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Abstract

There have been few studies on practical error estimation methods of quasi-Monte Carlo integra-
tions. Recently, some theoretical works were developed by Owen to analyze the quasi-Monte Carlo
integration error. However his method given by those works is complicated to be implemented and
needs huge computational efforts, so it would be of some interest to investigate into a simple error es-
timation method. In this paper, we will use a simple method, and give some theoretical considerations
on the errors given by these two methods. Numerical experiments are also reported.

1 Introduction

We consider the error estimation problem of quasi-Monte Carlo(QMC) integrations of the integral

I= /[071)3 f(x)dx. (1)

For small s and smooth f there are many numerical integration methods and their error estimation
methods. However, as s increases, the problem becomes more difficult. Monte Carlo(MC) method is
frequently used for this problem. But it is well known that the statistical error, i.e. the standard
deviation, of MC integration is O(1/v/N), where N is the number of the evaluations of the integrand,
so that it is extremely time-consuming to obtain an accurate result. Recent years have seen successful
applications of QMC method which uses low-discrepancy point set or sequence {x;} € [0,1)® and computes
the approximate value of (1) by
1
I = 5 3010 2

For the error of QMC method, we have the following Koksma-Hlawka inequality.
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where V(f) is the total variation of f in the sense of Hardy and Klause, and D3, is the star discrepancy
of the point set {x;}. Koksma-Hlawka inequality is a basis of the superiority of QMC method to MC,
because if we use low-discrepancy point sequence, D% (and also the absolute error of integral) goes to 0
with the rate O((log N)*/N) asymptotically as N — oo. However we cannot make an error estimation
with Koksma-Hlawka inequality, because it is usually impossible to calculate the total variation V(f).
This is why we need a practical error estimation for QMC integrations.
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Here by the term “practical” we mean the method is accurate, fast, and easy to implement. Recently
several works on error analysis of QMC integrations have been developed [2], [5], [8]. These approaches
apply statistical error estimation methods to QMC integrations. Since low-discrepancy point sets are
deterministic point sets, in order to do a statistical error estimation, point sets must be selected from
some probability space. We need a probabilistic structure on the point sets.

In this paper we select two methods and compare their efficiencies. The first method uses scrambled
nets, which were proposed by Owen [6]. The second one uses randomly shifted nets, which are based
on the idea of Cranley and Patterson [1] for good lattice points methods. We use (t,m,s)-net as a
low-discrepancy point set. Let us recall the definition of (¢,m, s)-net [4]. A subset E of [0, 1)* of the form

E = [Jlaib™ %, (a;i + )b~ %)

i=1
with a;,d; € Z, d; > 0,0 < a; < b% for 1 < i < s is called an elementary interval in base b.
Definition 1 Let t and m be nonnegative integers and t < m. A (t,m,s)-net in base b is a set of b™

points in [0,1)° such that every elementary interval of volume b!™™ contains exactly b® points of the point
set.

In the following, statistical error estimation methods are explained in Sect. 2. In Sect. 3 an analysis on
the estimated error is given for one-dimensional case. An analysis for multidimensional case is developed
in Sect. 4. Some numerical examples are presented in Sect. 5.

2 Statistical Error Estimation

We introduce two statistical error estimation methods for numerical integrations using (¢,m, s)-net. The
basic idea of these methods is a combination of MC and QMC. The general scheme of the methods is
as follows. We select point sets {xgj) ?Ll, j =1,..., M, independently from a probability space, and
compute the value of (2) for each point set.

N
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M

~ 1 .
= — Sl

vy

The error of the numerical integration is estimated using the variance of the evaluated values.
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In order to make a statistical statement about an error estimation we need a probabilistic structure on

the point set. We will consider the following two structures in this paper.

Scrambled Net [6]. Let {z;} be a (t,m,s)-net in base b. Suppose z; = (z},...,2f) and zf =
> ey 2ijib* for integers 0 <z, < b. A scrambled net {x;}, x; = (2},...,27) is defined as z] =
Ezozl Tijk b=* where x5 is a random permutation applied to z;j;. Specifically z;;; are determined as
follows.

zijg = m;(2i),
Tij2 = Tjzij (Zij2):
Tijk = 7rj£’ij12ijz...2ij,k_1(Zijk)-



Here each 7 is a random permutation over {0,1,...,b — 1}. In the second line the subscript z;j1 means
that the permutation depends on the value of z;j;. In the same way Tjzij1zije.zijee1 1S @ permutation
depending on the values of z;j1,...,2ijk—1. All permutations are mutually independent. A scrambled
net thus derived is also a (t,m, s)-net in base b.

