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Abstract

There have been few studies on practical error estimation methods of quasi-Monte Carlo integra-

tions. Recently, some theoretical works were developed by Owen to analyze the quasi-Monte Carlo

integration error. However his method given by those works is complicated to be implemented and

needs huge computational e�orts, so it would be of some interest to investigate into a simple error es-

timation method. In this paper, we will use a simple method, and give some theoretical considerations

on the errors given by these two methods. Numerical experiments are also reported.

1 Introduction

We consider the error estimation problem of quasi-Monte Carlo(QMC) integrations of the integral

I =

Z
[0;1)s

f(x)dx: (1)

For small s and smooth f there are many numerical integration methods and their error estimation
methods. However, as s increases, the problem becomes more di�cult. Monte Carlo(MC) method is
frequently used for this problem. But it is well known that the statistical error, i.e. the standard
deviation, of MC integration is O(1=

p
N), where N is the number of the evaluations of the integrand,

so that it is extremely time-consuming to obtain an accurate result. Recent years have seen successful
applications of QMCmethod which uses low-discrepancy point set or sequence fxig 2 [0; 1)s and computes
the approximate value of (1) by

IN =
1

N

NX
i=1

f(xi): (2)

For the error of QMC method, we have the following Koksma-Hlawka inequality.����� 1N
NX
i=1

f(xi)�
Z
[0;1)s

f(x)dx

����� � V (f)D�
N ;

where V (f) is the total variation of f in the sense of Hardy and Klause, and D�
N is the star discrepancy

of the point set fxig. Koksma-Hlawka inequality is a basis of the superiority of QMC method to MC,
because if we use low-discrepancy point sequence, D�

N (and also the absolute error of integral) goes to 0
with the rate O((logN)s=N) asymptotically as N ! 1. However we cannot make an error estimation
with Koksma-Hlawka inequality, because it is usually impossible to calculate the total variation V (f).
This is why we need a practical error estimation for QMC integrations.
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Here by the term \practical" we mean the method is accurate, fast, and easy to implement. Recently
several works on error analysis of QMC integrations have been developed [2], [5], [8]. These approaches
apply statistical error estimation methods to QMC integrations. Since low-discrepancy point sets are
deterministic point sets, in order to do a statistical error estimation, point sets must be selected from
some probability space. We need a probabilistic structure on the point sets.

In this paper we select two methods and compare their e�ciencies. The �rst method uses scrambled
nets, which were proposed by Owen [6]. The second one uses randomly shifted nets, which are based
on the idea of Cranley and Patterson [1] for good lattice points methods. We use (t;m; s)-net as a
low-discrepancy point set. Let us recall the de�nition of (t;m; s)-net [4]. A subset E of [0; 1)s of the form

E =

sY
i=1

[aib
�di ; (ai + 1)b�di)

with ai; di 2 Z, di � 0, 0 � ai < bdi for 1 � i � s is called an elementary interval in base b.

De�nition 1 Let t and m be nonnegative integers and t � m. A (t;m; s)-net in base b is a set of bm

points in [0; 1)s such that every elementary interval of volume bt�m contains exactly bt points of the point

set.

In the following, statistical error estimation methods are explained in Sect. 2. In Sect. 3 an analysis on
the estimated error is given for one-dimensional case. An analysis for multidimensional case is developed
in Sect. 4. Some numerical examples are presented in Sect. 5.

2 Statistical Error Estimation

We introduce two statistical error estimation methods for numerical integrations using (t;m; s)-net. The
basic idea of these methods is a combination of MC and QMC. The general scheme of the methods is

as follows. We select point sets fx(j)i gNi=1, j = 1; : : : ;M , independently from a probability space, and
compute the value of (2) for each point set.

S(j) =
1

N

NX
i=1

f(x
(j)
i ); j = 1; : : : ;M:

Then we calculate the estimate of I by

Î =
1

M

MX
j=1

S(j):

The error of the numerical integration is estimated using the variance of the evaluated values.

�̂2 =
1

M(M � 1)

MX
j=1

(S(j) � Î)2:

In order to make a statistical statement about an error estimation we need a probabilistic structure on
the point set. We will consider the following two structures in this paper.

