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Summary

It is well known that the best equivariant estimator of a variance covari-
ance matrix of multivariate normal distribution with respect to the full affine
group of transformation is not even minimax. Some minimax estimators have
been proposed. Here we treat this problem in the framework of a multivari-
ate analysis of variance(MANOVA) model and give other classes of minimax

estimators.
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1 Introduction

A canonical form of a normal MANOVA model is expressed as
X=(Xy,....X5): pxk~NM,¥x1I,),
: (1)
S: pxp~Wy(n, %) (n=p)

X and S are independent,

where N(M, ¥ ® I,) denotes that X; are independently distributed to the mul-
tivariate normal distribution with mean p,;, the corresponding column of M =
(y, ..., ), and covariance matrix X. Let W,(n, X') denote the Wishart distribu-
tion with parameter X and degrees of freedom n. Here we consider the problem of

estimating X with unknown M. We use the Stein’s loss
LX, 2)=tr(XX ) —log | XX —p. (2)

as a criterion.

This problem remains invariant under the full affine group acting as

(X,S) — (AX + B,ASA'), (M,X)— (AM + B,AXA')

for p x p nonsingular matrix A and p x k matrix B. The best affine equivariant
estimator is given by
1
(50 = *S, (3)

n

which is also the uniformly minimum variance unbiased(UMVU) estimator. It is
well known that §y is not even minimax.
Let T be the lower triangular matrix satisfying 8 = TT'. James and Stein[4]

showed the estimator

8’5 =TLT', L=diag{(n+p+1—2i)~"} (4)



dominates ¢y and is a miminax estimator under the loss (2) with constant risk. But

5]5 5JS

is inadmissible and various estimators improving on can be conceivable.

Let the spectrum decomposition of S be expressed as § = HAH', where

A =diagA), A=A, N), AL o>\,

Stein[11] and Dey and Srinivasan[1] showed that the estimator

§PS = HA'PLA'Y?H', A'? = diag()\}m,...,)\;)/z) (5)

6JS

improves and then is minimax.

In general the estimator of form

80T = HA’H', A’ = diag{¢;(\)}, (6)

is called orthogonal invariant. Obviously 6P

is in this class. Dey and Srinivasan[1]
also proposed other orthogonal invariant estimators improving on §7%.

Since Ay > -+ > A, it seems preferable to take ¢;(A) satifying

G1(A) > - > gy(N),

with probability 1. The estimator of Dey and Srinivasan[1] does not satisfy this con-
dition. Sheena and Takemura[12] showed that any orthogonal invariant estimator
which does not preserve the order of ¢;(A) is dominated by some modified estima-
tors preserving the order and proposed two methods to modify non-orderpreserving
estimators.

In this way only the information of S has been used to obtain minimax estimators.
Besides these results, there are several work on these approach in Takemura[13],
Haff[2], Perron|[§] etc.

On the other hand, there is another approach to obtain the estimator improv-

ing on 0y, which is the one to use the information of not only S but X. When



p = 1, it is well known that Stein[10] presented a truncated estimator dominating
8. Sinha and Ghosh[9] extended the Stein’s results to the MANOVA model (1)
and obtained the estimator improving on ¢y under the loss (2). However their esti-
mator is not continuous. For k = 1 and p > 2, Perron[7], Kubokawa et al.[5] and
Kubokawa et al.[6] proposed continuous estimators which dominates Sinha-Ghosh’s
estimator. Recently Hara[3]| generalize Perron’s result and derive the continuous
estimator improving on Sinha-Ghosh’s estimator for £ > 2. Hara[3] also extended
the Kubokawa’s results to £ > 2 and obtained some new estimators improving on
0o. But these improved estimators which use the information of X are not shown
to be minimax.

These two approaches have developed independently. Main purpose of this paper
is to give new classes of minimax estimators which also use the information of X
by using the argument in Hara[3]. In section 2 we obtain some minimax estimators
with the information of X explicitly which dominate §”°. In section 3 we show
the inadmissibility of order-preserving minimax estimators proposed by Sheena and
Takemura[12]. Section 4 gives some Monte Carlo studies to show the performance

of the estimator proposed in section 2 and section 3.

