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Summary

On the estimation of the covariance matrix in the framework of multivari-
ate analysis of variance(MANOVA) model, Sinha and Ghosh(1987) proposed
a Stein type truncated estimater improving on the uniformly minimum vari-
ance unbiased(UMVU) estimator under entropy loss. However the estimator
is discontinuous. This article obtains some other continuous estimators which
dominate the UMVU estimator and, furthermore, one of which is shown an-

alytically to improve on Sinha-Ghosh’s estimator.
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1 Introduction

Consider the MANOVA model,

X =(X1,....,X): pxk~NM,2c1I,),
: (1)
S: pxp~Wy(n,X) (n2>p),

X and S are independent,

where N(M, X' ® I)) denotes that X; are independently distributed to the mul-
tivariate normal distribution with mean p,;, the corresponding column of M =
(fy, ..., 1), and covariance matrix ¥. W,(n,X) denotes the Wishart distribu-
tion with the parameter X' and degrees of freedom n. Let M and ¥ be unknown.
Throughout this paper, for two matrices A and B of the same order, let A > B
implies that A — B is nonnegative definite.

Here we treat the estimation of X' under the entropy loss,

~

L(¥,Y) =t(XX ) —log| XX —p. (2)
This problem remains invariant under the full affine group acting as
(X,8)— (AX +B,ASA"), (M,¥)— (AM + B,AX A
for p x p nonsingular matrix A and p x k matrix B. The unbiased estimator
§g = -8 3
o= g

is known to be the best affine equivariant and the uniformly minimum variance
unbiased estimator for X.

In the univariate case, where p =1,



Stein(1964) presented a truncated estimator for dominating S/n by using the infor-

mation of X = (Xy,...,X,),

6ST:mjn{S S_F“XHQ}

)

n n—+k

As a multivariate extention, Sinha and Ghosh(1987) derived the Stein type truncated

estimator
S+ XX’ ” S+XX’<S
— 1 — PR
n+k ’ n+k T n
¢ = (4)
S
—, otherwise.
n

which improves §, under the loss (2). However §;¢ is discontinuous where the largest

eigenvalue of X X' — (k/n)S equals to 0.

For k =1 the estimator corresponding to (4) is

1 1
-8, if X'S71Xx >~
n n
67¢ = (5)
1
(S+ XX'), otherwise.
n+1

Perron(1990) proposed the continuous estimator

(1 1 1 1
— (S + - X X)), fX'STX >
n+1 nX'STX n
oPF = (6)
1
f 1(S+XX'), otherwise.
L n

which dominates 67¢ under (2). Kubokawa et al.(1992) and Kubokawa et al.(1993)

proposed the estimator,

(1 1
(§+—7L XX, ifX's'x< 2
n—+1 n+l1l—-pX'S X n+1—p
§°F = (7)
1
f 1(S+XX'), otherwise.
\ T

6B was also shown to dominate 67 under (2). They also pointed out that 68 can

be interpreted as an empirical Bayes estimator.
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In this paper we consider the extention of Perron and Kubokawa’s result for £ = 1
to k > 2. In section 2, we will present the Perron type continuous estimator which
dominates 67 and a sufficient condition to improve &y is given. In section 3, we
obtain another estimator which is similar to (7) and also improves 6y. Section 4
gives the simulation results about the risk performance of the estimators proposed

here against that of 67“ and &.

2 Perron type continuous estimator

Let T be any p x p matrix satisfying TT' = S and the spectrum decomposition of
T ' XX'T' " beexpressed as T' X X'T'"' = HAH', where A = diag(\, ..., \,),
Ay > -+ > ), and H is an orthogonal matrix.

Now we consider the following estimator,

1
6T = —— (S+THA™H'T) (8)

where A" = diag{min(k/n, \;)}. This estimator is continuous. It is easy to show
that this estimator for k = 1 coincides with (6) using the fact that the only eigenvalue
of T'XX'T 'istrT ' XX'T" ' = X'S§ ' X. Then we can say that (8) for k > 2
is an extention of (6).

First we consider to show the dominance of §7%

over &y under the criterion (2).
Let W be p x p random matrix whose probability density with respect to the

Lebesgue measure dW is
1
Const.[WW/|" P2 exp <—§trWW’> . (9)

It is easy to show that both WW' and W'W follow W,(n,I,). We can set
WW' = X 128512 — 12! 5212 where X2 is a p x p constatnt

matrix which satisfies X /2 X Y2 = 3! Letting P be P = T 'XY2W with



X2 = (27 Y%H 1 we can rewrite W as
W =x"'’Tp. (10)

We can easily see that P is an orthogonal matrix. Then we have

1
troTEx Tt = ~ ktrE’lTPP'H(Ip + ATHH'PP'T
n

1

= trtW'WP'H(I,+ A™)H'P,
n—+k

tr6 X =n Mtr8SX T = n e W'W.