Scrambled Net [6]. Let fzig be a (t;m; s)-net in base b. Suppose zi = (z1i ; : : : ; z
s
i ) and zji =P1

k=1 zijkb
�k for integers 0 � zijk < b. A scrambled net fxig, xi = (x1i ; : : : ; x

s
i ) is de�ned as xji =P1

k=1 xijkb
�k, where xijk is a random permutation applied to zijk. Speci�cally xijk are determined as

follows.

xij1 = �j(zij1);

xij2 = �jzij1 (zij2);

...

xijk = �jzij1zij2:::zij;k�1(zijk):
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Here each � is a random permutation over f0; 1; : : : ; b� 1g. In the second line the subscript zij1 means
that the permutation depends on the value of zij1. In the same way �jzij1zij2:::zij;k�1 is a permutation
depending on the values of zij1; : : : ; zij;k�1. All permutations are mutually independent. A scrambled
net thus derived is also a (t;m; s)-net in base b.

This operation can be viewed as follows. For a given point set, divide equally each axis of the unit
cube into b parts, and permute these parts in random order. Next, similarly, divide each part on each axis
into b small parts equally, and permute these small parts in random order. The scrambled net is obtained
by iterating this procedure. For the details of the scrambled net, the reader is referred to Owen [6], [7].

Randomly Shifted Net [1]. Let fzig be a (t;m; s)-net in base b and u be a random vector uniformly
distributed over a unit cube. A randomly shifted net fxig is given by

xi = zi + u (mod 1);

where (mod 1) means the componentwise (mod 1) operation.

Here we give an interpretation on the methods for our investigation below. Both methods transform
the original net into another point set by a bijection

�(zi) = xi:

We consider � is randomly chosen from among all the bijections, instead of giving a probabilistic structure

to fxig. We denote by �
(l)
s the scrambling to the l-th digit in base b. The detailed de�nition of �

(l)
s is as

follows.
� (l)s (z) = (�

(l)
1 (z1); : : : ; �(l)s (zs));

where z = (z1; : : : ; zs) and the permutation �
(l)
j , 1 � j � s, for each element is de�ned as

�
(l)
j = �jl � �j;l�1 � � � � � �j1;
�jk = �jk1 � �jk2 � � � � � �jk;bk�1 :

Here \�" means the composition of maps. �j1 is a random permutation on the equally divided b parts
of unit cube along the j-th axis. �j2 is composed of b random permutations �j21; : : : ; �j2;b on b small
parts obtained by dividing each of b parts. See Fig. 1. The permutations �jk , k = 3; : : : ; l, are de�ned
similarly. For a randomly shifted net, the transformation �t is given by

�t(z) = z+ u (mod 1)

= (z1 + u1(mod 1); : : : ; zs + us(mod 1));

where u = (u1; : : : ; us) is a random vector over a unit cube.

3 Error Analysis in One-Dimensional Case

The basic tools of our investigation are the b-adic Haar functions used by Owen [6]. De�ne the functions
 c(x), c = 0; 1; : : : ; b� 1, over [0; 1) as

 c(x) =

8><
>:

p
b� 1p

b
;

c

b
� x <

c+ 1

b
;

� 1p
b
; otherwise:

The b-adic Haar functions  ktc are de�ned as

 ktc(x) = b
k�1
2  c(b

k�1x� t)

for integers k > 0, 0 � t < bk�1 (This de�nition is slightly di�erent from Owen's). Some useful properties
of b-adic Haar functions are given below. We can show them by simple calculations.
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Figure 1: Scrambling and random shifting.

Proposition 1 Let  ktc be b-adic Haar functions.

1. For arbitrary k > 0 and 0 � t < bk�1, the next relation holds.

b�1X
c=0

 ktc(x) = 0: (3)

2. For a (t;m; 1)-net fzig, if 0 < k � m� t we have

bmX
i=1

 ktc(zi) = 0: (4)

3.1 Mean Square Error

For the convenience of notation we set  0(x) = 1, 0 � x < 1. The function set f ktcg1k=0 is a basis in
L2[0; 1), that is, any square integrable function f can be expanded by f ktcg1k=0.

f(x) =

1X
k=0

bk�1�1X
t=0

b�1X
c=0

hf;  ktci ktc(x);

where h; i denotes the inner product de�ned as

hf;  ktci =
Z 1

0

f(x) ktc(x)dx:

Note that I = hf;  0i. Although the set f ktcg is not an orthogonal system, the coe�cients of expansion
are given by inner products. For k > 0 we de�ne

Qkf(x) =

bk�1�1X
t=0

b�1X
c=0

hf;  ktci ktc(x):

Proposition 2 For 8f(x) 2 L2[0; 1) and each k > 0 we have

Z 1

0

(Qkf(x))
2dx =

bk�1�1X
t=0

b�1X
c=0

hf;  ktci2:
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Proof. We proceed by direct calculations.