This operation can be viewed as follows. For a given point set, divide equally each axis of the unit
cube into b parts, and permute these parts in random order. Next, similarly, divide each part on each axis
into b small parts equally, and permute these small parts in random order. The scrambled net is obtained
by iterating this procedure. For the details of the scrambled net, the reader is referred to Owen [6], [7].

Randomly Shifted Net [1]. Let {z;} be a (¢t,m, s)-net in base b and u be a random vector uniformly
distributed over a unit cube. A randomly shifted net {x;} is given by

x; = 2z; + u (mod 1),

where (mod 1) means the componentwise (mod 1) operation.

Here we give an interpretation on the methods for our investigation below. Both methods transform
the original net into another point set by a bijection

T(Zi) = X;.

We consider 7 is randomly chosen from among all the bijections, instead of giving a probabilistic structure
to {x;}. We denote by Ts(l) the scrambling to the [-th digit in base b. The detailed definition of Ts(l) is as

follows. o
(z) = (r(z"), ..., 7 (2"),

L ...,2%) and the permutation 7rJ(-l), 1 < j <s, for each element is defined as

where z = (2

O]

T = Wi OmMji—10 0TI,

Tjk = Tjkl OTjk2 0" O L pk—1.
Here “o” means the composition of maps. 7 is a random permutation on the equally divided b parts
of unit cube along the j-th axis. m;» is composed of b random permutations mja1,..., 7 2, on b small
parts obtained by dividing each of b parts. See Fig. 1. The permutations m;;, k = 3,...,[, are defined
similarly. For a randomly shifted net, the transformation 7 is given by

7(z) = z+u (mod1)
= (2! +u(mod 1),...,2% + u*(mod 1)),

where u = (u!,...,u®) is a random vector over a unit cube.

3 Error Analysis in One-Dimensional Case
The basic tools of our investigation are the b-adic Haar functions used by Owen [6]. Define the functions
Ye(z),c=0,1,...,b—1, over [0,1) as

c+1

1
h— —
Vb —

Ye(z) = 1 L
\/57
The b-adic Haar functions ¢, are defined as
Urte(z) = b P (F 1z — 1)

for integers k > 0, 0 < t < b*~1 (This definition is slightly different from Owen’s). Some useful properties
of b-adic Haar functions are given below. We can show them by simple calculations.
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Figure 1: Scrambling and random shifting.

Proposition 1 Let Y. be b-adic Haar functions.

1. For arbitrary k > 0 and 0 < t < b*~1, the next relation holds.
b—1
> kre(z) = 0. (3)
c=0

2. For a (t,m,1)-net {z;}, if 0 <k < m —t we have

pm
Z Yree(2i) = 0. (4)

3.1 Mean Square Error

For the convenience of notation we set ¢o(z) = 1, 0 < « < 1. The function set {¥r:}3, is a basis in
L?[0,1), that is, any square integrable function f can be expanded by {¢ec}5,.

k=0 t=0

bk71_1 _

b—1
Z(fa ¢ktc>¢ktc («75)7
c=0

where (,) denotes the inner product defined as

1
(Fbue) = [ T@)uela)ds
0
Note that I = (f, o). Although the set {¢x.} is not an orthogonal system, the coeflicients of expansion
are given by inner products. For &k > 0 we define

b=l —1 p—
Qrf(x)= Y Z Fr e Ykt (x)-
t=0 =0

Proposition 2 For Vf(z) € L?[0,1) and each k > 0 we have

pE=1—1p—1

/ @@= 3 3 e



Proof. We proceed by direct calculations.