Let X be X = X /2X. We note that the spectrum decomposition of wixXwt
can be expressed as
WXX'W'' = PHAH'P,
which indicates that P'H (I, + AT®)H'P is constant with W ' X fixed.
Calculating the conditional risk difference between §7% and 6, with W' X given,
Eltr(67% — 6) X" W™'X] = (n+k) 'E [trW’WP’H(ATR — (k/n)Ip)H'PyW—ljc]
= (n+k) o {E[W'W|W™ X]P'H(A"" — (k/n)T,) H'P|
< ttH'P(I,+ W' XX W' )"'"P'H(A™ — (k/n)I,)
— (L, + A)7 (AR — (k/n)I,)
= iz:p;min< )\le'—k)\/zn’ 0 ) (11)
The inequality in (11) is by Lemma 4 in Sinha and Ghosh(1987),

EWW|W™'X] > (n+k)(I,+W ' XX W-)!

and the non-positive definiteness of A™* — (k/n)I,.

On the other hand,

- - Pomin(1+ N\, 1+ k/n syt
log |67R X7 —log |6 X | = 10g{|W’W|H ( o—? / )}—log‘n
i=1
P min(n + nA;,n + k)
= 2 log n+k
=1
= 1 in| ————=,1] . 12
3o (o (")) &
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Combining (11) and (12),

E[L(67%, X)) — L(6y, X)|W 1 X]

Y k. (14)

where R; is
Ri=q X\ —k/n n(l+ )
| — ) N<k
l—f—/\Z © ( n—l—k ) < /n

With respect to R; such that \; < k/n,

dRi_ 1+k/n 1

— - 0.
DO+ A)?E T+ n

Since R; = 0 at \; = k/n, we can say that E[L(67%, X) — L(8,, X)|W ' X] < 0 for

any WX,
Proposition 2.1 6% dominates 6y under (2).

Next we consider the inadmissibility of 67¢. With respect to WX such that
67¢ takes (S+X X')/(n+k), 6T also takes (S+X X')/(n+k). Since 6% improves

8o under the conditional risk for any W' X, the inadmissibility of 67¢ is proved.
Theorem 2.1 6% dominates 67¢.

Using the above argument, we can also obtain a sufficient condition to improve

09. We consider the class of estimators as follows,
bg =T' ( (15)

where Ay, = diag{¢;(A)} and X = (Ay,...A,)". We suppose that ¢;(A) < k/n for

Q+HMH’T
n+k

all 7. In the same way as (13), we have

B[L(6,, %) — L(6o, & mﬂxgz{1+jm4%cuﬂwwﬂ(m

= n+k

Therefore we get the following theorem.



Theorem 2.2 If ¢;(A) satisties

1. ¢i(A) < k/n
2.

di(A) — k/n n(1 4 ¢;(N)) .
s v log <W> <0 for alli,

by tmproves dg.

If we put ¢;(A) as
Xi, if AN <k/n
$i(A) =
—, otherwise,

n

we can easily see that 67¢ also satisties this condition and their discontinuity of ¢;.

3 Another Class of Improved estimators

In this section we give another class of estimators which dominates 6,. We

consider here the class of estimators,

_ vk XX
6a7b = a/S + bG, G = Zi:l X;S—lxip

a>0,b>0. (17)
We calculate the risk of this estimator to find a suitable value of a and b by the
argument in Shorrock and Zidek(1974).

Write X; = X7V2X,, § = X283 712 Set U; = Q,;SQ, for an orthogonal
matrix Q; such that @, X; = (]| X;|[,0,...,0)". The conditional distribution of U,
given X, is W(n, I,), which remains independent of X ;. Therefore U; and X; are

mutually independent. Define z;, v;, R; by

~ < 92 . —1 _
€, = ||Xz|| y Ui = U153 — U12,1U227iU21,i, R, =U,; —vE,



where U, is partitioned as

U714 U12,i
U, =
Uy, Uy,
with a 1 x 1 matrix uy;,; and Ey; is a p X p matrix such that (1,1) element is 1

and the other elements are all 0. Then z;, u; and R; are mutually independent and

v ~ Xo_p41- Leting ;, i = 1,...,p, be the eigenvalues of T 'GT !, we have

tr6a7b2_1 = ftr (GS + bz —_lz‘v

=1 X;S
k
= atrtS+b> v (18)
=1
k
’5a,b2_1’ = |52_1| H(a+bnl) (19)
=1

Noting that

k /—1 . / —1
trT'GT™! = tr( T X X;T )

