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Abstract

This paper considers the interpolation for multi-dimensional data using

Voronoi diagrams. Sibson's interpolant is well-known as an interpolation

method using Voronoi diagrams for discretely distributed data, and it is

extended to continuously distributed data by Gross. On the other hand,

the authors studied another interpolation method using Voronoi diagrams

recently. This paper outlines the authors' interpolant brie
y, and extends the

author's interpolant to linearly distributed data based upon the discussion

using integrations.

1 Introduction

Let z be a function de�ned over a set D in the d-dimensional Euclidean space Rd .

Suppose that a subset G of D is given, and the values of zjG are known. Then, the

problem to estimate the values of zjD�G from our knowledge about zjG is called

the interpolation problem. Each point of G is called a data site.

When G is a set consisting of a �nite number of points in R
1 , the problem

is rather simple and a lot of interpolation methods are known, e.g., Lagrange

interpolation. However, the problem becomes more di�cult when d > 1. The

�nite element method is well-known and very practical to solve the interpolation

problem in higher dimensions. On the other hand, there is another approach

towards this di�culty, which utilizes Voronoi diagrams.

To see the usability of Voronoi diagrams, recall the piecewise linear interpolant.

In order to estimate the value at some point, this scheme uses the values at the

left-next data site and the right-next data site of the target point. In higher

dimensions, the estimation of the value at some point can be made using the

values of the \next" data sites if we can decide which data sites are the \next"
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data sites of the target point. The Voronoi diagram can decide the \next" data

sites because the Voronoi diagram is the partition of Rd by the nearest-neighbour

rule.

Thiessen proposed the �rst interpolant using Voronoi diagrams when G con-

sists of a �nite number of points in R
d , but his interpolant is not continuous [8].

Sibson made a great progress by proposing an interpolant using Voronoi diagrams,

which is globally continuous and continuously di�erentiable almost everywhere [6].

The property of his method was researched by Farin [1] and Piper [5], and was

extended to a more general case where G consists of a �nite number of curves

such as circles and polygonal curves [2].

Recently, the authors studied another interpolant using Voronoi diagrams

when G consists of n points in R2 [3,7]. In this paper, the authors' interpolant is

extended to the case where G consists of a �nite number of line segments. The

resulting interpolant is based on line segment Voronoi diagrams.

In Sect. 2, we outline the authors' interpolant. In Sect. 3, we extend the

authors' interpolant to linearly distributed data. In Sect. 4, we conclude our

research.

2 Interpolation for Discretely Distributed Data

First let us outline the authors' interpolant for discretely distributed data. Let

d(p,q) denote the Euclidean distance between two points p and q, jAj denote the
length of a curve A, and CH(P ) denote the convex hull of a set P .

The authors' interpolant of this version solves the interpolation problem when

G = fp1, : : : ,png for p1, : : : , pn 2 R
2 . This means that the values of the function

z at the points p1, : : : , pn are known. Suppose that we want to estimate the value
at the target point p which is in CH(G) but does not belong to G.

In order to estimate the value at p, we utilize the Voronoi diagram V for the

generator set fp1, : : : ,pn,pg. In the Voronoi diagram V , the Voronoi region of p
is a polygon each edge of which is a part of the bisector of the line segment ppi for
some pi. Let e1, : : : , ek be the Voronoi edges surrounding the Voronoi region of

p, and p�(1), : : : , p�(k) denote the generators generating e1, : : : , ek, respectively.
Now de�ne that

�i =
�i

di
,

where

�i = jeij ,

and

di = d(p,p�(i))
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for i = 1, : : : , k. Then, the following theorem holds:

Theorem 1 In the above notations, the following identity holds wherever p lies

in CH(G)�G:

kX
i=1

�ip =

kX
i=1

�ip�(i) : (1)

Proof. Refer to Theorem 1 in Sugihara [7].

Equation (1) implies that the point p can be expressed as the convex combi-

nation

p =

kX
i=1

�ip�(i) , (2)

where

�i =
�iPk
j=1 �j

:

The authors' interpolant ~z is obtained by replacing p�(i) by z(p�(i)) in (2):

~z(p) =
kX
i=1

�iz(p�(i)) : (3)

Clearly, the function ~z is continuous and ~z(p)! z(pi) as p! pi.
Figure 1 shows the obtained function using the author's interpolant when

z = exp(�(x2 + y2)=2). Each point in G was selected randomly in [�1, 1]2. The

vertical lines denote where the points in G are located. The length of each vertical

line denotes the value of z at the lower endpoint of that line.