2 Another Class of Minimax Estimators

Letting U be U = HAI/Q, 6P% can be rewritten by
6" =ULU'.
Let the spectrum decomposition of U' X X'U~" be written by U' XX'U " =
H*A*H* with
A" =diag(\"), A =(\},..., %),
First we consider to improve 6P by the estimator in the following class,
89 = p(AULU', (7)
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where ¢(A") is a scalar function of A* satisfying ¢(A*) —1 < 0..
Let W be a p X p random matrix whose probability density function with respect

to the Lebesgue measure dW is
Const.|WW'|("P)/2 exyp <—%trWW'> : (8)
It is easy to show that WW' and W'W follow W, (n, I,,). Then we can set
WW' = x-12gy-12 = p-12yy’ 12,

where X7'/% is a p X p constatnt matrix satisfying RULES SutVLR 5 iu Letting P

be P =U"'XY?W with X2 = (X Y2)"1, we can rewrite W as
w =xY2UP. (9)

We can easily see that P is an orthogonal matrix. In the following argument we
define W as (9) and let X be X = X71/2X.
To compare §P5 and 67, we consider the conditional risk difference with WX =
PU'X fixed, i.e.,
E[L(67, &) — L(6P°, X)W X].

Since the spectrum decomposition of WX X ‘W s expressed as
W IXXW = PH'A"H"P,

\*) is constant with W' X given. Then
¢( g

Eltr(6f — 6P Z WL X] = EB[(¢(A\*) =) LP'U'ST'UP [W™'X]
< MtrE[W’W|W’1)~(]
n+p—1
< (n+k)(p(X*) — l)tr(Ip n W_IXX'W_II)*I

n+p—1
n+k & p(AT)—1

- >

10
n+p—14 1+~ (10)




log |67 27! — log |75 X7
—log [LAUU L2657 — log |LPU'U L2 57
= log |p(A*)I,|
= plog p(A"). (11)
The second inequality in (10) is by Sinha and Ghosh[9, Lemma 4],

EWW|WX] > (n+k)I,+W I XX'W )

Combining (10) and (11),

ntk (AT —1

EIL(§?. X)) — L(§P°. )W 1X] < —pl A
[ (617 ) (6 ) >|W ] — n—l—p—l; 1_'_)\: p0g¢( )
p(n+k) ¢(A*) —1
S | by
wip_1 11k plog ¢(A),
where \* = (1/p) >-7_; Ar. Then if
nk O oesn <o, (12)

ntp—1 14\
§¢ dominates 675
Theorem 2.1 If $(\) satisfies the condition (12), 67 dominates 6P5.
Suppose k > p. Letting ¢TFH(X) be

¢THH(A) = min <1,7n—|—p—1 A ),

14+ M
n+k (1+ A7)

it is easy to show that ¢T®(X) satisfies (12). Let the corresponding esimator be

expressed as 67 FL,

Corollary 2.1 6§78 dominates 6P° when k > p.

Next we consider the class of estimators

89 =ULU, L¢:diag{ Pi(X") }
n+p+1—2
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Assume that ¢;(A™) satisfies ¢;(A*) —1 < 0 and

SR IS R SN R
n+p+1—2 n+p-—1 n+p—1
& Gi(AT) = aidi(A) + (1 — ), (13)
where a; = (n+p+1—2i)/(n+p—1).
In the same way as (10) and (11), we have
Eltr(67 — "X YWX] = E[tr(L? - D)U'S'U |[WX]
AY)—1 -
< MHE[W'MW*X]
n+p—1
Af) =1
S (n + k)(¢1( ) >tr(Ip 4 W—IXX'Iw—ll)fl
n+p—1

ntk (A —1

= 14
n+p—1; L+ (14)
log 852" |~ log [675 571 = log |diag {¢:(A")} |
p
= ) log(a;p1(A*) + (1 — o))
=1
p
> log ¢1(A) Z Q;
i=1
np
= —1 A). 15
n+p_108¢1() (15)
Combining (14) and (15),
E[L(85, X) — L(6"%, 2)|W ' X]
n+k K d(A)—1 np
— | A
—n+p—1i§ 1+ A n+p—10g¢1( )
p(n+k) o(A") -1 np
< — — | A).
“n+p—1 1+ X n+p—10g¢1( )
Then with respect to ¢;(A*) in (13) such that ¢;(A*) satisfies
AY)—1
(1) A g i) <0, (10

6 dominates 675,



Theorem 2.2 If ¢1(X) satisfies the condition (16), 65 dominates §P5.