Z 1

0

(Qkf(x))
2dx =

bk�1�1X
t=0

 
b�1X
c=0

hf;  ktci2
Z 1

0

 2
ktc(x)dx

+
X
c1 6=c2

hf;  ktc1ihf;  ktc2 i
Z 1

0

 ktc1(x) ktc2 (x)dx

1
A :

Using the fact that
R 1
0
 2
ktc(x)dx = (b�1)=b and that

R 1
0
 ktc1(x) ktc2 (x)dx = �1=b for c1 6= c2, together

with (3) we have

Z 1

0

(Qkf(x))
2dx =

bk�1�1X
t=0

0
@b� 1

b

b�1X
c=0

hf;  ktci2 � 1

b

X
c1 6=c2

hf;  ktc1ihf;  ktc2 i
1
A

=
bk�1�1X
t=0

 
b� 1

b

b�1X
c=0

hf;  ktci2 � 1

b

 
�

b�1X
c=0

hf;  ktci2
!!

=

bk�1�1X
t=0

b�1X
c=0

hf;  ktci2:

Under the interpretation given in Sect. 2 that a transformation is chosen randomly, the variance of the
numerical integration by scrambled or randomly shifted net can be represented as follows.

V (IN ) = E
�
(IN � I)2

�
= E

2
64
0
@ 1

N

NX
i=1

1X
k=1

bk�1�1X
t=0

b�1X
c=0

hf�;  ktci ktc(zi)
1
A

2
3
75

=
1

N2

NX
i;j=1

1X
k1=1

1X
k2=1

bk1�1�1X
t1=0

bk2�1�1X
t2=0

b�1X
c1=0

b�1X
c2=0

E[hf�;  k1t1c1ihf�;  k2t2c2i] k1t1c1(zi) k2t2c2(zj); (5)

where we used an expression f� for the composition of the functions f and � . The di�erence between
scrambling method and randomly shifting method is stated below.

Lemma 1 If supp k1t1c1 \ supp k2t2c2 = ; and l � min(k1; k2), or if supp k1t1c1 \ supp k2t2c2 6= ; and

supp k1t1c1 6= supp k2t2c2 and l � max(k1; k2), then we have E
h
hf� (l)s ;  k1t1c1ihf� (l)s ;  k2t2c2i

i
= 0.

Proof. We set k1 � k2 without loss of generality. If the supports of  k1t1c1 and  k2t2c2 do not overlap,
the permutations on the supports are mutually independent. Hence we have

E
h
hf� (l)s ;  k1t1c1ihf� (l)s ;  k2t2c2i

i
= E

h
hf� (l)s ;  k1t1c1i

i
E
h
hf� (l)s ;  k2t2c2i

i
:

If l � k2, the last expectation is

E[hf� (l)s ;  k2t2c2i] =
1

b

b�1X
c=0

Z 1

0

f(x) k2t2c(x)dx = 0: (6)

This yields the �rst part of the lemma.
For one-dimensional case the latter condition of the lemma means that supp k1t1c1 is a proper subset

of supp k2t2c2 . The transformation �
(l)
s has the form �1l � � ��1k1 � � ��1k2 � � ��11 when l � k1. Conditioning

on �1k2 � � ��11 gives

E
h
hf� (l)s ;  k1t1c1ihf� (l)s ;  k2t2c2i

i
= E

h
hf� (l)s ;  k2t2c2iE

h
hf� (l)s ;  k1t1c1ij�1k2 � � ��11

ii
:
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If l � k1, the conditional expectation E
h
hf� (l)s ;  k1t1c1ij�1k2 � � ��11

i
becomes zero the same as (6).

