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Summary

On the estimation of the covariance matrix in the framework of multivari-

ate analysis of variance(MANOVA) model, Sinha and Ghosh(1987) proposed

a Stein type truncated estimater improving on the uniformly minimum vari-

ance unbiased(UMVU) estimator under entropy loss. However the estimator

is discontinuous. This article obtains some other continuous estimators which

dominate the UMVU estimator and, furthermore, one of which is shown an-

alytically to improve on Sinha-Ghosh's estimator.
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1 Introduction

Consider the MANOVA model,

X = (X1; . . . ;Xk) : p� k � N(M ;� 
 Ik);

S : p� p �Wp(n;�) (n � p);

X and S are independent,

(1)

where N(M ;� 
 Ik) denotes that X i are independently distributed to the mul-

tivariate normal distribution with mean �i, the corresponding column of M =

(�1; . . . ;�k), and covariance matrix �. Wp(n;�) denotes the Wishart distribu-

tion with the parameter � and degrees of freedom n. Let M and � be unknown.

Throughout this paper, for two matrices A and B of the same order, let A � B

implies that A�B is nonnegative de�nite.

Here we treat the estimation of � under the entropy loss,

L(�̂;�) = tr(�̂��1)� log j�̂��1j � p: (2)

This problem remains invariant under the full a�ne group acting as

(X;S)! (AX +B;ASA0); (M ;�)! (AM +B;A�A0)

for p� p nonsingular matrix A and p� k matrix B. The unbiased estimator

�0 =
1

n
S (3)

is known to be the best a�ne equivariant and the uniformly minimum variance

unbiased estimator for �.

In the univariate case, where p = 1,

Xi
i.i.d.

� N(�i; �
2); S � �2�2;
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Stein(1964) presented a truncated estimator for dominating S=n by using the infor-

mation of X = (X1; . . . ;Xp),

�ST = min

(
S

n
;

S + kXk2

n+ k

)
:

As a multivariate extention, Sinha and Ghosh(1987) derived the Stein type truncated

estimator

�SGk =

8>>>>>><
>>>>>>:

S +XX 0

n+ k
; if

S +XX 0

n+ k
�
S

n

S

n
; otherwise.

(4)

which improves �0 under the loss (2). However �
SG
k is discontinuous where the largest

eigenvalue of XX 0 � (k=n)S equals to 0.

For k = 1 the estimator corresponding to (4) is

�SG1 =

8>>>>>><
>>>>>>:

1

n
S; if X 0S�1X �

1

n

1

n+ 1
(S +XX 0); otherwise.

(5)

Perron(1990) proposed the continuous estimator

�PR =

8>>>>>>><
>>>>>>>:

1

n + 1
(S +

1

n

1

X 0S�1X
XX 0); if X 0S�1X �

1

n

1

n + 1
(S +XX 0); otherwise.

(6)

which dominates �SG1 under (2). Kubokawa et al.(1992) and Kubokawa et al.(1993)

proposed the estimator,

�EB =

8>>>>>>><
>>>>>>>:

1

n + 1
(S +

p

n+ 1� p

1

X 0S�1X
XX 0); if X 0S�1X �

p

n + 1� p

1

n + 1
(S +XX 0); otherwise.

(7)

�EB was also shown to dominate �SG1 under (2). They also pointed out that �EB can

be interpreted as an empirical Bayes estimator.
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In this paper we consider the extention of Perron and Kubokawa's result for k = 1

to k � 2. In section 2, we will present the Perron type continuous estimator which

dominates �SGk and a su�cient condition to improve �0 is given. In section 3, we

obtain another estimator which is similar to (7) and also improves �0. Section 4

gives the simulation results about the risk performance of the estimators proposed

here against that of �SGk and �0.

2 Perron type continuous estimator

Let T be any p�p matrix satisfying TT 0 = S and the spectrum decomposition of

T�1XX 0T 0�1 be expressed as T�1XX 0T 0�1 =H�H 0, where� = diag(�1; . . . ; �p);

�1 � � � � � �p and H is an orthogonal matrix.

Now we consider the following estimator,

�TR =
1

n + k
(S + TH�TRH 0T 0) (8)

where �TR = diagfmin(k=n; �i)g. This estimator is continuous. It is easy to show

that this estimator for k = 1 coincides with (6) using the fact that the only eigenvalue

of T�1XX 0T 0�1 is trT�1XX 0T 0�1 =X 0S�1X. Then we can say that (8) for k � 2

is an extention of (6).