1 P11 /b—1 1
/0 @Qrf@)de = Y (§<f,¢m> /0 Vire(z)de

t=0
+ Z f 1/Jktc1 f 1/Jktr:2 / wktcl djktcz( )
c1#co

Using the fact that fol Y2, (r)dz = (b—1)/b and that fol Yite, (T)Vkte, (T)dz = —1/b for ¢1 # ¢, together
with (3) we have

1 b1 b1 b—1 1
/0 (Qrf(2)’dz = 3 > (Frtree)® — 7 (o tbree ) F Vktes)
t=0 c=0 c17#Ca
b1 b1 b—1 1 b—1
= (T Z(f:l/}ktc>2 - g <_ Z(f:wktc>2>>
t=0 c=0 c=0
b=t _1p—1
= (fa ¢kt6>2‘
t=0 =0

|
Under the interpretation given in Sect. 2 that a transformation is chosen randomly, the variance of the
numerical integration by scrambled or randomly shifted net can be represented as follows.

2
N oo bF " 1—1b-1

S T Ykt )ree (21)

V(In)=E[InN-1)?=E

1
N <
Pl

oo bFrTl_1pk2—l_1 p—1 p—1

= N2 Z Z Z Z Z Z Z E fT 1/}k1t161><f7- ¢k2t262>]/¢k1t161(Zl)d}kztzcz(z.]) ( )

i,j=1 k1=1ko=1 t1=0 to=0 ¢1=0c2=0

where we used an expression f7 for the composition of the functions f and 7. The difference between
scrambling method and randomly shifting method is stated below.

Lemma 1 If Supp¢k1t1c1 N Suppwkztzcz = @ and | Z min(klak2); or Zf Supp¢k1t1c1 n SUPpi/Jk2tzc2 7é w and
Supp/‘/}k1t1c1 # Supp¢k2tzcz and > max(khk?)’ then we have E |:<f7_s(l)71/}k1t1c1><f7_s(l)7¢k2t202>] =0.

Proof. We set k1 > ko without loss of generality. If the supports of ¥, ¢, and ¥k,t,c, do not overlap,
the permutations on the supports are mutually independent. Hence we have

B [(Fr e (Fr) Yiatacs)| = B [0, V)| B {70, hataca)] -

If I > ks, the last expectation is

1 b—1 1
BUfr ratscl] = § 3 [ T@barac(alde = 0 (6)
c=0

This yields the first part of the lemma.
For one-dimensional case the latter condition of the lemma means that suppyr,¢,., is a proper subset

()

of suppwkztm The transformation 75’ has the form my; - - - w1, - - - M1, - - - 711 when [ > k;. Conditioning
Ol Mgy - T11 glves

E [(fTs(l)aI/}klt161><f7-s(l)7z/}k2t262>:| =FE [(fTs(l)az/}kzt262>E (fTs(l)ﬂ'ébklthlHFlkz o '7T11:|:| .



If [ > k;, the conditional expectation E <f7's(l), Wiytyey )| T1ky - - - 711 | becomes zero the same as (6). [ |

From the lemma, when we use a scrambled net to the [-th digit in base b, the coefficients in the ex-
pansion of the variance (5) with min(k;, k) < [ vanish if k; # ko, or ky = ko and t; # t2. Also the
coefficients with max(k1, ke) < I vanish if supp®g,¢,¢, C SUPPYkotoc, and SUPDYk,t,c; F SUPPYkotocsy, OF if
Supp¢k2t262 C suppz/}kltl(!l and Supp¢k2t262 7é suppz/}kltlcl . The latter case corresponds to Lbkz_kltlJ = to
or |b¥17*2¢y| = t;. The coefficients for ki, ks > [ do not vanish.

On the other hand when we use a randomly shifted net, none of the coefficients vanish:

E'[(th, ¢k1t161><f7—t7 z/}1621526'2 >] 7& 0 for vz/}kltlcl ) z/}1621526'2'
Summarizing the above and using (4), we have the following results.

