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1 Introduction

A canonical form of a normal MANOVA model is expressed as

X = (X1; . . . ;Xk) : p� k � N(M ;� 
 Ip);

S : p� p �Wp(n;�) (n � p);

X and S are independent,

(1)

where N(M ;� 
 Ip) denotes that X i are independently distributed to the mul-

tivariate normal distribution with mean �i, the corresponding column of M =

(�1; . . . ;�k), and covariance matrix �. Let Wp(n;�) denote the Wishart distribu-

tion with parameter � and degrees of freedom n. Here we consider the problem of

estimating � with unknownM . We use the Stein's loss

L(�̂;�) = tr(�̂��1)� log j�̂��1j � p: (2)

as a criterion.

This problem remains invariant under the full a�ne group acting as

(X;S)! (AX +B;ASA0); (M ;�)! (AM +B;A�A0)

for p � p nonsingular matrix A and p � k matrix B. The best a�ne equivariant

estimator is given by

�0 =
1

n
S; (3)

which is also the uniformly minimum variance unbiased(UMVU) estimator. It is

well known that �0 is not even minimax.

Let T be the lower triangular matrix satisfying S = TT 0. James and Stein[4]

showed the estimator

�JS = TLT 0; L = diagf(n+ p+ 1� 2i)�1g (4)
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dominates �0 and is a miminax estimator under the loss (2) with constant risk. But

�JS is inadmissible and various estimators improving on �JS can be conceivable.

Let the spectrum decomposition of S be expressed as S =H�H 0, where

� = diag(�); � = (�1; . . . ; �p); �1 � � � � � �p:

Stein[11] and Dey and Srinivasan[1] showed that the estimator

�DS =H�1=2L�1=2H 0; �1=2 = diag(�
1=2
1 ; . . . ; �1=2p ) (5)

improves �JS and then is minimax.

In general the estimator of form

�OI =H��H 0; �� = diag f�i(�)g ; (6)

is called orthogonal invariant. Obviously �DS is in this class. Dey and Srinivasan[1]

also proposed other orthogonal invariant estimators improving on �DS .

Since �1 � � � � � �p, it seems preferable to take �i(�) satifying

�1(�) � � � � � �p(�):

with probability 1. The estimator of Dey and Srinivasan[1] does not satisfy this con-

dition. Sheena and Takemura[12] showed that any orthogonal invariant estimator

which does not preserve the order of �i(�) is dominated by some modi�ed estima-

tors preserving the order and proposed two methods to modify non-orderpreserving

estimators.

In this way only the information of S has been used to obtain minimax estimators.

Besides these results, there are several work on these approach in Takemura[13],

Ha�[2], Perron[8] etc.

On the other hand, there is another approach to obtain the estimator improv-

ing on �0, which is the one to use the information of not only S but X. When
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p = 1, it is well known that Stein[10] presented a truncated estimator dominating

�0. Sinha and Ghosh[9] extended the Stein's results to the MANOVA model (1)

and obtained the estimator improving on �0 under the loss (2). However their esti-

mator is not continuous. For k = 1 and p � 2, Perron[7], Kubokawa et al.[5] and

Kubokawa et al.[6] proposed continuous estimators which dominates Sinha-Ghosh's

estimator. Recently Hara[3] generalize Perron's result and derive the continuous

estimator improving on Sinha-Ghosh's estimator for k � 2. Hara[3] also extended

the Kubokawa's results to k � 2 and obtained some new estimators improving on

�0. But these improved estimators which use the information of X are not shown

to be minimax.

These two approaches have developed independently. Main purpose of this paper

is to give new classes of minimax estimators which also use the information of X

by using the argument in Hara[3]. In section 2 we obtain some minimax estimators

with the information of X explicitly which dominate �DS . In section 3 we show

the inadmissibility of order-preserving minimax estimators proposed by Sheena and

Takemura[12]. Section 4 gives some Monte Carlo studies to show the performance

of the estimator proposed in section 2 and section 3.

2 Another Class of Minimax Estimators

Letting U be U =H�1=2, �DS can be rewritten by

�DS = ULU 0:

Let the spectrum decomposition of U�1XX 0U�10 be written by U�1XX 0U�10 =

H���H�0 with

�� = diag(��); �� = (��1; . . . ; �
�
p):

First we consider to improve �DS by the estimator in the following class,

��1 = �(��)ULU 0; (7)

4



where �(��) is a scalar function of �� satisfying �(��)� 1 � 0:.