First we consider to show the dominance of �TR over �0 under the criterion (2).

Let W be p � p random matrix whose probability density with respect to the

Lebesgue measure dW is

Const.jWW 0j(n�p)=2 exp
�
�
1

2
trWW 0

�
: (9)

It is easy to show that both WW 0 and W 0W follow Wp(n; Ip). We can set

WW 0 = ��1=2S� 0�1=2 = ��1=2TT 0� 0�1=2, where ��1=2 is a p � p constatnt

matrix which satis�es ��1=20��1=2 = ��1. Letting P be P = T�1�1=2W with
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�1=2 = (��1=2)�1, we can rewrite W as

W = ��1=2TP : (10)

We can easily see that P is an orthogonal matrix. Then we have

tr�TR��1 =
1

n+ k
tr��1TPP 0H(Ip +�

TR)H 0PP 0T

=
1

n+ k
trW 0WP 0H(Ip +�

TR)H 0P ;

tr�0�
�1 = n�1trS��1 = n�1trW 0W :

Let ~X be ~X = ��1=2X. We note that the spectrum decomposition ofW�1 ~X ~X
0

W 0�1

can be expressed as

W�1 ~X ~X
0

W 0�1 = P 0H�H 0P ;

which indicates that P 0H(Ip +�
TR)H 0P is constant with W�1 ~X �xed.

Calculating the conditional risk di�erence between �TR and �0 withW
�1 ~X given,

E[tr(�TR � �0)�
�1jW�1 ~X] = (n+ k)�1E

h
trW 0WP 0H(�TR � (k=n)Ip)H

0P jW�1 ~X
i

= (n+ k)�1tr
n
E[W 0W jW�1 ~X]P 0H(�TR � (k=n)Ip)H

0P
o

� trH 0P (Ip +W
�1 ~X ~X

0

W 0�1)�1P 0H(�TR � (k=n)Ip)

= tr(Ip +�)
�1(�TR � (k=n)Ip)

=
pX

i=1

min

 
�i � k=n

1 + �i
; 0

!
: (11)

The inequality in (11) is by Lemma 4 in Sinha and Ghosh(1987),

E[W 0W jW�1 ~X] � (n+ k)(Ip +W
�1 ~X ~X

0

W 0�1)�1

and the non-positive de�niteness of �TR � (k=n)Ip.

On the other hand,

log j�TR��1j � log j�0�
�1j = log

(
jW 0W j

pY
i=1

min(1 + �i; 1 + k=n)

n+ k

)
� log

�����S�
�1

n

�����
=

pX
i=1

log

 
min(n+ n�i; n+ k)

n+ k

!

=
pX
i=1

log

 
min

 
n(1 + �i)

n+ k
; 1

!!
: (12)
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Combining (11) and (12),

E[L(�TR;�)� L(�0;�)jW�1 ~X]

�
pX
i=1

(
min

 
0;
�i � k=n

1 + �i

!
� log

 
min

 
n(1 + �i)

n+ k
; 1

!!)
(13)

=
pX
i=1

Ri; (14)

where Ri is

Ri =

8>>><
>>>:

0; �i � k=n

�i � k=n

1 + �i
� log

 
n(1 + �i)

n+ k

!
�i < k=n

With respect to Ri such that �i < k=n,

dRi

d�i
=

1 + k=n

(1 + �i)2
�

1

1 + �i
> 0:

Since Ri = 0 at �i = k=n, we can say that E[L(�TR;�)� L(�0;�)jW�1 ~X] � 0 for

anyW�1 ~X.

Proposition 2.1 �TR dominates �0 under (2).

Next we consider the inadmissibility of �SGk . With respect to W�1 ~X such that

�SGk takes (S+XX 0)=(n+k), �TR also takes (S+XX 0)=(n+k). Since �TR improves

�0 under the conditional risk for anyW�1 ~X, the inadmissibility of �SGk is proved.

Theorem 2.1 �TR dominates �SGk .