From the lemma, when we use a scrambled net to the l-th digit in base b, the coe�cients in the ex-
pansion of the variance (5) with min(k1; k2) � l vanish if k1 6= k2, or k1 = k2 and t1 6= t2. Also the
coe�cients with max(k1; k2) � l vanish if supp k1t1c1 � supp k2t2c2 and supp k1t1c1 6= supp k2t2c2 , or if
supp k2t2c2 � supp k1t1c1 and supp k2t2c2 6= supp k1t1c1 . The latter case corresponds to bbk2�k1t1c = t2
or bbk1�k2t2c = t1. The coe�cients for k1; k2 > l do not vanish.

On the other hand when we use a randomly shifted net, none of the coe�cients vanish:

E[hf�t;  k1t1c1ihf�t;  k2t2c2i] 6= 0 for 8 k1t1c1 ;  k2t2c2 :

Summarizing the above and using (4), we have the following results.

Theorem 1 The variance of the numerical integration of f 2 L2[0; 1) by the scrambled (t;m; s)-net to
the l-th digit in base b is given by

Vs(IN ) =
1

N2

NX
i=1

NX
j=1

� lX
k=m�t+1

bk�1�1X
t=0

b�1X
c1=0

b�1X
c2=0

Cs
kkttc1c2 ktc1(zi) ktc2(zj)

+2

1X
k1=l+1

lX
k2=m�t+1

X
bbk2�k1 t1c=t2

b�1X
c1=0

b�1X
c2=0

Cs
k1k2t1t2c1c2 k1t1c1(zi) k2t2c2(zj)

+

1X
k1=l+1

1X
k2=l+1

bk1�1�1X
t1=0

bk2�1�1X
t2=0

b�1X
c1=0

b�1X
c2=0

Cs
k1k2t1t2c1c2 k1t1c1(zi) k2t2c2(zj)

�
;

(7)

where Cs
k1k2t1t2c1c2

= E
h
hf� (l)s ;  k1t1c1ihf� (l)s ;  k2t2c2i

i
. The variance of the integration of f 2 L2[0; 1)

by the randomly shifted (t;m; s)-net is given by

Vt(IN ) =
1

N2

NX
i=1

NX
j=1

1X
k1=m�t+1

1X
k2=m�t+1

bk1�1�1X
t1=0

bk2�1�1X
t2=0

�
b�1X
c1=0

b�1X
c2=0

E [hf�t;  k1t1c1ihf�t;  k2t2c2i] k1t1c1(zi) k2t2c2(zj): (8)

This result shows that the scrambling method eliminates the terms with m� t < k � l in the expansion
of the variance. On the other hand the random shifting method cannot eliminate them. See Fig. 2.
If those terms are relatively small, the variance for shifted net is approximately equal to that for the
scrambled net. We will show two methods give close values of variance by numerical experiments in the
latter section.
Remark. Our result (7) agrees with Owen's result [6] when the number of permuted digits l becomes
in�nity. See Appendix A.

3.2 Mean Absolute Error

Another measure gives a di�erent aspect of the integration error. Let us consider the mean absolute
error.

R = E

"�����
Z 1

0

f(x)dx� 1

N

NX
i=1

f(xi)

�����
#
:
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Figure 2: Vanishing terms. The terms corresponding to (k1; k2) with min(k1; k2) � m� t, indicated by �,
vanish due to the property of (t;m; s)-net. When we use the scrambled net, more terms vanish. If (k1; k2)
is in the area A (k1; k2 > m� t and min(k1; k2) � l), the terms of not overlapping supports vanish. The
overlapping supports terms vanish if (k1; k2) is in the area B (k1; k2 > m� t and max(k1; k2) � l).

Using Haar expansion of the integrand, the mean absolute error can be bounded as follows.

R � 1

N

NX
i=1

1X
k=m�t+1

bk�1�1X
t=0

b�1X
c=0

E [jhf�;  ktcij] j ktc(zi)j : (9)

The summation on k begins at m � t + 1 due to the property (3). We need to estimate the values of
expectation. For the scrambled net we note that bk elementary intervals of [tb�k; (t+1)b�k) are randomly
permuted, and that the permutation of the intervals of width smaller than t�k�1 has no e�ect on the
expectation of the coe�cients. Consequently we have a bound for the expectation of the coe�cients for
a �xed k � l.

