [F 2;F 3b] [F 2;F 3c]
1.5 10 10 136
3.0 0 11 91
6.0 0 0 238
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