Using the above argument, we can also obtain a su�cient condition to improve

�0. We consider the class of estimators as follows,

�� = T
0

 
Ip +H�

�H 0

n+ k

!
T (15)

where ��i
= diagf�i(�)g and � = (�1; . . .�p)

0. We suppose that �i(�) � k=n for

all i. In the same way as (13), we have

E[L(��;�)� L(�0;�)jW�1 ~X] �
pX

i=1

(
�i(�)� k=n

1 + �i
� log

 
n(1 + �i(�))

n+ k

!)
(16)

Therefore we get the following theorem.
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Theorem 2.2 If �i(�) satisties

1. �i(�) � k=n

2.

�i(�)� k=n

1 + �i
� log

 
n(1 + �i(�))

n+ k

!
� 0 for all i;

�� improves �0.

If we put �i(�) as

�i(�) =

8>>>>>><
>>>>>>:

�i; if �1 � k=n

k

n
; otherwise;

we can easily see that �SGk also satisties this condition and their discontinuity of �i.

3 Another Class of Improved estimators

In this section we give another class of estimators which dominates �0. We

consider here the class of estimators,

�a;b = aS + bG; G =
Pk

i=1
X iX

0

i

X
0

iS
�1

X i

; a > 0; b � 0: (17)

We calculate the risk of this estimator to �nd a suitable value of a and b by the

argument in Shorrock and Zidek(1974).

Write ~X i = ��1=2X i, ~S = ��1=2S��1=2. Set U i = Qi
~SQ0

i for an orthogonal

matrix Qi such that Qi
~X i = (k ~X ik; 0; . . . ; 0)

0. The conditional distribution of U i

given ~X i is W(n; Ip), which remains independent of ~X i. Therefore U i and ~X i are

mutually independent. De�ne ~xi, vi, Ri by

~xi = k ~X ik
2; vi = u11;i �U 12;iU

�1
22;iU 21;i; Ri = U i � viE11;
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where U i is partitioned as

U i =

0
BB@ u11:i U 12;i

U 21;i U 22;i

1
CCA

with a 1 � 1 matrix u11;i and E11 is a p � p matrix such that (1; 1) element is 1

and the other elements are all 0. Then ~xi, ui and Ri are mutually independent and

vi � �2n�p+1: Leting �i, i = 1; . . . ; p, be the eigenvalues of T 0�1GT�1, we have

tr�a;b�
�1 = tr

0
@a~S + b

kX
i=1

~X i
~X

0

i

~X
0

i
~S
�1 ~X i

1
A

= atr ~S + b
kX
i=1

vi: (18)

j�a;b�
�1j = jS��1j

kY
i=1

(a+ b�i): (19)

Noting that

trT 0�1GT�1 = tr

 
kX
i=1

T 0�1X iX
0

iT
�1

X 0

iS
�1X i

!

= k

and �i � 0 for all i, we have

j�a;b�
�1j � jS��1jak�1(a+ kb):

As a result we get

E[L(�a;b;�)] � apn+ bk(n� p+1)� (k� 1) log a� log(a+ kb)�E[log jS��1j]� p

According to proposition 2.1 in Kubokawa et al.(1993), if we choose (a; b) as,

(a0; b0) =

 
1

n+ 1
;

p

(n+ 1)(n� p + 1)k

!
; (20)

the risk di�erence between �a0;b0 and �0 is

E[L(�a0;b0 ; Ip)� L(�0; Ip)] � log
��

n + 1

n

�p n+ 1� p

n+ 1

�
< 0:

Then we can obtain the following proposition.
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Proposition 3.1 �a0;b0 dominates �0.

With the argument in the previous section, we can also get the following results.

Theorem 3.1

�TRa0;b0 =

8>>>>>><
>>>>>>:

S +XX 0

n+ k
; if

S +XX 0

n+ k
� �a0;b0 ;

�a0;b0 ; otherwise,

(21)

dominates �a0;b0.

The estimator �TRa0;b0 is also discontinuous. So it seems to be not still preferable. But

we can present a continuous estimator which dominates �a;b by the argument in the

derivation of Theorem 2.1. We give the proof of Theorem 3.1 simultaniously.