E
h
jhf� (l)s ;  ktcij

i
=

1

bk�1

bk�1�1X
t=0

1

b

b�1X
c=0

����
Z 1

0

f(x) ktc(x)dx

����
� sup

t;c

����
Z 1

0

f(x) ktc(x)dx

���� : (10)

On the other hand, for the random shifting method the expectation is taken with respect to the uniform
distribution t over [0; 1):

E [jhf�t;  ktcij] =
1

bk�1

Z bk�1

0

����
Z 1

0

f�(x) ktc(x)dx

���� dt
� sup

t;c

����
Z 1

0

f�(x) ktc(x)dx

���� ;
where f�(x) is the periodic function de�ned as f�(x) = f(x mod 1). From (9) and (10) we have an upper
bound for the mean absolute value error of the integration by the scrambled net.

Rs � 1

N

1X
k=m�t+1

sup
t;c

����
Z 1

0

f(x) ktc(x)dx

����
NX
i=1

bk�1�1X
t=0

b�1X
c=0

j ktc(zi)j
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�
1X

k=m�t+1

bk=2 sup
t;c

����
Z 1

0

f(x) ktc(x)dx

���� :
Second inequality holds because only N terms are non-zero in the summation on i, t, and c for a �xed k,
and j ktc(zi)j is bounded by bk=2. Let us introduce the modulus of continuity of a function.

!1(f ; �) = supf
Z 1

0

jf(x+ �)� f(x)jdx : x+ � 2 [0; 1); 0 < � < �g:

Then we have

sup
t;c

����
Z 1

0

f(x) ktc(x)dx

���� � bk=2 � b�k+1!1(f ; b
�k+1):

Finally the mean absolute error of the scrambled net integration is bounded as follows.

Rs � b

1X
k=m�t+1

!1(f ; b
�k+1): (11)

If we assume that !1(f ; b
�k+1) is bounded by C(b�k)� with some constant C, which is the H�older

condition for the function f , then since N = bm we have

Rs � Cb

1X
k=m�t+1

(b�k)� = Cb(b�m+t�1)�
1

1� b�
=
Cb�(t�1)+1

1� b�
1

N�
:

Thus we have obtained a relation between the integration error and the number of sample points.
We can also derive a bound for the error of the randomly shifted net.

Rt � b

1X
k=m�t+1

!�1(f
�; b�k+1); (12)

where !�1(f ; �) = supfR 1
0
jf(x+ �)� f(x)jdx : 0 < � < �g.

From (11) and (12), we know that the modulus of continuity of the integrand determines an upper
bound of the integration error. If the integrand satis�es !1(f ; �) � !�1(f

�; �), two upper bounds, Rs and
Rt give an approximately same value.

4 Error Analysis in Multidimensional Case

We need multidimensional b-adic Haar functions to proceed with our analysis in multidimensional case.
We use Owen's de�nition [6].

 ktc(x) =

sY
r=1

 krtrcr(xr);

where the subscripts of  mean k = (k1; : : : ; ks), t = (t1; : : : ; ts), and c = (c1; : : : ; cs), respectively. Let
maxk = max1�i�s ki, mink = min1�i�s ki, and jkj = Ps

i=1 ki. We show some important properties,
which can be proven easily.

Proposition 3 Let  ktc be s-dimensional b-adic Haar functions.

1. For each k 6= 0 and t � 0, the following equalities hold.

b�1X
ci=0

 ktc(x) = 0; i = 1; : : : ; s:

2. Let fzig be a (t;m; s)-net in base b. For each k such that 0 < jkj � m� t we have

bmX
i=1

 ktc(zi) = 0:
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4.1 Mean Square Error

For f 2 L2[0; 1)s we have an expression

f(x) =
X
k

X
t

X
c

hf;  ktci ktc(x);

where
P

k
means

P1
k1=0 � � �

P1
ks=0,

P
t
means

Pbk1�1�1
t1=0 � � �Pbks�1�1

ts=0 , and
P

c
means

Pb�1
c1=0 � � �

Pb�1
cs=0,

respectively. The variance of the integration is

V (IN ) =
1

N2

NX
i=1

NX
j=1

X
k1

X
t1

X
c1

X
k2

X
t2

X
c2

E [hf�;  k1t1c1ihf�;  k2t2c2i] k1t1c1(zi) k2t2c2(zj);

where we use � to denote both scrambling and random shifting. We extend the Lemma 1 to obtain the

following lemma. Let kj = (k
(j)
1 ; : : : ; k

(j)
s ), j = 1; 2.