Z X!S7'X,

=1

=k
and n; > 0 for all 7, we have
16,2 > |8 Ha" " (a + k).
As a result we get
E[L(645, X)) < apn +bk(n —p-+1) — (k — 1) loga — log(a + kb) — E[log |SX~'|] — p

According to proposition 2.1 in Kubokawa et al.(1993), if we choose (a,b) as,

() = (5 P ). (20)

n+1 " (n+1)(n—p+1)k

the risk difference between 04,4, and 6 is

n+1>pn+1—p

BIL (Baggns T,) — Lo, 1)) < g |( n+1

<o
n

Then we can obtain the following proposition.
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Proposition 3.1 0,,,, dominates oy.
With the argument in the previous section, we can also get the following results.

Theorem 3.1
S+XX' | S+XX
, if <
n+k n+k

ap,bo
ag,bo
bao,bo> otherwise,

dominates Oqg b, -

The estimator 550{31,0 is also discontinuous. So it seems to be not still preferable. But
we can present a continuous estimator which dominates 6,5 by the argument in the
derivation of Theorem 2.1. We give the proof of Theorem 3.1 simultaniously.

Let 1, 1, T and A be defined as

L+ T ' XX'T!

=TT,
n+k ’

b

1 P 1 —1 o~ o~
=——|1 — T GT =TAT
¥ n+1<p+(n—p—|-1)k ’

A =diag(hy,...,N), M > >0,
where 5\1-, ¢ =1,...,p, are the characteristic roots of @ in the metric of 1, that is,
the roots of
[ — 5\ﬂ/’o| =0,
and T consists of the corresponding characteristic vector. We consider the class of

estimator with a function ¢;(-),

8¢, =TTATT,

ag,bo

where A, is diag{¢;(A)} and A = (Ay,...,\,)". Then
(62 4 — o)X L = 4T PP'T'S 'TPP'T(As— A)

= aW'WPT (A, — ATP,
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1Og |(S 71| - 1Og |6a0,b0271|

ag,bo

We note that if PT' "' X, = W™'X,i=1,...,pareall given, which is equivalent to
PT'"'X = W' X is given, PT'(A,— A)TP' is constant. Then X is also constant
with W' X given.

Suppose that (bl(j\) < ). Let X; be X; = ¥7'/2X. Then with respect to the

conditional risk difference between 62’0 b and 04y, When WX is given, we have

E[L(62 4 2) — L(8ag,p0, Z)|W ' X]
= T PEWW|W'X|PT(A, — A 210 (aﬁzik))
< ttn+ BT (I, + T ' XX'T ) "'T(A, — A Zlog (szﬁzii))
- i{asi(x)_xi—lo (d); )>}

Then we obtain a sufficient condition to improve §y as

%

$:(X) — \; — log <¢§>\)> <0 forall i

Setting ¢T () as

. i A, > 1
¢TE(A) = '

Ai, otherwise,
it is easy to show that ¢! () satisfies the above condition. The corresponding
estimator is 6. % . Then we proved the Theorem 3.1.

¢i(A) = min(A;, 1) = ¢o(A) for all ¢ also satisfies this condition. Let the corre-

6¢>0

sponding estimator be denoted as ¢,/ .

For W 'X such that 67%  takes (S + X'X)/(n + k), 620, also takes (S +

ag,bo

X'X)/(n+k). On the other hand for any W' X such that 67%  takes 6,,4,, 62°

ag,bo

10



%o

Improves g4y, under the conditional risk. Then the domination of 6,7, against
bas, is proved.

Theorem 3.2 §2°, improves 615 .

The comparison between 62’371,0 and 67 is interesting but we have not been able to

obtain analytical results about it. We give some Monte Carlo studies in the following

section.

4 Monte Carlo Study

We study the risk performance of the proposed estimators with some Monte
Carlo studies. We compare the average losses of 65, 67%, 8,5, 678 and 62°, .
We assume here that 3 = I,. The average risk gains of the proposed estimators

against g,

E[L(bo, Ip)) = L8, I,)]

over 100,000 replications for several combinations of (p,n,k, ||p;||?) are given in
Table 1 to 5.