3 Extension to Linearly Distributed Data

3.1 Strategy

In this section, we extend the authors' interpolant to linearly distributed data.

Suppose that the values of z are given over G = fp1, : : : ,pnpg[�1[� � �[�nl � R
2 ,

where p1, : : : , pnp are points and �1, : : : , �nl are open line segments. Assume

that p1, : : : , pnp , �1, : : : , �nl are disjoint, but the endpoints of each �i are two

of p1, : : : , pnp . Figure 2 describes an allowable set as the set G.

Now let us describe the strategy for obtaining the extension. At �rst, each

�i is replaced by Ni equidistant points qi1, : : : , qiNi
on �i, so that the problem

3



Figure 1. The obtained surface using the authors' interpolant for discretely

distributed data

is discretized. Thus, the interpolant given in the previous section is available.

Then, the interpolant coincides exactly with z at pi, i = 1, : : : , np, and qij ,
j = 1, : : : , Ni, i = 1, : : : , nl. Now increase every Ni to the in�nity. Then, the

obtained interpolant coincides exactly with z at every point on G. The form of

the interpolant is expressed using integrations.

3.2 Result

This subsection gives the result of the strategy given in the previous subsection

in terms of (decomposed) line segment Voronoi diagrams [4]. Consider the line

segment Voronoi diagram for the generator set fp1, : : : ,pnp ,�1, : : : ,�nl,pg. Then,
every Voronoi edge surrounding the Voronoi region of p is either

1. a line segment contained in the bisector of the line segment ppi with some

pi, or

2. a parabolic arc contained in the parabola whose focus is p and whose direc-

trix is the line containing some �i.

Let e
p
1, : : : , e

p

kp
denote the line segments surrounding the Voronoi region of p,

and p�p(1), : : : , p�p(kp) denote the generators generating e
p
1 , : : : , e

p

kp
, respectively.
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Figure 2. An example of an allowable set as the region where data are given

Moreover, let el1, : : : , e
l
kl
denote the parabolic arcs surrounding the Voronoi re-

gion of p, and ��l(1), : : : , ��l(kl) denote the generators generating el1, : : : , e
l
kl
,

respectively.

Figure 3 describes the above notations. In this �gure, it is assumed that

the values of the function z are given over the set G = fp1, : : : ,p9g [ �1 [

�2 [ �3. Therefore, the line segment Voronoi diagram V for the generator set

fp1, : : : ,p9,�1,�2,�3,pg is constructed. In V , the Voronoi region of p is sur-

rounded by the line segments e
p
1 , : : : , e

p
5 and the parabolic arcs el1, : : : , e

l
4, so

kp = 5 and kl = 4. Since the line segment e
p
1 is contained in the bisector of pp3

and so on,

�p(1) = 3, �p(2) = 5, �p(3) = 6, �p(4) = 7, �p(5) = 8,

�l(1) = 1, , �l(2) = 2, �l(3) = �l(4) = 3 :

For each line segment e
p

i , the discussion in the previous section is available to

calculate the contribution of e
p

i to the interpolant. Therefore, de�ne that

�
p

i =
�
p

i

d
p

i

,

where

�
p

i = je
p

i j ,

and

d
p

i = d(p,p�p(i))
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Figure 3. The Voronoi region of the target point

for i = 1, : : : , kp.

In the following, we will concentrate on calculating the contribution of each

parabolic arc eli to the interpolant. Let dli be the minimum Euclidean distance

between p and any point q on the line containing ��l(i), and li be the image of e
l
i

by the projection onto the line containing ��l(i).

For this purpose, we choose the coordinate system such that ��l(i) is on the

x-axis, and the coordinates of the target point p are (0, dli). Then, the parabola

containing the parabolic arc eli is written by

y = hi(x) �
1

2dli
x2 +

dli
2

:

Let ai and bi be the x-coordinates of the left and right endpoints of e
l
i, respectively.

Note that li is denoted by f(x, 0) j ai < x < big in this coordinate system. Figure 4

describes the coordinate system associated with eli.