Lemma 2 If supp  k1t1c1 \ supp  k2t2c2 = ; and l � min(mink1;mink2), or if supp  k1t1c1 \
supp  k2t2c2 6= ; and supp  k1t1c1 6= supp  k2t2c2 and l � mini(max(k

(1)
i ; k

(2)
i )), then we have

E[hf� (l)s ;  k1t1c1ihf� (l)s ;  k2t2c2i] = 0.

Proof. Under the condition that the supports of two b-adic Haar functions have no intersection, we can
show the lemma in a similar way to one-dimensional case.

If they have an intersection, we should note that even if supp  k1t1c1 \ supp  k2t2c2 6= ; and
jk1j � jk2j, supp  k1t1c1 is not necessarily a proper subset of supp  k2t2c2 in multidimensional case.

There exists, however, at least one index i such that k
(1)
i > k

(2)
i for vectors k1 and k2 if jk1j � jk2j and

supp  k1t1c1 6= supp  k2t2c2 . For such i, supp  
k
(1)
i

t
(1)
i

c
(1)
i

is a proper subset of supp  
k
(2)
i

t
(2)
i

c
(2)
i

. By

Lemma 1 we have the latter part of the present lemma.

From the lemma we immediately have the following variance estimation.

Theorem 2 The variance of the integration of f 2 L2[0; 1)s by the scrambled (t;m; s)-net to the l-th
digit in base b is given by

Vs(IN ) =
1

N2

NX
i=1

NX
j=1

� X
jkj>m�t
mink<l

X
t

X
c1

X
c2

Cs
k1k2t1t2c1c2

 ktc1(zi) ktc2(zj)

+2
X

mink1�l

X
jk2j>m�t
mink2<l

X
cond. A

Cs
k1k2t1t2c1c2

 k1t1c1(zi) k2t2c2(zj)

+
X

mink1�l

X
mink2�l

X
t1;t2

X
c1;c2

Cs
k1k2t1t2c1c2

 k1t1c1(zi) k2t2c2(zj)

�
;

where Cs
k1k2t1t2c1c2

= E[hf� (l)s ;  k1t1c1ihf� (l)s ;  k2t2c2i] and cond. A in the second summation term means

that supp  k1t1c1 \ supp  k2t2c2 6= ; and supp  k1t1c1 6= supp  k2t2c2 . The variance of the integra-

tion of f 2 L2[0; 1)s by the randomly shifted (t;m; s)-net is given by

Vt(IN ) =
1

N2

NX
i=1

NX
j=1

X
jk1j>m�t

X
jk2j>m�t

X
t1

X
t2

X
c1

X
c2

Es [hf�t;  k1t1c1ihf�t;  k2t2c2i] k1t1c1(zi) k2t2c2(zj):

(13)
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4.2 Mean Absolute Error

An upper bound for the mean absolute error in multidimensional case can be derived as in one-dimensional
case.

Rs � 1

N

NX
i=1

X
jkj>m�t

X
t

X
c

E
h
jhf� (l)s ;  ktcij

i
j ktc(zi)j

� 1

N

X
jkj>m�t

sup
t;c

�����
Z
[0;1)s

f(x) ktc(x)dx

�����
NX
i=1

X
t

X
c

j ktc(zi)j

�
X

jkj>m�t

bjkj=2 sup
t;c

�����
Z
[0;1)s

f(x) ktc(x)dx

����� :
We note that the volume of supp ktc is b

�jkj+s and the maximum value of  ktc(x) is bounded by bjkj=2,
then an bound of the supremum can be obtained as follows.

sup
t;c

�����
Z
[0;1)s

f(x) ktc(x)dx

����� � b�jkj=2+2s!1(f ;

sY
i=1

[0; b�ki+1)):

where the modulus of continuity in multidimensional case is de�ned as follows.

!1(f;�) = supf
Z
[0;1)s

jf(x)� f(x+ y)jdx : y 2 �;x+ y 2 [0; 1)sg:

As a result we have the error bound for the scrambled net integration.

Rs � b2s
X

jkj>m�t

!1(f ;

sY
i=1

[0; b�ki+1)); (14)

If we assume that f satis�es the condition

!1(f ;

sY
i=1

[0; b�ki+1)) � Cb��jkj

with some constant C, then we have the following bound.