LetW be a p�p random matrix whose probability density function with respect

to the Lebesgue measure dW is

Const.jWW 0j(n�p)=2 exp
�
�
1

2
trWW 0

�
: (8)

It is easy to show thatWW 0 and W 0W follow Wp(n; Ip). Then we can set

WW 0 = ��1=2S� 0�1=2 = ��1=2UU 0� 0�1=2;

where ��1=2 is a p� p constatnt matrix satisfying ��1=20��1=2 = ��1. Letting P

be P = U�1�1=2W with �1=2 = (��1=2)�1, we can rewriteW as

W = ��1=2UP : (9)

We can easily see that P is an orthogonal matrix. In the following argument we

de�ne W as (9) and let ~X be ~X = ��1=2X.

To compare �DS and ��1 , we consider the conditional risk di�erence withW
�1 ~X =

PU�1X �xed, i.e.,

E[L(��1 ;�)� L(�DS;�)jW�1 ~X]:

Since the spectrum decomposition of W�1 ~X ~X
0

W�10 is expressed as

W�1 ~X ~X
0

W 0 = P 0H���H�0P ;

�(��) is constant withW�1 ~X given. Then

E[tr(��1 � �DS)��1jW�1 ~X] = E[(�(��)� 1)trLP 0U 0��1UP jW �1 ~X]

�
�(��)� 1

n+ p� 1
trE[W 0W jW�1 ~X]

�
(n+ k)(�(��)� 1)

n + p� 1
tr(Ip +W

�1XX 0W�10)�1

=
n+ k

n+ p� 1

pX
i=1

�(��)� 1

1 + ��i
; (10)
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log j��1�
�1j � log j�DS��1j

= log jL1=2U 0UL1=2jj�(�)Ipjj�
�1j � log jL1=2U 0UL1=2jj��1j

= log j�(��)Ipj

= p log �(��): (11)

The second inequality in (10) is by Sinha and Ghosh[9, Lemma 4],

E[W 0W jW�1 ~X] � (n+ k)(Ip +W
�1XX 0W�10)�1:

Combining (10) and (11),

E[L(��1 ;�)� L(�DS;�)jW�1 ~X] �
n+ k

n+ p� 1

pX
i=1

�(��)� 1

1 + ��i
� p log �(�)

�
p(n+ k)

n+ p� 1

�(��)� 1

1 + ����
� p log �(�);

where ���� = (1=p)
Pp
i=1 �

�
i : Then if

n + k

n+ p� 1
�
�(��)� 1

1 + ����
� log �(�) � 0; (12)

��1 dominates �DS .

Theorem 2.1 If �(�) satis�es the condition (12), ��1 dominates �DS.

Suppose k � p. Letting �TR1(�) be

�TR1(�) = min
�
1;
n+ p� 1

n+ k
(1 + ���� )

�
;

it is easy to show that �TR(�) satis�es (12). Let the corresponding esimator be

expressed as �TR1.

Corollary 2.1 �TR1 dominates �DS when k � p.

Next we consider the class of estimators

��2 = UL�U 0; L� = diag

(
�i(�

�)

n + p+ 1� 2i

)
:
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Assume that �i(�
�) satis�es �i(�

�)� 1 � 0 and

�i(�
�)� 1

n+ p+ 1� 2i
=
�1(�

�)� 1

n+ p� 1
, L� �L =

�1(�
�)� 1

n+ p� 1
Ip

, �i(�
�) = �i�1(�) + (1� �i); (13)

where �i = (n + p+ 1� 2i)=(n+ p� 1).

In the same way as (10) and (11), we have

E[tr(��2 � �DS)��1jW�1 ~X] = E[tr(L� �L)U 0��1U jW�1 ~X]

�
�1(�

�)� 1

n+ p� 1
trE[W 0W jW �1 ~X]

�
(n+ k)(�1(�

�)� 1)

n + p� 1
tr(Ip +W

�1XX 0W�10)�1

=
n+ k

n+ p� 1

pX
i=1

�1(�
�)� 1

1 + ��i
; (14)

log j��2�
�1j � log j�DS��1j = log jdiag f�i(�

�)g j

=
pX
i=1

log(�i�1(�
�) + (1� �i))

� log �1(�)
pX
i=1

�i

=
np

n+ p� 1
log �1(�): (15)

Combining (14) and (15),

E[L(��2 ;�)� L(�DS ;�)jW�1 ~X]

�
n+ k

n+ p� 1

pX
i=1

�1(�
�)� 1

1 + ��i
�

np

n+ p� 1
log �1(�)

�
p(n+ k)

n+ p� 1

�(��)� 1

1 + ����
�

np

n + p� 1
log �1(�):

Then with respect to �i(�
�) in (13) such that �1(�

�) satis�es

(n+ k)
�1(�

�)� 1

1 + ����
� n log �1(�) � 0; (16)

��2 dominates �DS .
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Theorem 2.2 If �1(�) satis�es the condition (16), ��2 dominates �DS.