Theorem 1 The variance of the numerical integration of f € L*[0,1) by the scrambled (t,m,s)-net to
the l-th digit in base b is given by

pF=1—1 b—1 b—1

Z Z Z Clktter e Vkter (2)Vktes (25)
t=0

=0 c2=0

N N

l

nw =2 X
i=1 j=1 “k=m—t+1 1
b—1 b—1

o5} l _
+2 Z Z Z Z Cz1k2t1tzc102¢k1t161 (Zi)l/}kztzcz (ZJ)

k1=l+1 ka=m—t+1 Lka*’u t1|=ts C1 0c2=0

oo bFrTl_1pk2—l_1 p—1 p—1

+ Z Z Z Z Z Z Ck1k2t1tzclcz¢k1t161 (Zz)¢k2tzc2(zj)>

k1=Il+1 ko=Il+1 t1=0 to=0 ¢1=0c2=0

(7)

where C} 1ot t0eien = B [(fTs(l),1/1k1t1c1><f7's(l),1/1k2t2cz>]- The variance of the integration of f € L*[0,1)
by the randomly shifted (t,m, s)-net is given by

pRimt_1pk2ml
W<N=N2222 > Y ¥
i=1 j=1 ky=m—t+1 ka=m—t+1 t1=0 to=0

b—1 b—1

. Z Z E [(tha 1/}k1t1c1><f7-t> djkztzCz)] 1/Jk1t1 c1 (Zi)¢k2t262 (Z]) (8)

C1 =0 Cc2 =0

This result shows that the scrambling method eliminates the terms with m —t < k <[ in the expansion
of the variance. On the other hand the random shifting method cannot eliminate them. See Fig. 2.
If those terms are relatively small, the variance for shifted net is approximately equal to that for the
scrambled net. We will show two methods give close values of variance by numerical experiments in the
latter section.

Remark. Our result (7) agrees with Owen’s result [6] when the number of permuted digits I becomes
infinity. See Appendix A. [ ]

3.2 Mean Absolute Error

Another measure gives a different aspect of the integration error. Let us consider the mean absolute

error. ) 1 N
/0 f(z)dz — ~ ; f(s) ] )
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Figure 2: Vanishing terms. The terms corresponding to (k1, k2) with min(ky, k2) < m —t, indicated by o,
vanish due to the property of (¢,m, s)-net. When we use the scrambled net, more terms vanish. If (ki, k2)
is in the area A (ki, k2 > m —t and min(kq, k2) <), the terms of not overlapping supports vanish. The
overlapping supports terms vanish if (k1, k2) is in the area B (k1, ke > m — t and max(ky, ko) < 1).

Using Haar expansion of the integrand, the mean absolute error can be bounded as follows.

R<tY %

i=1 k=m—t+1

pE=1_1p—1

S ST BN )] [rte(20)] )
t=0 ¢=0

The summation on k begins at m — ¢ + 1 due to the property (3). We need to estimate the values of
expectation. For the scrambled net we note that b* elementary intervals of [tb=*, (t+1)b~*) are randomly
permuted, and that the permutation of the intervals of width smaller than t~*=' has no effect on the
expectation of the coefficients. Consequently we have a bound for the expectation of the coefficients for
a fixed k > I.

o 1 bk’l—llb—l 1
E[|<f7's"¢ktc>|] = g tz:% gzzg/of(w)z/}ktc(x)dx

/ F@) e de]
0

IN

sup (10)

t,c

On the other hand, for the random shifting method the expectation is taken with respect to the uniform
distribution ¢ over [0,1):

pe—1

Bl dud] = py /0 /0 7 (@) wee ()|

IN

sup
t,c

)

/ £ (@) bure (@) de
0

where f*(z) is the periodic function defined as f*(x) = f(z mod 1). From (9) and (10) we have an upper
bound for the mean absolute value error of the integration by the scrambled net.

1 o0
g S

+1 t,c

N bF~t—1p-1

ST Wkre(2)]
c=0

i=1 t=0

/ (@)t ()da




< bh/? sup
k=m— t+1

Second inequality holds because only N terms are non-zero in the summation on i, ¢, and ¢ for a fixed k,
and |¢pec(2;)| is bounded by b*/2. Let us introduce the modulus of continuity of a function.

w1 (f:9) =sup{/0 Fla+6) — f@)lde: z+E€0,1), 0<E<b).