Rs � Cb2s
X

jkj>m�t

b��jkj = Cb2s
X

k>m�t

�
s+ k � 1

k

�
b��k:

A similar result holds for random shifting method.

Rt � b2s
X

jkj>m�t

!�1(f
�;

sY
i=1

[0; b�ki+1)); (15)

where f�(x) = f(x mod 1), and

!�1(f;�) = supf
Z
[0;1)s

jf(x)� f(x+ y)jdx : y 2 �g:

From (14) and (15), if !1(f ; �) � !�1(f
�; �), two upper bounds give close values.
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5 Numerical Experiments

We will show error estimations of multidimensional integrals for various functions by both the scrambling
method and random shifting method.

Six kinds of functions proposed by Genz [3] are used for the experiments:

f1(x) = cos(2�u1 +
sX

j=1

ajxj) (Oscillatory);

f2(x) =

sY
j=1

(a�2
j + (xj � uj)

2) (Product Peak);

f3(x) = (1 +

sX
j=1

ajxj)
�s�1 (Corner Peak);

f4(x) = exp(�
sX

j=1

a2j (xj � uj)
2) (Gaussian);

f5(x) = exp(�
sX

j=1

aj jxj � uj j) (C0);

f6(x) = exp(�
sX

j=1

ajxj)1x1>u11x2>u2 (Discontinuous):

The parameters uj are uniform random numbers over [0; 1). The parameters aj are determined using
aj = 
ja

0
j , where a

0
j are uniform random numbers over [0; 1), and 
j is determined by 
js

ej
Ps

i=1 a
0
i =

hj . The numbers ej and hj are set as (ej) = (1:5; 2; 2; 1; 2; 2), and (hj) = (110; 600; 600; 100; 150; 100)
respectively. The dimension s is set to 10.

We use Faure sequence and Sobol' sequence as (t;m; s)-net. In order to estimate �̂ scrambling and
shifting are repeated 30 times respectively. Figs. 3 and 4 show the results with the error estimation for
the functions with certain choice of parameters aj and uj . In each �gure the abscissa is the number of
scrambled or shifted sample points N , and estimated values are indicated by dots. The vertical bar on
the dot shows the estimated error 3�̂. The dashed line shows the true value of the integral. The net was
scrambled to the (m� t+1)-th digit in base b. The scrambling to lower digits had no e�ect on the error
estimation. In these experiments both scrambled net and randomly shifted net gave almost the same
accuracy of estimation.

6 Concluding Remarks

We presented a theoretical investigation for statistical error estimation methods of quasi-Monte Carlo
integration and gave some numerical experiments. Our detailed analyses revealed the di�erence between
the integration errors by a scrambled net and by a shifted net. On the other hand, our numerical
experiments show that there exists no signi�cant di�erence between estimated errors by two methods.
Both of them gave accurate error estimates.

As for computational issue, the scrambling method requires complicated implementation and huge
computational e�orts, and is very time-consuming. It is di�cult to apply the method to large scale prob-
lems. The random shifting method is simple and very fast. Based on these arguments and observations
we consider that the random shifting method is a practical error estimation method for quasi-Monte
Carlo integration.
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A Correspondence to Owen's Result

We compare our result and Owen's in one-dimensional case. Let the number of scrambled digit l be

su�ciently large in (7) and rewrite �
(l)
s as �s, then we have

Vs(IN ) ' 1

N2

NX
i=1

NX
j=1

1X
k=m�t+1

bk�1�1X
t=0

b�1X
c1=0

b�1X
c2=0

E [hf�s;  ktc1ihf�s;  ktc2i] ktc1(zi) ktc2(zj):

Let �k+1 be the sum for a �xed k in the Vs(IN ).

�k+1 =

NX
i=1

NX
j=1

bk�1�1X
t=0

b�1X
c1=0

b�1X
c2=0

E [hf�s;  ktc1ihf�s;  ktc2i] ktc1(zi) ktc2(zj):

In the summation  ktc1(zi) ktc2 (zj) is nonzero only for such zi; zj that agree to (k � 1)-th digit in base
b. Divide �k+1 into two parts. One is the summation for such zi; zj that agree to k-th digit in base b, say
S1. Another is for such zi; zj that agree to (k � 1)-th digit in base b but not in k-th digit, say S2. Now
we calculate the coe�cients.

