A Case Study on a Modular Transformation Strategy
Zhenjiang Hu Wei-Ngan Chin ~ Masato Takeichi

Technical Report METR 99-06
Department of Mathematical Engineering
University of Tokyo

Summary.

Transformational programming is a well-known methodology to de-
rive both correct and efficient programs. But it often requires deep
insights to make major jumps during derivation, and so it remains un-
clear how general a derivation for one problem can be applied to others,
particularly to those whose efficient algorithms are unknown. In this
paper, we show that it is possible to minimize these deep insights. Our
thesis is that the high-level transformation techniques such as fusion,
tupling, and generalization/accumulation can be well integrated to help
provide a systematic and modular approach to calculate efficient pro-
grams, and thus the mild insights in our transformation are mainly
confined to meet the conditions to facilitate transformation techniques.
We illustrate our approach by a case study on the derivation of a new
efficient algorithm for finding frequent sets, one of the basic building
blocks of many data mining algorithms.

Keywords: Program Transformation, Functional Programming,
Bird Meertens Formalisms, Frequent Set Problem.

1 Introduction

When writing a program, the programmer is faced with a tension between correct-
ness and efficiency. A program that is easy to understand and whose correctness
is obvious to see often fails to be efficient, while a more efficient program often
compromises clarity . Transformational programming [BD77, Fea87, Dar81, Bir84,
Bir86, Bir87, Bac95] is a well known methodology to address this difficulty.

In transformational programming, one does not attempt to produce directly a
program that is correct, understandable and efficient, rather one initially concen-
trates on producing a program which is as clear and understandable as possible
ignoring any question of efficiency. Having satisfied himself that he has a correct
program he successively transforms it to more and more efficient versions using
methods guaranteed to preserve the meaning of the program.

Although quite a lot of creative, elegant and efficient algorithms [Bir84, Bir86,
PP96] have been derived in this manner showing the impetus of the transforma-
tional approach to programming, there remain two major problems.

1 September 1999, METR 99-06

A Case Study on a Modular Transformation Strategy 2

e Insightful rules for big-step jumps can be difficult to find. While creative
algorithms are interesting to exhibit, they often require deep insights to make
major jumps to the transformed code. This can make things very difficult
both for human to comprehend and for machine to implement.

o Application scope is unclear. Tt is usually not so clear how a derivation for
obtaining efficient programs for a specific problem can be applied generally
to others, particularly to those problems whose efficient algorithms are still
unknown.

The main purpose of this paper is to show that it is possible to minimize
these deep insights. Our thesis is that the high-level transformation techniques
[Fea87, PP96] such as fusion, tupling, and generalization/accumulation can be well
integrated to help provide a systematic and modular approach to calculate efficient
programs, and thus the mild insights in our transformation are mainly confined to
meet the condition to facilitate transformation techniques.

To appreciate the virtues of our modular approach to transformation, we focus
on a case study of the problem for finding frequent sets (see Section 4.1), one of
the basic building blocks of many data mining algorithms [AIS93, MT96]. Suppose
that an organization has recorded the set of objects purchased by each customer on
each visit. The goal of the frequent set problem is to find those subsets of objects
that appear frequently in customers’ visits. This information can be used to, for
example, place objects that are often purchased together near each other on the
shelf. The motivations for choosing the frequent set problem as our case study are
two folds.

e First, and most importantly, the frequent set problem is a practical problem
that is fundamental in data mining, where a widely accepted efficient algo-
rithm is still unknown. We need a clever algorithm in practice, because the
size of the data concerned is so great that it becomes critical to do this task
as efficiently as possible.

e Second, the frequent set problem fits well with transformational approaches
in the sense that it is straightforward to write down a correct solution (Sect.
4.1), but is far from trivial to transform it to an efficient solution. To the
best of our knowledge, no such attempt has been reported yet.