Letting ¢"#2(X) be

n
n+k

67 (X) = min (1, (1+ X*)) ,

6TR2

¢ 2(X) satisfies (16). Let the corresponding esimator be expressed as

Corollary 2.2 §"%? dominates 6P° for all k and p < n.

3 Inadmissibility of other minimax estimators

Using the argument in the previous section we can show the inadmissibility of

order-preserving estimators modifying 6P proposed by Sheena and Takemura[12]

when k > p. Sheena and Takemura[12] proposed two methods of modifying §7%.

One is the method using order statistics. The estimator is

605 = HLOSH', LO = diag(0?S(N), ..., vOS(\)),

where ¢?%(X) are the jth largest element in Ni=N/(n+p+1—-2i),i=1,...,p.

The other is the isotonic regression of M. The estimator is
617 = HL'"H', L' = diag(¢{"(\),.... vIR(N)),

where /(X) are the solutions of

where = {97 = (B{R(\), ..., 6EONIG{EA) > - > GIF). Both of 69°
and 6’ was shown to improve on §7° under the loss (2). On the analogy of (7) we

consider the classes of estimators
6¢?S — d)OS(A*)HLOSH,,
5£R — ¢IR(A*)HLIRH,.
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We suppose that ¢p?%(A*) <1 and ¢'F(A*) <1

Rewrite 69° and 6% as

505 — HA1/2LOS*A1/2H,, LOS* _ AflLOS — dlag{wzoS(A)/)\z}p

SR = HAVPL"™ AV H' | L™ = A7 LR = diag{y)/B(X)/\i},

respectively. Now we present the following lemma.

Lemma 3.1

LOS* > ;Ip, LIR* > #Ip
“n+p-—-1 “n4+p-—1

(Proof)

The ¥?(X)/\; can be expressed as

0 .
LG N P Y

When 7 > j, A; < A;. Therefore

1
n+p+1—2j

1 1
> .
n+p+1—27  n+p-—1

| \/

A
A

When ¢ < j, A\; and A; satisfy

ﬁ>n+1+p—2j

(17)

by the definition of L?®, which also implies (17). Then L%** > (1/(n+p—1))I, is

proved.

According to Sheena and Takemura[12], 1)/%#(X) can be expressed with some con-

stants a, b, 1 <a < b<pas

N =
b—a—1; “n+p+1-—25

Using the above argument we can prove the latter one similarly.

In the same way as (10) and (11) we have by using the Lemma 3.1

(n+k) ¢°5(A*) —1
“n+p—1 14X

J

p
Bltr(85% — 69%) 2~ /W' X] g}:
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log [65° 2" | — log [67° X~ = plog ¢7° (X"),

~ - p n-+k ¢IR A =1
Eltr(65" — ") XWX < Zn(+p_)1 1(+ iik -
1 K2

1=

log |67 X7 —log [6°° X" = plog ¢"*(X").
Therefore we can obtain the following results.

Theorem 3.1 When ¢9%(X*) satisfy the condition (12), 63° dominates 6°%. Sim-

ilarly when ¢'"(X") satisfy the condition (12), 65" dominates 6'".

Corollary 3.1 Assume k > p. Then 6T = ¢TRL(X")69° dominates 69° and

§TRY = pTRL(X*)SIR dominates 61F.
4 Monte Carlo Study

We study the risk performance of the proposed estimators with some Monte

5DS’ 5TR1 5TR2

Carlo studies. We compare the average losses of and of Section2,

6905, 6TR3 §TR and 6TR4 of Section 3. We present in Table 1 to 4 the average losses
of the seven estimators over 100000 replications for p = 3 and some combinations of
(n, k, |||, X). Since the risks of the seven estimators depend only on the eigenvalue
of X, we set X = diag(c?,032,03). We note the risks of 6% and 677! are identical

with those of 69° and §7%3, respectively, when X = I,.

The summary of the experiment is as follows.

e Although the improvement is not large, we can see the dominance of the

estimator proposed in this article over 67, §9° §/%.

e When o, 0 and o are close together, the proposed estimator, especially

6TR2 save much risk.

e The improvement is on the whole in proportion to degrees of freedom of S

and in inverse proportion to ||u|| except 67 2.
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e The improvement is not always in proportion to k. In this sense the estimator

proposed here may not use the information of X effectively.
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Table 1. Average losses foré” %! for p = 3.