Letting �TR2(�) be

�TR2(�) = min
�
1;

n

n+ k
(1 + ���� )

�
;

�TR2(�) satis�es (16). Let the corresponding esimator be expressed as �TR2.

Corollary 2.2 �TR2 dominates �DS for all k and p � n.

3 Inadmissibility of other minimax estimators

Using the argument in the previous section we can show the inadmissibility of

order-preserving estimators modifying �DS proposed by Sheena and Takemura[12]

when k � p. Sheena and Takemura[12] proposed two methods of modifying �DS .

One is the method using order statistics. The estimator is

�OS =HLOSH 0; LOS = diag( OS1 (�); . . . ;  OSp (�));

where  OSj (�) are the jth largest element in ~�i = �i=(n+ p+ 1� 2i), i = 1; . . . ; p.

The other is the isotonic regression of ~�i. The estimator is

�IR =HLIRH 0; LIR = diag( IR1 (�); . . . ;  IRp (�));

where  IRj (�) are the solutions of

min
 IR2F

pX
i=1

( IRi (�)� ~�i)
2;

where F = f IR = ( IR1 (�); . . . ;  IRp (�))j IR1 (�) � � � � �  IRp (�)g. Both of �OS

and �IR was shown to improve on �DS under the loss (2). On the analogy of (7) we

consider the classes of estimators

�OS� = �OS(��)HLOSH 0;

�IR� = �IR(��)HLIRH 0:
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We suppose that �OS(��) � 1 and �IR(��) � 1.

Rewrite �OS and �IR as

�OS =H�1=2LOS��1=2H 0; LOS� = ��1LOS = diagf OSi (�)=�ig;

�IR =H�1=2LIR��1=2H 0; LIR� = ��1LIR = diagf IRi (�)=�ig;

respectively. Now we present the following lemma.

Lemma 3.1

LOS� �
1

n+ p� 1
Ip; L

IR� �
1

n+ p� 1
Ip:

(Proof)

The  0
i (�)=�i can be expressed as

 0
i (�)

�i
=

1

n + p+ 1� 2j

�j
�i
; 1 � j � p:

When i � j, �i � �j. Therefore

1

n+ p+ 1� 2j

�j
�i
�

1

n+ p+ 1� 2j
�

1

n+ p� 1
: (17)

When i � j, �i and �j satisfy

�j
�i
�
n+ 1 + p� 2j

n+ 1 + p� 2i

by the de�nition of LOS, which also implies (17). Then LOS� � (1=(n+ p� 1))Ip is

proved.

According to Sheena and Takemura[12],  IRi (�) can be expressed with some con-

stants a, b, 1 � a � b � p as

 IRi (�) =
1

b� a� 1

bX
j=a

�j
n+ p+ 1� 2j

:

Using the above argument we can prove the latter one similarly. 2

In the same way as (10) and (11) we have by using the Lemma 3.1

E[tr(�OS� � �OS)��1jW�1 ~X] �
pX
i=1

(n+ k)

n+ p� 1

�OS(��)� 1

1 + ��i
;
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log j�OS� �
�1j � log j�OS��1j = p log �OS(��);

E[tr(�IR� � �IR)��1jW�1 ~X] �
pX
i=1

(n+ k)

n+ p� 1

�IR(��)� 1

1 + ��i
:

log j�IR� �
�1j � log j�OS��1j = p log �IR(��):

Therefore we can obtain the following results.

Theorem 3.1 When �OS(��) satisfy the condition (12), �OS� dominates �OS. Sim-

ilarly when �IR(��) satisfy the condition (12), �IR� dominates �IR.

Corollary 3.1 Assume k � p. Then �TR3 = �TR1(��)�OS dominates �OS and

�TR4 = �TR1(��)�IR dominates �IR.

4 Monte Carlo Study

We study the risk performance of the proposed estimators with some Monte

Carlo studies. We compare the average losses of �DS, �TR1 and �TR2 of Section2,

�OS, �TR3, �IR and �TR4 of Section 3. We present in Table 1 to 4 the average losses

of the seven estimators over 100000 replications for p = 3 and some combinations of

(n; k; k�k;�). Since the risks of the seven estimators depend only on the eigenvalue

of �, we set � = diag(�21; �
2
2; �

2
3). We note the risks of �DS and �TR1 are identical

with those of �OS and �TR3, respectively, when � = Ip.

The summary of the experiment is as follows.

� Although the improvement is not large, we can see the dominance of the

estimator proposed in this article over �DS, �OS,�IR.

� When �21, �
2
2 and �23 are close together, the proposed estimator, especially

�TR2, save much risk.