E[hf�s;  ktci2] =
1

bk

bk�1�1X
t=0

b�1X
c=0

hf;  ktci2; (16)

E[hf�s;  ktc1ihf�s;  ktc2i] =
1

bk�1

1

b2 � b

bk�1�1X
t=0

X
c1 6=c2

hf;  ktc1ihf;  ktc2 i

12



=
1

bk(b� 1)

bk�1�1X
t=0

b�1X
c1=0

hf;  ktc1 ihf;
X
c2 6=c1

 ktc2i

=
1

bk(b� 1)

bk�1�1X
t=0

b�1X
c1=0

hf;  ktc1 ihf;� ktc1i

= � 1

b� 1
E[hf�s;  ktci2]: (17)

According to Owen, introduce for k � 0

Mk =

NX
i=1

NX
j=1

1bbkzic=bbkzjc;

where 1(�) is the indicator function that returns 1 if (�) is true, 0 otherwise.

NX
i;j=1

bk�1�1X
t=0

b�1X
c=0

X
bbkzic=bbkzjc

 ktc(zi) ktc(zj) = Mk

 
bk�1

�p
b� 1p

b

�2

+ bk�1

��1p
b

�2

(b� 1)

!

= Mkb
k�1(b� 1): (18)

NX
i;j=1

bk�1�1X
t=0

X
c1 6=c2

X
bbkzic=bbkzjc

 ktc1 (zi) ktc2(zj) = Mk

�
2bk�1

�p
b� 1p

b

���1p
b

�
(b� 1) +

bk�1

��1p
b

�2

(b� 1)(b� 2)

�
= �Mkb

k�1(b� 1): (19)

From (16), (17), (18), and (19) we have

S1 =

NX
i;j=1

X
bbkzic=bbkzjc

bk�1�1X
t=0

�b�1X
c=0

E[hf�s;  ktci2] ktc(zi) ktc(zj)

+
X
c1 6=c2

E[hf�s;  ktc1ihf�s;  ktc2i] ktc1(zi) ktc2(zj)
�

= Mk

�
1 +

1

b� 1

�
(b� 1)bk�1Es[hf;  ktci]

= Mk

bk�1X
t=0

b�1X
c=0

hf;  ktci2

Next we need two following sums in order to calculate S2.

NX
i;j=1

X
bbk�1zic=bb

k�1zjc

bbkzic6=bb
kzjc

bk�1�1X
t=0

b�1X
c=0

 ktc(zi) ktc(zj)

=

�
2bk�1

�p
b� 1p

b

���1p
b

�
+ bk�1

��1p
b

�2

(b� 2)

�
(Mk�1 �Mk)

= �bk�1(Mk�1 �Mk): (20)
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NX
i;j=1

X
bbk�1zic=bb

k�1zjc

bbkzic6=bb
kzjc

bk�1�1X
t=0

X
c1 6=c2

 ktc1(zi) ktc2(zj)

=
X

bbk�1zic=bb
k�1zjc

bbkzic6=bb
kzjc

bk�1�1X
t=0

b�1X
c1=0

 ktc1(zi)(� ktc1(zj))

= bk�1(Mk�1 �Mk):

Then we have

S2 = E[hf�s;  ktci2](�bk�1)(Mk�1 �Mk) +

�
� 1

b� 1

�
E[hf�s;  ktci2]bk�1(Mk�1 �Mk)

= � bk

b� 1
E[hf�s;  ktci2](Mk�1 �Mk)

= �Mk�1 �Mk

b� 1

bk�1�1X
t=0

b�1X
c=0

hf;  ktci2:

It follows that

�k+1 = S1 + S2 =

�
Mk � Mk�1 �Mk

b� 1

� bk�1�1X
t=0

b�1X
c=0

hf;  ktci2

=
bMk �Mk�1

b� 1

bk�1�1X
t=0

b�1X
c=0

hf;  ktci2

=
bMk �Mk�1

b� 1

Z 1

0

(Qkf(x))
2dx:

Finally,

Vs(IN ) =
1

N2

1X
k=m�t+1

bMk+1 �Mk

b� 1

Z 1

0

(Qkf(x))
2dx:

This result agrees to Owen's result in one-dimensional case.
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Figure 3: Error estimations for Genz test functions (1)
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Figure 4: Error estimations for Genz test functions (2)
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