In this paper, we shall illustrate our modular transformation strategy via this
case study. Our main contributions can be summarized as follows.

e We propose a modular transformation that supports the reuse of codes and
transformation techniques. The basis of our approach is the identification of a
small set of commonly used transformation techniques. Particularly, we high-
light three important transformation techniques, namely fusion, tupling and
accumulation, which can be well combined together for calculating efficient
programs.

e Qur transformation is more systematic, minimizing the use of complex laws
with deeper insights, such as Horner’s rule used in [Bir87], which tend to
make transformation harder to carry out. Instead, our approach relies on a

A Case Study on a Modular Transformation Strategy 3

set of smaller laws which are motivated by the need to perform transformation
techniques.

e Our modular transformation is powerful. To the best of our knowledge, we
have calculated a new algorithm for finding frequent sets, which is much faster
and more compact than hand-coded programs in Haskell for some existing
algorithms.

This paper is organized as follows. In Sect.2, we review the notational con-
ventions and some basic concepts used in this paper, and outline several useful
transformation techniques. After explaining briefly our modular approach to trans-
formation in Sect. 3, we focus on the frequent set problem, and show how to apply
the modular transformation approach to derive a new efficient algorithm in Sect. 4.
Related work and concluding remarks are give in Sect. 5.

2 Preliminaries

In this section, we briefly review the notational conventions and some basic concepts
of Bird Meertens Formalisms (BMF for short) [Bir87], and outline several useful
transformation techniques which will be used in the rest of this paper.

2.1 BMF

We use BMF, a program calculus, to describe our transformation. Those who
are familiar with functional languages like Haskell should have no difficulty in
understanding its notational conventions.

Functions

Function application is denoted by a space and the argument which may be written
without brackets. Thus fa means f (a). Functions are curried, and application
associates to the left. Thus f ab means (f a) b. Function application binds stronger
than any other operator, so fa @ b means (f a) @ b, but not f (a @ b). Function
composition is denoted by a centralized circle o. By definition, we have (f o g)a =
f (g a). Function composition is an associative operator, and the identity function
is denoted by id. Infix binary operators will often be denoted by @, ® and can be
sectioned: an infix binary operator like @& can be turned into unary functions by

(a®)b=a®b= (Db)a.

In addition, we can turn prefix binary operators into infix ones by back-quotation
as follows.

fry=x‘f'y
Lists

Lists are finite sequences of values of the same type. A list is either empty, a
singleton, or the concatenation of two other lists. We write [] for the empty list,
[a] for the singleton list with element a (and [-] for the function taking a to [a]),
and z + y for the concatenation of two lists z and y. Concatenation is associative,
and [] is its unit. For example, the term [1] 4+ [2] ++ [3] denotes a list with three
elements, often abbreviated to [1,2,3]. We also write a : zs for [a] ++ zs.

A Case Study on a Modular Transformation Strategy 4

Higher Order Functions: Map and Filter

BMF has many useful higher order functions which enjoy very nice algebraic prop-
erties. Among which, the map and filter will be used in this paper.

Map is the operator which applies a function to every element in a list. It is
written as an infix *, formally defined by

f*]]
fr(z:xs)=fx : fxuxs.

It satisfies the so-called map-distributivity property:

[+ o gr=(fog)x.

Filter is the operator which takes a predicate p and a list and return the sublist
whose elements satisfy p. It is written by p < xs, which is formally defined by

p<] =[]

p<a(z:xzs) =if px thenz:p< zselse pa zs

The filter enjoys the filter-element-map property which is often used in program
derivation (e.g., in [Bir84]):

(p9) o ((z :)%) = (z:) xo((po (z:))<)
and the filter-pipeline property:
p<d o ga=Az.(px AN qx))<.

2.2 Useful Transformation Techniques

During transformation process, we need transformation techniques [Fea87] or strate-
gies [PP96] that guide the application of the transformation rules and may allow us
to derive programs with improved performance. We outline some transformation
techniques used in this paper.

e Fusion [Wad89, Chi92, OHIT97]. Fusion is to merge nested compositions of
functions in order to obtain new functions without unnecessary intermediate
data structures. For instance, the composition of function # for computing
the length of a list and (1+)x* for incrementing every element of a list can be
fused into a single # operation as follows:

#o(l—l—)* = #

where the intermediate data structure produced by (1+)* is completely elim-
inated.