Then we have

sup < bk/2 pktL, (f b k+1)

/f JYrte(z)dz

Finally the mean absolute error of the scrambled net integration is bounded as follows.

o0

Ry<b > wi(f;b7*), (11)

k=m—t+1

If we assume that w;(f;b~**!) is bounded by C(b~*)* with some constant C, which is the Holder
condition for the function f, then since N = b we have

1 Chet-D+1
< kya m+t—1\a .
Ry Cbk m§ t 1(b ) = Cb(b ) il g vt o

Thus we have obtained a relation between the integration error and the number of sample points.
We can also derive a bound for the error of the randomly shifted net.

oo

R.<b Y wi(frphh, (12)

k=m—t+1

where wi(f;0) = sup{fo1 [f(z+ &) — flx)|dz: 0< <6}

From (11) and (12), we know that the modulus of continuity of the integrand determines an upper
bound of the integration error. If the integrand satisfies wy (f;0) ~ wi(f*;0), two upper bounds, Ry and
Ry give an approximately same value.

4 Error Analysis in Multidimensional Case

We need multidimensional b-adic Haar functions to proceed with our analysis in multidimensional case.
We use Owen’s definition [6].

djktc H djk trcr xr

where the subscripts of ¢ mean k = (kq,...,ks), t = (t1,...,ts), and ¢ = (¢q,...,¢s), respectively. Let
maxk = maxi<i<s ki, mink = mini<;<s k;, and |k| = Zle k;. We show some important properties,
which can be proven easily.

Proposition 3 Let Yyie be s-dimensional b-adic Haar functions.
1. For each k # 0 and t > 0, the following equalities hold.

z_:¢ktc(x):0, 1=1,...,s.

c;=0

2. Let {z;} be a (t,m,s)-net in base b. For each k such that 0 < |k| < m —t we have

o
> Yrcte(zi) =0
i=1



4.1 Mean Square Error

For f € L?[0,1)° we have an expression

=D 3 (F ke )it (%),
k ¢t

Cc

00 Fimtog pre - b—1
where .Ek means Zk‘l:O Y p—g» 2.4 Means Etl > 4_g »and ) means Ecl 0 Xen—o>
respectively. The variance of the integration is

IN N2 Z Z Z Z Z Z Z Z E fT ¢kltlcl><f7- ¢k2t202>] ¢k1t101( i)¢k2t202 (Zj)a

i=1 j=1 ki t1 c1 ky ta2 c2

where we use 7 to denote both scrambling and random shifting. We extend the Lemma 1 to obtain the
following lemma. Let k; = (k:gj),. (])) j=12

Lemma 2 If supp wk1t1c1 N supp 1/]k2t2c2 = 0 and [ Z min(minklaminkZ)f or Zf Supp 1/1k1t1C1 n
supp 1/]k2t2c2 7& w and supp 1/11(1131(:1 # supp wkztzcz and | Z mini(max(kgl))kz(2)))’ then we have

Bl reye ) IR Yicytes)] = 0.

Proof. Under the condition that the supports of two b-adic Haar functions have no intersection, we can
show the lemma in a similar way to one-dimensional case.

If they have an intersection, we should note that even if supp ¥k t,c; N SUPDP Ykotoe, # 0 and
|ki| > |ka|, Supp %k,t,c, iS not necessarily a proper subset of supp Yk,t,c, in multidimensional case.
There exists, however, at least one index ¢ such that kl(l) > kl@) for vectors k; and ks if [ki| > |kz| and
SUPP Yk, tic; #  SUPP Ykstoc,- FOr such i, supp ¢, ), ) is a proper subset of supp ¢, ), 2. By
Lemma 1 we have the latter part of the present lemma. S [ |

From the lemma we immediately have the following variance estimation.

Theorem 2 The variance of the integration of f € L?[0,1)° by the scrambled (t,m,s)-net to the [-th
digit in base b is given by

N N2 ZZ( Z Z Z ch1k2t1t2c1CQ¢ktcl( i)¢kt02(zj)

i=1j=1 Yk|>m—t ¢
min k<!