The summary of this experiment is as follows.

e We can see the dominance §7% over 67“. When the degrees of freedom of

S is rather small, the dominance relationship 55’3’,)0 > §TR > 679 may hold.

%o

oo Is the estimator which replace S/n in 6" with

Taking into account that 6
the improved estimator 64,4, and that the analytical results of Kubokawa et
al.(1993) in the case of k = 1, this relationship is expected intuitively, but

have not been able to show analytically.

e These estimators all use the information of X. Then as k increase for fixed
p, m, w, the risk gain is expected to increase. §;“ may not always hold this

relationship. In this sense 67 does not use the information of X effectively.

11



e For the trace of noncentral parameter matrix, the improvement of all estima-

tors may be monotone nonincreasing.

e Forp = 5, the risk gain of 67 nearly zero. But the gains of the other estimators

is still considerable.
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Table 1. Risk gains for 65, 6T, 64,4, 675 and 67°

ap,bo ao,bo

for p=3 and n = 4.

E[L(8, I,,)] = 2.1966.

]2 0.0 1.0 2.0 50  10.0

k=3 6¢ 0.0057 0.0029 0.0013 0.0001 0.0000
TR 01774 0.1740 0.1695 0.1608 0.1568
Oagbo  0.3890 0.3778 0.3774 0.3506 0.3198

6TE —0.4208 0.4000 0.3924 0.3544 0.3202

ap,bo

6¢>0

ag,bo

0.5033 0.4874 0.4776 0.4252 0.3755

k=5 69 0.0054 0.0022 0.0007 0.0000 0.0000
STE 0.2470 0.2392 0.2291 0.2124 0.2064
Sagpy  0.4205 0.4165 0.4033 0.3714 0.3373

SIR - 0.4487 0.4322 0.4116 0.3726 0.3373

ag,bo

6¢>0

ap,bo

0.5965 0.5815 0.5521 0.4851 0.4297

k=7 69 0.0050 0.0017 0.0005 0.0000 0.0000
6TR  0.2888 0.2766 0.2614 0.2423 0.2345
Oagby  0.4305 0.4251 0.4141 0.3846 0.3440

STR 0.4554 0.4372 0.4198 0.3853 0.3440

ag,bo

5¢>0

ap,bo

0.6470 0.6258 0.5924 0.5236 0.4593

k=10 6% 0.0050 0.0010 0.0002 0.0001 0.0000
STR - 0.3301 0.3111 0.2914 0.2684 0.2601
Oagby 0.4457 0.4398 0.4258 0.3873 0.3513

6TR —0.4697 0.4493 0.4295 0.3876 0.3514

ag,bo

6¢>0

ag,bo

0.7028 0.6737 0.6322 0.5493 0.4880
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Table 2. Risk gains for 65, 6T, 6, 4,, 675 and 67°

ap,bo ao,bo

forp=3andn=".

E[L(8, I,,)] = 1.0285.

]2 0.0 1.0 2.0 50  10.0

k=3 69 0.0046 0.0020 0.0008 0.0001 0.0000
TR 0.0716 0.0701 0.0673 0.0635 0.0620
0agby  0.1141 0.1148 0.1092 0.1022 0.0917

sTE 01257 0.1216 0.1131 0.1028 0.0917

ap,bo

6¢>0

ag,bo

0.1578 0.1561 0.1461 0.1301 0.1141

k=5 6¢ 0.0045 0.0015 0.0005 0.0000 0.0000
STE - 0.1100 0.1050 0.0996 0.0922 0.0891
bagpo  0.1275 0.1208 0.1180 0.1089 0.0959

SIR - 0.1387 0.1256 0.1199 0.1090 0.0959

ag,bo

6¢>0

ap,bo

0.2057 0.1933 0.1827 0.1596 0.1390

k=7 69 0.0047 0.0015 0.0003 0.0000 0.0000
6TR 01377 0.1293 0.1212 0.1113 0.1075
Oagby  0.1293 0.1262 0.1236 0.1102 0.0987

STR - 0.1402 0.1303 0.1248 0.1103 0.0987

ag,bo

5¢>0

ap,bo

0.2348 0.2219 0.2081 0.1776 0.1567

k=10 6% 0.0048 0.0010 0.0002 0.0000 0.0000
STR - 0.1667 0.1542 0.1420 0.1306 0.1260
Oagby 0.1313  0.1274 0.1241 0.1155 0.0998

6TE 01416 0.1302 0.1250 0.1155 0.0998

ag,bo

6¢>0

ag,bo

0.2655 0.2475 0.2287 0.1999 0.1735
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Table 3. Risk gains for 65, 67%, 8,4, 67% and 67°

ao,bo ap,bo

for p = 3 and n = 10.