Let  0,  , ~T and ~� be de�ned as

 0 =
Ip + T

�1XX 0T 0�1

n+ k
= ~T ~T ;0

 =
1

n + 1

 
Ip +

p

(n� p+ 1)k
T�1GT 0�1

!
= ~T ~� ~T

0

;

~� = diag(~�1; . . . ; ~�p); ~�1 � � � � � ~�p

where ~�i, i = 1; . . . ; p, are the characteristic roots of  in the metric of  0, that is,

the roots of

j � ~�i 0j = 0;

and ~T consists of the corresponding characteristic vector. We consider the class of

estimator with a function �i(�),

��a0;b0 = T
~T��

~T
0

T 0;

where �� is diagf�i(~�)g and ~� = (~�1; . . . ; ~�p)
0. Then

tr(��a0;b0 � �a0;b0)�
�1 = tr ~T

0

PP 0T 0��1TPP 0 ~T (�� � ~�)

= trW 0WP 0 ~T
0

(�� � ~�) ~TP ;
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log j��a0;b0�
�1j � log j�a0;b0�

�1j = log
pY
i=1

�i(~�)
~�i

=
pX
i=1

log

 
�i(~�)
~�i

!

We note that if PT 0�1X i =W
�1 ~X i i = 1; . . . ; p are all given, which is equivalent to

PT 0�1X =W�1 ~X is given, P ~T
0

(��� ~�) ~TP 0 is constant. Then ~� is also constant

with W�1 ~X given.

Suppose that �i(~�) � ~�i. Let ~X i be ~X i = ��1=2X. Then with respect to the

conditional risk di�erence between ��a0;b0 and �a0;b0 whenW
�1 ~X is given, we have

E[L(��a0;b0 ;�)� L(�a0;b0;�)jW�1 ~X]

= tr ~T
0

P 0E[W 0W jW �1 ~X]P ~T (�� � ~�)�
pX

i=1

log

 
�i(~�)
~�i

!

� tr(n+ k) ~T
0

(Ip + T
�1XX 0T 0�1)�1 ~T (�� � ~�)�

pX
i=1

log

 
�i(~�)
~�i

!

=
pX
i=1

(
�i(~�)� ~�i � log

 
�i(~�)
~�i

!)
:

Then we obtain a su�cient condition to improve �0 as

�i(�)� �i � log

 
�i(�)

�i

!
� 0 for all i

Setting �TRi (�) as

�TRi (�) =

8>><
>>:

1; if ~�p � 1

~�i; otherwise;

it is easy to show that �TRi (�) satis�es the above condition. The corresponding

estimator is �TRa0;b0 : Then we proved the Theorem 3.1.

�i(�) = min(�i; 1) � �0(�) for all i also satis�es this condition. Let the corre-

sponding estimator be denoted as ��0a0;b0 :

For W�1 ~X such that �TRa0;b0 takes (S + X 0X)=(n + k), ��0a0;b0 also takes (S +

X 0X)=(n+ k). On the other hand for anyW�1 ~X such that �TRa0;b0 takes �a0;b0, �
�0
a0;b0
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improves �a0;b0 under the conditional risk. Then the domination of ��0a0;b0 against

�TRa0;b0 is proved.

Theorem 3.2 ��0a0;b0 improves �TRa0;b0.

The comparison between ��0a0;b0 and �SGk is interesting but we have not been able to

obtain analytical results about it. We give some Monte Carlo studies in the following

section.

4 Monte Carlo Study

We study the risk performance of the proposed estimators with some Monte

Carlo studies. We compare the average losses of �SGk , �TR, �a0;bb , �
TR
a0;bb

and ��0a0;bb.

We assume here that � = Ip. The average risk gains of the proposed estimators

against �0,

E[L(�0; Ip)� L(�; Ip)]

over 100,000 replications for several combinations of (p; n; k; k�ik
2) are given in

Table 1 to 5.

The summary of this experiment is as follows.

� We can see the dominance �TR over �SGk . When the degrees of freedom of

S is rather small, the dominance relationship ��0a0;b0 � �TR � �SGk may hold.

Taking into account that ��0a0;b0 is the estimator which replace S=n in �TR with

the improved estimator �a0;b0 and that the analytical results of Kubokawa et

al.(1993) in the case of k = 1, this relationship is expected intuitively, but

have not been able to show analytically.

� These estimators all use the information of X. Then as k increase for �xed

p, n, �, the risk gain is expected to increase. �SGk may not always hold this

relationship. In this sense �SGk does not use the information of X e�ectively.
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� For the trace of noncentral parameter matrix, the improvement of all estima-

tors may be monotone nonincreasing.