+2 Z Z Z Ci1k2t1t2c1c2¢k1tlc1 (Zi)¢k2tzcz (Zj)

min kg >1 |ko|>m—t cond. A
min ko <[

+ Z Z Z Z Cli1k2t1tzc1cz¢k1t1c1 (Zi)¢k2tzcz (Zj)>’

mink; >l minko>[ ti,ta ci,c2

where CY v ¢, toerco = E[(fTs(l) , @/}kltlclﬂfﬁ(l) , Vkotocs )] and cond. A in the second summation term means

that supp wk1t1c1 M supp 1/Jk2t2c2 # 0 and supp 1/Jk1t1C1 # Supp wkztzcz' The variance Of the integm—
tion of f € L?[0,1)* by the randomly shifted (t,m, s)-net is given by

IN) N2 ZZ Z Z ZZZZE th7¢k1t101><f7—t7¢k2t202>] 1/}1(1'1161( i)¢k2tzcz (Zj)'

=1 j=1 |ki|>m—t |kz|>m—t t1 t2 c1 c2

(13)



4.2 Mean Absolute Error

An upper bound for the mean absolute error in multidimensional case can be derived as in one-dimensional
case.

N
Ry < %Z > ZZE[KfTs(l)ﬂ/Jktcﬂ] [VKee(2i)]
=1 |k|>m—-t t ¢
< v X sw|[ b deZZwktc
T Vs ve o
< X || G
|k|>m—t ¢ [0,1)*

We note that the volume of supptic is b~ ¥t and the maximum value of Yxte(X) is bounded by blkl/2)
then an bound of the supremum can be obtained as follows.

8§

< b M (F; TT10, 075 H).

i=1

sup
t,c

/ F () (x)dx
[0,1)s

where the modulus of continuity in multidimensional case is defined as follows.

wi(f,A) = sup{ oy If(x) = fx+y)ldx:y € A,x+y€[0,1)%}

As a result we have the error bound for the scrambled net integration.
Ro<b™ Y wi(f;[Jlo, 6%, (14)
|k|>m—t i=1
If we assume that f satisfies the condition
wi(f5 [J10,67%+1) < op=al
i=1
with some constant C', then we have the following bound.
+k-1 ;
R, < Cb2s alk| _ 2s s 7ak-
IUEEETCD Dl G
|k|>m—t k>m—t

A similar result holds for random shifting method.

S

Ry <t Y wi(fs]o,0 ), (15)

k| >m—t i=1
where f*(x) = f(x mod 1), and
wi (f,A) = sup{ oy [f(x) = f(x+y)ldx: y € A}.

From (14) and (15), if wi (f; A) = wi(f*; A), two upper bounds give close values.
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5 Numerical Experiments

We will show error estimations of multidimensional integrals for various functions by both the scrambling
method and random shifting method.
Six kinds of functions proposed by Genz [3] are used for the experiments:

fi(x) = cos(2mu; + Zaja:j) (Oscillatory),
j=1
fo(x) = H(aj_2 + (z; —u;)?) (Product Peak),
j=1
falx) = 1+ Zaja:j)*sfl (Corner Peak),
j=1

fulx) = exp(—Za?(mj—uj)z) (Gaussian),

fox) = exp(=>_asle; —ujl) (Co),

S

fe(x) = exp(—Zaj:rj)lzl>ullz2>U2 (Discontinuous).
i=1

The parameters u; are uniform random numbers over [0,1). The parameters a; are determined using
aj = ~jaj, where a’; are uniform random numbers over [0,1), and 7; is determined by 7;s > al =
hj. The numbers e; and h; are set as (e;) = (1.5,2,2,1,2,2), and (h;) = (110,600,600, 100, 150, 100)
respectively. The dimension s is set to 10.

We use Faure sequence and Sobol’ sequence as (t,m, s)-net. In order to estimate & scrambling and
shifting are repeated 30 times respectively. Figs. 3 and 4 show the results with the error estimation for
the functions with certain choice of parameters a; and u;. In each figure the abscissa is the number of
scrambled or shifted sample points N, and estimated values are indicated by dots. The vertical bar on
the dot shows the estimated error 36. The dashed line shows the true value of the integral. The net was
scrambled to the (m — ¢ + 1)-th digit in base b. The scrambling to lower digits had no effect on the error
estimation. In these experiments both scrambled net and randomly shifted net gave almost the same
accuracy of estimation.