o Accumulation/Generalization [Bir84, Pet87, PS87, HIT99]. Accumulation is
to generalize a function by inclusion of an extra parameter, called an accu-
mulating parameter, for reusing and propagating intermediate results. As an
example, consider the following definition of isum which computes the initial
prefix sums of a list, i.e., isum [z1,29, -, z,] = [0,21,21 + 22, -, 21 +
Lo+ -+ Tp):

[0]

0: (z+) * (isum zs).

isum []
isum (z : xs)

A Case Study on a Modular Transformation Strategy 5

It can be transformed into the following by accumulation transformation.
isum s = isum’ xs 0
isum' [] d = [d]
isum’ (z:xs) d =d:isum’ zs (d+ x)
Here the second parameter of isum/’ is the accumulating one that keeps partial
sums for the later reuse, leading to a more efficient algorithm.
e Tupling [Chi93, HITT97]. Tupling is to obtain new efficient recursive func-
tions by grouping some recursive functions manipulating the same data into a

tuple or even a table. For example, we can apply the tupling transformation
to the Fibonacci function defined by

fib n = if n < 2 then n else fib (n — 1) + fib (n — 2)

introducing a new function tup for grouping the above two underlined parts
tup n = (fib (n — 1), fib (n — 2)).
Through tupling, an efficient linear program can be derived by induction on
n.
3 A Modular Transformation Approach
We consider programs that can be specified by compositions of functions:
Prog = passSy, © - - 0 PaSS].

To make it efficient, we combine the useful programming techniques in Section 2.2,
and proceed with our derivation using the following three steps.

1. Apply the fusion transformation technique to merge multiple passes into a
single one. This may result in a (mutual) recursive definition in the form like:

fil = el
1 (z:xs) = Cilf1 xs,..., fn 23]

Pl =e

fn (x:28) = Cplf1 xs,..., fn 5]
Where (1, ..., C), denote expression contexts. Note that we may introduce

some new functions to meet the fusible conditions [HIT97].

2. Apply the generalization/accumulation transformation technique to make use
of intermediate results, and to structure the recursive definition. This may
result in a new recursive definition with additional accumulating parameter
something like:

fille =e
fi (z:zs) c = Ci[f1 xs c11, f1 TS €12y -y fr TS Cimy)
flle =en

fn (x:28) c = Cplf1 s cn1, f1 TS Cn2,- -, fn TS Cnm,, |-

A Case Study on a Modular Transformation Strategy 6

3. Apply the tupling transformation technique to remove multiple traversals of
the data zs by the same or different functions, aiming to derive a linear re-
cursive definition (only a single recursive call appears in the definition body).

flle =e
f(z:xzs) c=C[f zs]

It is worth noting that although we shall only show how to improve the top-level
functions, we can apply this modular transformation strategy to improve functions
that are used inside the expression contexts.

4 Case Study: Frequent Set Problem

Let us return to our case study: the frequent set problem. We shall start out
with a specification, a straightforward program to solve the problem, and then we
improve it by means of our modular program transformation. We include some
experimental results at the end of this section.

4.1 Specification

Suppose that a shop has recorded the set of objects purchased by each customer
on each visit. The frequent set problem is to find all subsets of objects that appear
frequently in customers’ visits with respect to a specific threshold. As an example,
suppose a shop has the following object set:

{A,B,C,D,E,F,G,H,I, J K}
and the shop recorded the following customers’ visits:

visit 1: {A,B,C,D,G}
visit 2: {A,B,E,F}
visit 3: {B,I}

visit 4: {A,B,H}

visit 5: {E,G}

We can see that A and B appear together in three out of the five visits. Therefore
we say that the subset {A, B} has frequency ratio of 0.6. If we set the frequency
ratio threshold to be 0.3, then we know that the sets of

{4}, {B}, {E}, {G} and {4, B}

pass this threshold, and thus they should be returned as the result of our frequent
set computation.

To simplify our presentation, we impose some assumption on the three inputs,
namely object set os, customers’ visits vss, and threshold least. We shall represent
the objects of interest using an ordered list of integers without duplicated elements,
e.g.,

os = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

and represent customers’ purchasing visits by a sublist of its sublist, e.g.,

vss = [[10, 20, 30, 40, 70], [10, 20, 50, 60], [20, 90], [10, 20, 80], [50, 70]].