� The improvement is on the whole in proportion to degrees of freedom of S

and in inverse proportion to k�k except �TR2.
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� The improvement is not always in proportion to k. In this sense the estimator

proposed here may not use the information of X e�ectively.
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Table 1. Average losses for�TR1 for p = 3.

k�ik
2

n �21 �22 �23 k
0.0 1.0 2.0

5 1.00 1.00 1.00 5 0.99915 0.99955 0.99967

7 0.99875 0.99952 0.99968

R(�DS) = 0:99972
10 0.99847 0.99942 0.99965

1.00 0.90 0.80 5 1.00502 1.00529 1.00538

7 1.00480 1.00525 1.00538

R(�DS) = 1:00541
10 1.00466 1.00528 1.00538

1.00 0.70 0.50 5 1.02976 1.02985 1.02987

7 1.02970 1.02984 1.02987

R(�DS) = 1:02988
10 1.02973 1.02986 1.02987

10 1.00 1.00 1.00 5 0.45876 0.45928 0.45942

7 0.45824 0.45917 0.45941

R(�DS) = 0:45946
10 0.45755 0.45909 0.45940

1.00 0.90 0.80 5 0.46006 0.46041 0.46050

7 0.45976 0.46034 0.46048

R(�DS) = 0:46052
10 0.45948 0.46032 0.46050

1.00 0.70 0.50 5 0.48126 0.48136 0.48140

7 0.48117 0.48135 0.48140

R(�DS) = 0:48140
10 0.48115 0.48138 0.48140
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Table 2. Average losses for�TR2 for p = 3.

k�ik
2

n �21 �22 �23 k
0.0 1.0 2.0

5 1.00 1.00 1.00 5 0.98956 0.97817 0.97775

7 0.98447 0.97801 0.97794

R(�DS) = 0:99972
10 0.97965 0.97785 0.97819

1.00 0.90 0.80 5 0.99707 0.98640 0.98474

7 0.99302 0.98590 0.98475

R(�DS) = 1:00541
10 0.98821 0.98525 0.98468

1.00 0.70 0.50 5 1.02545 1.02007 1.01883

7 1.02372 1.01971 1.01878

R(�DS) = 1:02988
10 1.02136 1.01925 1.01867

10 1.00 1.00 1.00 5 0.45946 0.44933 0.44677

7 0.45946 0.44933 0.44677

R(�DS) = 0:45946
10 0.44932 0.44677 0.44608

1.00 0.90 0.80 5 0.46052 0.45331 0.45146

7 0.46052 0.45331 0.45146

R(�DS) = 0:46052
10 0.45331 0.45146 0.45103

1.00 0.70 0.50 5 0.48140 0.47865 0.47815

7 0.48140 0.47865 0.47815

R(�DS) = 0:48140
10 0.47865 0.47815 0.47807
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Table 3. Average losses for�TR3 for p = 3.

k�ik
2

n �21 �22 �23 k
0.0 1.0 2.0

5 1.00 0.90 0.80 5 1.00493 1.00520 1.00528

7 1.00471 1.00516 1.00529

R(�OS) = 1:00531
10 1.00456 1.00519 1.00520

1.00 0.70 0.50 5 1.02908 1.02917 1.02918

7 1.02902 1.02916 1.02919

R(�OS) = 1:02919
10 1.02906 1.02918 1.02919

10 1.00 0.90 0.80 5 0.46004 0.46038 0.46048

7 0.45974 0.46031 0.46046

R(�OS) = 0:46050
10 0.45945 0.46029 0.46047

1.00 0.70 0.50 5 0.48109 0.48119 0.48123

7 0.48100 0.48118 0.48123

R(�OS) = 0:48123
10 0.48098 0.48121 0.48123
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Table 4. Average losses for�TR4 for p = 3.

k�ik
2

n �21 �22 �23 k
0.0 1.0 2.0

5 1.00 1.00 1.00 5 0.99739 0.99779 0.99791

7 0.99699 0.99776 0.99792

R(�IR) = 0:99972
10 0.99671 0.99766 0.99789

1.00 0.90 0.80 5 1.00319 1.00345 1.00354

7 1.00296 1.00341 1.00354

R(�IR) = 1:00357
10 1.00282 1.00531 1.00354

1.00 0.70 0.50 5 1.02782 1.02791 1.02793

7 1.02777 1.02790 1.02793

R(�IR) = 1:02794
10 1.02780 1.02792 1.02793

10 1.00 1.00 1.00 5 0.45853 0.45906 0.45919

7 0.45801 0.45895 0.45919

R(�IR) = 0:45924
10 0.45733 0.45887 0.45917

1.00 0.90 0.80 5 0.45983 0.46018 0.46027

7 0.45953 0.46011 0.46025

R(�IR) = 0:46029
10 0.45924 0.46008 0.46026

1.00 0.70 0.50 5 0.48099 0.48109 0.48113

7 0.48090 0.48109 0.48113

R(�IR) = 0:48113
10 0.48088 0.48111 0.48113
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