6 Concluding Remarks

We presented a theoretical investigation for statistical error estimation methods of quasi-Monte Carlo
integration and gave some numerical experiments. Our detailed analyses revealed the difference between
the integration errors by a scrambled net and by a shifted net. On the other hand, our numerical
experiments show that there exists no significant difference between estimated errors by two methods.
Both of them gave accurate error estimates.

As for computational issue, the scrambling method requires complicated implementation and huge
computational efforts, and is very time-consuming. It is difficult to apply the method to large scale prob-
lems. The random shifting method is simple and very fast. Based on these arguments and observations
we consider that the random shifting method is a practical error estimation method for quasi-Monte
Carlo integration.
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A Correspondence to Owen’s Result

We compare our result and Owen’s in one-dimensional case. Let the number of scrambled digit [ be

sufficiently large in (7) and rewrite 7V as Tg, then we have

pe=1_1 b—1 b—1

N N oo
%ZZ ST DTS EUF e Ykt ) (e Yktes ) Vkter (20)Vte (25)-

i=1 j=1 k=m—t+1 t=0 ¢1=0c2=0
Let Bj+1 be the sum for a fixed k in the Vi (In).

N N b*1—1b—1 b-1

Br+1 = Z Z Z E fTs: Yites > <f7-57 Yites >] Yite, (%)d’ktw (Z])

i=1 j=1 = c1=0c2=0

In the summation ¥yse, (2:)Wrte, (25) is nonzero only for such z;, z; that agree to (k — 1)-th digit in base
b. Divide Bi41 into two parts. One is the summation for such z;, z; that agree to k-th digit in base b, say
Si1. Another is for such z;, z; that agree to (k — 1)-th digit in base b but not in k-th digit, say S,. Now
we calculate the coefficients.

b" T_1p—1
E[(fre,Yme)’] = Z Zfzbktc : (16)
b" T
E[(fTSv'L/Jkt61><f7_s"¢}ktcz>] = bk 1b2 b Z Z ¢kt61 'L/Jkt62>

c1#c2
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1
= m 2 Cl:o(f: ¢ktcl ><f’ Cgﬁ:ﬁ ¢kt62>
i
= m 2 612::0 f I/Jktcl 1/Jkt(:1>
= _mE[<fTsawktc>2]- (]-7)

According to Owen, introduce for k£ > 0
N N
My = Z Z Lipkz; =tk 2]
i=1 j=1
where 1.y is the indicator function that returns 1 if (-) is true, 0 otherwise.

N bl _1p-1

I I RE RS R (b (vim L) (—7;>2<b_1))

i,j=1 t=0 c¢=0 |bkz; |=|bkz, |
= MbF='(b-1). (18)

iv: Z Yrte, (20)Vktes (25) = My <2b’“‘1 (\/l_) — %) (%) (b—1)+

i,j=1 t=0 ci7ca [bkz;|=|b*z; |
—1\?
bk—l(—> b—1 b—2>
7 (b-1)(b-2)

—Mpb* (b —1). (19)

From (16), (17), (18), and (19) we have

pR=1_1
S = Z Z tZ(:) (ZO f’rs;'(/}ktc 1/Jktc(zl)1/]ktc(zj)

5,J=1 | bk z; |=|bkz; |

+ Z fT87 ¢kt61 (fTSa 'Qbktcz)]l/}ktm (Zl)¢kt02 (Z])>

c1#ce

~ (1 + b_%) (b= VBB, [(f, Yuee)]

bk —1b—1

= Mk Z Z(f:l/}ktc>2

t=0 c=0
Next we need two following sums in order to calculate S,.

pE=1_1p—1

N
Z Z Z Z Yite (Zi)¢ktc (Z])

i,j=1 Lbk—lziJ:Lbk—lsz

6% i 16 25
= <2b’“_1 (\/5 — %) (\;—%) + bkt (%)2 (b— 2)) (Mg—1 — My)
= 0" N ( Moy — My). (20)
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b1

N
> > D7D tkte () kies (7))

i,j:l Lbk—lziJ:Lbk—lsz t=0 61¢C2

[bkziJ;éLkajJ
b1 b1
= Z Z Z /‘/}ktcl Zl "/}ktq (ZJ))
6% 2] =[ 657" 2] =0
[b* 2 |# (0" 25

= Y My — My).