� For p = 5, the risk gain of �SGk nearly zero. But the gains of the other estimators

is still considerable.
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Table 1. Risk gains for �SGk , �TR, �a0;b0, �
TR
a0;b0

and ��0a0;b0 for p = 3 and n = 4.

E[L(�0; Ip)] = 2:1966.

k�ik
2 0.0 1.0 2.0 5.0 10.0

k = 3 �SGk 0.0057 0.0029 0.0013 0.0001 0.0000

�TR 0.1774 0.1740 0.1695 0.1608 0.1568

�a0;b0 0.3890 0.3778 0.3774 0.3506 0.3198

�TRa0;b0 0.4208 0.4000 0.3924 0.3544 0.3202

��0a0;b0 0.5033 0.4874 0.4776 0.4252 0.3755

k = 5 �SGk 0.0054 0.0022 0.0007 0.0000 0.0000

�TR 0.2470 0.2392 0.2291 0.2124 0.2064

�a0;b0 0.4205 0.4165 0.4033 0.3714 0.3373

�TRa0;b0 0.4487 0.4322 0.4116 0.3726 0.3373

��0a0;b0 0.5965 0.5815 0.5521 0.4851 0.4297

k = 7 �SGk 0.0050 0.0017 0.0005 0.0000 0.0000

�TR 0.2888 0.2766 0.2614 0.2423 0.2345

�a0;b0 0.4305 0.4251 0.4141 0.3846 0.3440

�TRa0;b0 0.4554 0.4372 0.4198 0.3853 0.3440

��0a0;b0 0.6470 0.6258 0.5924 0.5236 0.4593

k = 10 �SGk 0.0050 0.0010 0.0002 0.0001 0.0000

�TR 0.3301 0.3111 0.2914 0.2684 0.2601

�a0;b0 0.4457 0.4398 0.4258 0.3873 0.3513

�TRa0;b0 0.4697 0.4493 0.4295 0.3876 0.3514

��0a0;b0 0.7028 0.6737 0.6322 0.5493 0.4880
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Table 2. Risk gains for �SGk , �TR, �a0;b0, �
TR
a0;b0

and ��0a0;b0 for p = 3 and n = 7.

E[L(�0; Ip)] = 1:0285.

k�ik
2 0.0 1.0 2.0 5.0 10.0

k = 3 �SGk 0.0046 0.0020 0.0008 0.0001 0.0000

�TR 0.0716 0.0701 0.0673 0.0635 0.0620

�a0;b0 0.1141 0.1148 0.1092 0.1022 0.0917

�TRa0;b0 0.1257 0.1216 0.1131 0.1028 0.0917

��0a0;b0 0.1578 0.1561 0.1461 0.1301 0.1141

k = 5 �SGk 0.0045 0.0015 0.0005 0.0000 0.0000

�TR 0.1100 0.1050 0.0996 0.0922 0.0891

�a0;b0 0.1275 0.1208 0.1180 0.1089 0.0959

�TRa0;b0 0.1387 0.1256 0.1199 0.1090 0.0959

��0a0;b0 0.2057 0.1933 0.1827 0.1596 0.1390

k = 7 �SGk 0.0047 0.0015 0.0003 0.0000 0.0000

�TR 0.1377 0.1293 0.1212 0.1113 0.1075

�a0;b0 0.1293 0.1262 0.1236 0.1102 0.0987

�TRa0;b0 0.1402 0.1303 0.1248 0.1103 0.0987

��0a0;b0 0.2348 0.2219 0.2081 0.1776 0.1567

k = 10 �SGk 0.0048 0.0010 0.0002 0.0000 0.0000

�TR 0.1667 0.1542 0.1420 0.1306 0.1260

�a0;b0 0.1313 0.1274 0.1241 0.1155 0.0998

�TRa0;b0 0.1416 0.1302 0.1250 0.1155 0.0998

��0a0;b0 0.2655 0.2475 0.2287 0.1999 0.1735
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Table 3. Risk gains for �SGk , �TR, �a0;b0 , �
TR
a0;b0

and ��0a0;b0 for p = 3 and n = 10.