21”

0.0 1.0 2.0

1.00 1.00 1.00 5 0.99915 0.99955 0.99967

7 0.99875 0.99952 0.99968

DS\ __
R(67°) =0.99972 10 0.99847 0.99942 0.99965

1.00 0.90 0.80 5 1.00502 1.00529 1.00538

7 1.00480 1.00525 1.00538

DS\ __
R(677) =1.00541 1 00466 1.00528  1.00538

1.00 0.70 050 5 1.02976 1.02985 1.02987

7 1.02970 1.02984 1.02987

DS\ __
R(677) =1.02988 1 49973 1.02086 1.02087

1.00 1.00 1.00 5 0.45876 0.45928 0.45942

7 0.45824 0.45917 0.45941

DS\ _
R(677) = 0.45946 10 0.45755 0.45909 0.45940

1.00 090 080 5 0.46006 0.46041 0.46050

7 0.45976 0.46034 0.46048

DS\ _
RETZ) = 0460520 45048 046032 0.46050

1.00 0.70 0.50 5 0.48126 0.48136 0.48140

7 048117 0.48135 0.48140

DS\ __
R(677) = 048140 c11s 048138 0.48140
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Table 2. Average losses foré” %2 for p = 3.

21”

0.0 1.0 2.0

1.00 1.00 1.00 5 0.98956 0.97817 0.97775

7 098447 0.97801 0.97794

DSy _
R(67°) =0.99972 10 0.97965 0.97785 0.97819

1.00 090 0.80 5 0.99707 0.98640 0.98474

7 099302 0.98590 0.98475

DS\ __
R(677) =1.00541 0 0ceo1 0.08525 0.98468

1.00 0.70 050 5 1.02545 1.02007 1.01883

7 1.02372 1.01971 1.01878

DS\ _
ROTE) = 102988 15 ) 09136 1.01925 101867

1.00 1.00 1.00 5 0.45946 0.44933 0.44677

7 0.45946 0.44933 0.44677

DSy _
R(677) = 0.45946 10 0.44932 0.44677 0.44608

1.00 090 080 5 0.46052 0.45331 0.45146

7 0.46052 0.45331 0.45146

DS\ _
RETZ) = 0460520 45331 045146 045103

1.00 0.70 0.50 5 0.48140 0.47865 0.47815

7 0.48140 0.47865 0.47815

DS\ __
R(677) = 048140\ mocr 047815 0.47807
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Table 3. Average losses foré” % for p = 3.

|2,

nooof oo ko, 1.0 2.0
5 1.00 090 0.80 5 1.00493 1.00520 1.00528
7 1.00471 1.00516 1.00529

ROOP?) = 10033110 00456 100510 1.00520
1.00 0.70 0.50 5 1.02908 1.02917 1.02918

7 1.02902 1.02916 1.02919

R(6P?) =1.02919 1) 906 1.02018  1.02019
10 1.00 0.90 0.80 5 0.46004 0.46038 0.46048
7045974 0.46031 0.46046

R(69%) = 046050 0 45045 046029 0.46047
1.00 0.70 050 5 048109 0.48119 0.48123

7 048100 0.48118 0.48123

R(6P7) = 048123 | 1o008 048121 048123
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Table 4. Average losses foré” % for p = 3.

211

0.0 1.0 2.0

5 1.00 1.00 1.00 5 0.99739 0.99779 0.99791

7 0.99699 0.99776 0.99792

TR\ __
RO = 099720 (90671 0.99766  0.99789

1.00 0.90 0.80 5 1.00319 1.00345 1.00354

7 1.00296 1.00341 1.00354

IR\ __
R = 100357 0 o282 1.00531 100354

1.00 0.70 0.50 5 1.02782 1.02791 1.02793

7 1.02777 1.02790 1.02793

IR\ __
ROT =1.02194 10 4o780 1.02792 1.02793

10 1.00 1.00 1.00 5 0.45853 0.45906 0.45919

7 0.45801 0.45895 0.45919

IR\ __
RE) = 045924 0 45733 045887 0.45917

1.00 090 0.80 5 0.45983 0.46018 0.46027

7 0.45953 0.46011 0.46025

TR\ __
R() = 046029 )5 45094 0.46008 0.46026

1.00 0.70 0.50 5 0.48099 0.48109 0.48113

7 0.48090 0.48109 0.48113

IR\ __
R = 048113 0 43088 048111 048113
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