Then we have

So = E[(fTs, Yree)?] (=" 1) (Mg — My,) + <_b—%> E[{(f7s, Yrie)? 10" (Mg 1 — My,)
k
= Bl (M — M)
M1 — M, b=t —1p—1
- b— 1 k Z Z f: wktc
It follows that
Pl o1 b—1
Brkt1 = S1+S2= (Mk - w> Z(fa ¢ktc>2
t=0 =0
bMe — Mo pe—1_1p—1
= kb_lk ! Z Zfa/(/}ktc
= Mt / (@ (@)
Finally,
LS MMM
RS TPV [ @uswyra

This result agrees to Owen’s result in one-dimensional case.
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093 T T T T T T T T
‘errest faure.scr.d10.f1.1 H—
‘errestsobol.scr.d10.f1.1" H—
-9.3509805116733¢-01 --
0931
0932
0933
0934
093 T:[ I [
I |
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of points
(a) f1 scrambled
915000 T T T T T T T T
‘errest.faure.scr.d10.£2.1' F—
‘errestsobol.scr.d10.2.1" H—
914500 9.1371537093035e+05 -
914000 ﬂ
T E3
913500 }t
913000
912500
912000
911500
911000
910500
N
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of points
(b) fo scrambled
4e-06 T T T T T T T T
“errest faure.ser.d10.03.1" F—
‘errestsobol.scr.d10.3.1" H—
2.2784986880011e-06 --
35e-06
3e-06
25e-06 }'
| {1 L
2606
15e-06
O
0 2000 4000 6000 8000 10000 12000 14000 16000

Number of points

(c) fs3 scrambled

093

Faure sequence’ H—
Sobol sequence’ +—
-0.3509805116733¢-01 --
0931
0932
0933
0.934
0935 I
1 T
el
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of points
; .
(a') f1 shifted
915000 T T T T T T T T
“Falre sequence’ e
‘Sobol sequence’ H—
914500 9.1371537093035¢+05 -
914000 ]:
I I I I
ot T
913500
913000
912500
912000
911500
911000
910500
O S R
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of points
) .
(b") fo shifted
4e-06 T T T T T T T T
"Faure sequence’ +—
Sobol sequence’ H—
2.2784986880011e-06 -
35e-06
3e-06
2506
J | { 1
2e-06
15e-06
P
0 2000 4000 6000 8000 10000 12000 14000 16000

Number of points

(c") fs shifted

Figure 3: Error estimations for Genz test functions (1)
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019 T T T T T T T T 019

“errest faure.scr.d10.44.17 r— "Faure sequence" +—
‘erestsobol.scr.d10.f4.1" H— ‘Sobol sequence’ H—
1.8810712058017e-01 -- 1.8810712058017e-01 --
0.1895 0.1895
0.189 0.189
0.1885 ~ 0.1885
; L I ] w
0.188 1 T 0.188 J ¥
01875 0.1875
0.187 0.187
0.1865 0.1865
S S
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Number of points Number of points
) .
(a) fs scrambled (a') fy shifted
0577 T T T T T T T T 0577 T T T T T T T T
“errest faure.ser.d10.65.1" F— "Faure sequence" +—
‘errestsobol.scr.d10.5.1" H— ‘Sobol sequence’ H—
5.7605378444815e-01 -- 5.7605378444815e-01 -
05765 05765
- [ I l
1 I $ i
0.576 P T i I 0576 l‘[ l l J
05755 05755
. S
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Number of points Number of points
) .
(b) f5 scrambled (b") f5 shifted
0,035 T T T T T T T T 0.035 T T T T T T T T
“errest faure.scr.d10.66.1" F— "Faure sequence" +—
"errest.sobol.scr.d10./6.1" H— ‘Sobol sequence’ H—
3.1707561544047e-02 -- 3.1707561544047e-02 -
0.034 0.034
0.033 0.033
0032 ] ] I 1 ~ 0032 w I
¥
I | L | !
0.031 0031
003 0.03
0029 0029
0.028 0028
. P 1 L
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000

Number of points

(c) fe scrambled

Number of points

(c") fe shifted

Figure 4: Error estimations for Genz test functions (2)
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