E[L(�0; Ip)] = 0:6778.

k�ik
2 0.0 1.0 2.0 5.0 10.0

k = 3 �SGk 0.0033 0.0014 0.0005 0.0001 0.0000

�TR 0.0389 0.0378 0.0366 0.0344 0.0331

�a0;b0 0.0561 0.0520 0.0539 0.0485 0.0440

�TRa0;b0 0.0627 0.0555 0.0559 0.0487 0.0440

��0a0;b0 0.0798 0.0743 0.0741 0.0638 0.0562

k = 5 �SGk 0.0037 0.0013 0.0004 0.0000 0.0000

�TR 0.0628 0.0598 0.0562 0.0524 0.0506

�a0;b0 0.0593 0.0552 0.0540 0.0513 0.0476

�TRa0;b0 0.0662 0.0582 0.0551 0.0514 0.0476

��0a0;b0 0.1048 0.0971 0.0912 0.0811 0.0732

k = 7 �SGk 0.0039 0.0009 0.0002 0.0000 0.0000

�TR 0.0816 0.0761 0.0709 0.0649 0.0625

�a0;b0 0.0587 0.0585 0.0577 0.0528 0.0468

�TRa0;b0 0.0658 0.0606 0.0584 0.0528 0.0467

��0a0;b0 0.1227 0.1160 0.1085 0.0935 0.0823

k = 10 �SGk 0.0043 0.0008 0.0002 0.0000 0.0000

�TR 0.1030 0.0941 0.0860 0.0790 0.0765

�a0;b0 0.0618 0.0617 0.0597 0.0537 0.0478

�TRa0;b0 0.0689 0.0632 0.0600 0.0537 0.0478

��0a0;b0 0.1467 0.1367 0.1246 0.1068 0.0952
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Table 4. Risk gains for �SGk , �TR, �a0;b0, �
TR
a0;b0

and ��0a0;b0 for p = 5 and n = 6.

E[L(�0; Ip)] = 3:9778.

k�ik
2 0.0 1.0 5.0 10.0

k = 5 �SGk 0.0000 0.0000 0.0000 0.0000

�TR 0.3311 0.3301 0.3210 0.3190

�a0;b0 0.8249 0.8351 0.7955 0.7751

�TRa0;b0 0.8249 0.8377 0.7960 0.7751

��0a0;b0 1.0440 1.0481 0.9805 0.9424

k = 7 �SGk 0.0000 0.0000 0.0000 0.0000

�TR 0.4073 0.4023 0.3829 0.3821

�a0;b0 0.9018 0.8800 0.8153 0.7652

�TRa0;b0 0.9046 0.8812 0.8153 0.7652

��0a0;b0 1.1892 1.1608 1.0561 0.9879

k = 10 �SGk 0.0000 0.0000 0.0000 0.0000

�TR 0.4846 0.4741 0.4498 0.4389

�a0;b0 0.9006 0.9207 0.8514 0.7667

�TRa0;b0 0.9027 0.9210 0.8514 0.7667

��0a0;b0 1.2661 1.2716 1.1522 1.0400
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Table 5. Risk gains for �SGk , �TR, �a0;b0 , �
TR
a0;b0

and ��0a0;b0 for p = 5 and n = 10.

E[L(�0; Ip)] = 1:8698.

k�ik
2 0.0 1.0 5.0 10.0

k = 5 �SGk 0.0001 0.0001 0.0000 0.0000

�TR 0.1484 0.1482 0.1408 0.1394

�a0;b0 0.2344 0.2514 0.2196 0.2322

�TRa0;b0 0.2352 0.2518 0.2196 0.2322

��0a0;b0 0.3307 0.3469 0.3022 0.3086

k = 7 �SGk 0.0001 0.0000 0.0000 0.0000

�TR 0.1945 0.1927 0.1789 0.1772

�a0;b0 0.2628 0.2707 0.2159 0.2011

�TRa0;b0 0.2635 0.2708 0.2159 0.2011

��0a0;b0 0.4029 0.4078 0.3325 0.3100

k = 10 �SGk 0.0000 0.0000 0.0000 0.0000

�TR 0.2479 0.2417 0.2230 0.2211

�a0;b0 0.2676 0.2665 0.2292 0.2275

�TRa0;b0 0.2677 0.2664 0.2292 0.2275

��0a0;b0 0.4599 0.4515 0.3860 0.3753
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