E[L(6,I,)] = 0.6778.

]2 0.0 1.0 2.0 50  10.0

k=3 6¢ 0.0033 0.0014 0.0005 0.0001 0.0000
TR 0.0389 0.0378 0.0366 0.0344 0.0331
0agby  0.0561 0.0520 0.0539 0.0485 0.0440

STE —0.0627 0.0555 0.0559 0.0487 0.0440

ap,bo

6¢>0

ag,bo

0.0798 0.0743 0.0741 0.0638 0.0562

k=5 6¢ 0.0037 0.0013 0.0004 0.0000 0.0000
STE - 0.0628 0.0598 0.0562 0.0524 0.0506
bagpo  0.0593  0.0552 0.0540 0.0513 0.0476

STR - 0.0662 0.0582 0.0551 0.0514 0.0476

ag,bo

6¢>0

ap,bo

0.1048 0.0971 0.0912 0.0811 0.0732

k=7 629 0.0039 0.0009 0.0002 0.0000 0.0000
8TE  0.0816 0.0761 0.0709 0.0649 0.0625
Oagby  0.0587 0.0585 0.0577 0.0528 0.0468

STR - 0.0658 0.0606 0.0584 0.0528 0.0467

ag,bo

5¢>0

ap,bo

0.1227 0.1160 0.1085 0.0935 0.0823

k=10 6% 0.0043 0.0008 0.0002 0.0000 0.0000
STE 0.1030 0.0941 0.0860 0.0790 0.0765
Oagby 0.0618 0.0617 0.0597 0.0537 0.0478

STE —0.0689 0.0632 0.0600 0.0537 0.0478

ag,bo

6¢>0

ag,bo

0.1467 0.1367 0.1246 0.1068 0.0952

16



Table 4. Risk gains for §5¢, 67, 64,40, L% and 67°

ap,bo ap,bo

for p=>5 and n = 6.

E[L(6,I,)] = 3.9778.

w2 0.0 1.0 50  10.0

k=5 629 0.0000 0.0000 0.0000 0.0000
STE0.3311 0.3301 0.3210 0.3190
bagpy  0.8249 0.8351 0.7955 0.7751

SIR - 0.8249 0.8377 0.7960 0.7751

ap,bo

5¢>0

ag,bo

1.0440 1.0481 0.9805 0.9424

k=7 69 0.0000 0.0000 0.0000 0.0000
TR 04073 0.4023 0.3829 0.3821
agby  0.9018 0.8800 0.8153 0.7652

STE —0.9046 0.8812 0.8153 0.7652

ag,bo

6¢>0

ag,bo

1.1892 1.1608 1.0561 0.9879

k=10 679 0.0000 0.0000 0.0000 0.0000
STR 0.4846 0.4741 0.4498 0.4389
bagb  0.9006 0.9207 0.8514 0.7667

6TE —0.9027 0.9210 0.8514 0.7667

ag,bo

6¢>0

ap,bo

1.2661 1.2716 1.1522 1.0400
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Table 5. Risk gains for §5¢, 677, 6,040, L% and 67°

ag,bo ag,bo

for p =5 and n = 10.

E[L(8, I,,)] = 1.8698.

w2 0.0 1.0 50  10.0

k=5 629 0.0001 0.0001 0.0000 0.0000
STR  0.1484 0.1482 0.1408 0.1394
bagpy  0.2344  0.2514 0.2196 0.2322

SIR - 0.2352  0.2518 0.2196 0.2322

ap,bo

5¢>0

ag,bo

0.3307 0.3469 0.3022 0.3086

k=7 639 0.0001 0.0000 0.0000 0.0000
§TR . 0.1945 0.1927 0.1789 0.1772
Bagso  0.2628 0.2707 0.2159 0.2011

§TE —0.2635 0.2708 0.2159 0.2011

ag,bo

6¢>0

ag,bo

0.4029 0.4078 0.3325 0.3100

k=10 679 0.0000 0.0000 0.0000 0.0000
STR 0.2479 0.2417 0.2230 0.2211
Sagpy  0.2676 0.2665 0.2292 0.2275

6TR — 0.2677 0.2664 0.2292 0.2275

ag,bo

6¢>0

ap,bo

0.4599 0.4515 0.3860 0.3753
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