Suppose that we discretize the line segment li = f(x, 0) j ai < x < big into

Ni equidistant points qi1, : : : , qiNi
, where the coordinates of qij are (qij , 0) with

qij = ai + (j � 1=2)�i and �i = (bi � ai)=Ni. Then, we can interpret the point

qij as the representative point of all the points lying between (ai + (j � 1)�i, 0)

and (ai + j�i, 0). The bisector bij of the line segment pqij is the tangent line of
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Figure 4. Used coordinate system

y = hi(x) at the point (qij ,hi(qij)). Hence, bij is written by

y = ~hij(x) � h0i(qij)(x � qij) + hi(qij) =
qij

dli
x�

q2ij

2dli
+
dli
2

:

De�ne the piecewise linear function ~hi(x) by

~hi(x) = hij(x) for ai + (j � 1)�i � x � ai + j�i, 1 � j � Ni :

Note that the piecewise linear curve y = ~hi(x) converges to the parabolic arc

y = hi(x), ai � x � bi, as Ni ! 1. Let rij , 0 � j � Ni, be the points whose

coordinates are (ai + j�i, ~hi(ai + j�i)), respectively. rij is the Voronoi vertex

generated by p, qij and qi,j+1.

From the discussion in the previous section, the contribution of the point qij
to the interpolant of discrete version is

~�ij =
~�ij
~dij

,

where

~�ij = d(ri,j�1, rij) ,

and

~dij = d(qij ,pi) :
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From the de�nition, we obtain that

~�ij = d(ri,j�1, rij) =
q
1 + (h0i(qij))

2�i =

q
q2ij + (dli)

2

dli
�i ,

and

~dij = d(qij ,pi) =
q
q2ij + (dli)

2 ,

which yields

~�ij =
1

dli
�i :

Now we increase Ni to the in�nity. Then we get the contribution of any point

q on li to the interpolant as follows:

�l
i(q)dq =

1

dli
dq :

Note that �l
i(q) is independent of the location of q.

Now let us summarize the above discussion. The resulting identity correspond-

ing to (1) is

kpX
i=1

�
p
i p+

klX
i=1

Z
li
�l
i(q)pjdqj =

kpX
i=1

�
p
i p�p(i) +

klX
i=1

Z
li
�l
i(q)qjdqj ,

and the resulting interpolant is

~z(p) =

kpX
i=1

�
p

i z(p�p(i)) +
klX
i=1

Z
li
�l
i(q)z(q)jdqj

kpX
i=1

�
p

i +

klX
i=1

Z
li
�l
i(q)jdqj

:

Here, from the fact that �l
i(q) is independent of the location of q, we obtain the

identity

kpX
i=1

�
p

i p+
klX
i=1

jlij

dli
p =

kpX
i=1

�
p

i p�p(i) +
klX
i=1

1

dli

Z
li

qjdqj , (4)
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Figure 5. The obtained function using the authors' interpolant of continuous

version

and the interpolant

~z(p) =

kpX
i=1

�
p

i z(p�p(i)) +
klX
i=1

1

dli

Z
li
z(q)jdqj

kpX
i=1

�
p

i +

klX
i=1

jlij

dli

: (5)

From the form of (5), we see that the interpolant requires only the integrations

of the given data. Therefore, if every primitive function of zj�i
is known, then

computing the interpolant does not require numerical integrations.

Figure 5 shows the obtained function using the author's interpolant of con-

tinuous version when z = 1 � (x2 + y2)=2. The set shown in Fig. 2 was used as

G.
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4 Concluding Remarks

We �rst outlined the authors' interpolant for discretely distributed data brie
y.

Next, we extended the authors' interpolant to linearly distributed data accord-

ing to the discussion using the limitation of the interpolant of discrete version.

The obtained interpolant is expressed in terms of line segment Voronoi diagrams.

If every given data function has a primitive function, computing the obtained

interpolant does not require numerical integrations.

The following are directions of our future research:

1. Comparison of the authors' interpolant with Sibson's interpolant in both of

discrete version and of continuous version.

2. Utilizing numerically disturbed Voronoi diagrams constructed by topology-

oriented algorithms.

3. Application of the interpolants using Voronoi diagrams. Design of surfaces

may be one of the potential applications.
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