A Case Study on a Modular Transformation Strategy 7

Furthermore, for threshold, we will use an integer, e.g.,
least = 3

to denote the least number of appearances in the customers’ visits, rather than
using a ratio of the number of appearances against that of the whole visits.

Now we can solve the frequent set problem straightforwardly by the following
pseudo Haskell program:

fs o [Int] — [[Int]] = Int — [[Int]]
fs 0s vss least = (fsp vss least) < (subs 0s)

It consists of two passes that can be read as follows.

1. First, we use subs to enumerate all the sublists of the object list
0s, where subs can be defined by

subs : [a] = [[a]]

subs [] =[]

subs (z : xs) = subs xs ++ (z :) * subs xs.

2. Then, we use the predicate fsp to filter the generated sublists
to those that appear frequently (passing the threshold least) in
customers’ visits vss. Such fsp can be easily defined by

fsp . [[Int]] = Int — [Int] — Bool
fsp xss least ys = #((ys ‘isSublist’) <xss) > least

Note that xs ‘tsSublist’ ys, is for deciding if zs is a sublist of ys.
This operation is defined by:

[] ‘4sSublist' ys = True
(x : xs) ‘isSublist’ ys = x ‘isElem' ys A xs ‘isSublist’ ys

where z ‘isFElem‘ ys returns True if x is an element of list ys.

Being straightforward, this initial program is obviously infeasible for all but the
very small object set, because the search space of potential frequent sets consists
of 2795 gublists.

4.2 Derivation via Modular Transformation

We shall demonstrate how the exponential search space of our initial concise pro-
gram can be reduced dramatically via our modular transformation in Section 3.
That is, we will derive an efficient program for finding frequent sets, by apply-
ing transformation techniques of fusion, generalization/accumulation, followed by
tupling.

A Case Study on a Modular Transformation Strategy 8

Fusion

Fusion is to merge the two passes into a single one. This can be done by the
following calculation through induction on os.

fs[] vss least
= {def of fs}
(fsp vss least) < (subs [])
= { def. of subs }
(fsp vss least) <[[]]
= { def. of «and fsp }
if #(([] ‘4sSublist') <wvss) > least then [[]] else []
= { isSublist }
if #((A\ys.True) <vss) > least then [[]] else []
{ simplification }
if #vss > least then [[]] else []

And
fs (0:0s) vss least

= {def of fs}
(fsp vss least) < (subs (o0 : 0s))
= { def. of subs }
(fsp vss least) < (subs 0s ++ (0 :) * (subs 0s))
= { def of« }
(fsp vss least) < (subs 0s) ++
(fsp vss least) < ((o0:) x (subs 0s))
= { by filter-element-map property }
(fsp vss least) < (subs 0s) ++
(0:) % ((fsp vss least o (0:)) < (subs 0s))
= { the calculation below }
(fsp vss least) < (subs 0s) ++
(0:)* ((fsp ((o ‘isElem‘) <wvss) least) < (subs 0s))

To complete the above calculation, we need to show that
fspvssleasto (0:) = fsp ((o0 ‘isElem') <vss) least.
This can be easily shown by the following calculation.

fsp vss least o (o)
= { def. of fsp}

(Ays.(#((ys ‘isSublist’) <vss) > least)) o (0:)
= { function composition }

Ays.(#(((o : ys) ‘isSublist’) <vss) > least)
= { def. of isSublist }

Ays.(F#((Azs.(ys ‘isSublist' zs N o ‘isElem* xs)) <vss) > least)
= { by filter-pipeline property }

Ays.(#((ys ‘isSublist') < ((o ‘isElem') <vss)) > least)
= { def. of fsp}

fsp ((o ‘isElem‘) <wvss) least

A Case Study on a Modular Transformation Strategy 9

To summarize, we have obtained the following program, in which all interme-
diate results used to connect the two passes have been eliminated.

fs[] vss least = if #vss > least then [[]] else []
fs (0:0s) vss least = fs 0s vss least + (0:)x(fs os ((o ‘isElem*) quss) least))

Generalization/Accumulation

Notice that the underlined part in the above program for insert o to all elements
of the list is rather expensive. Fortunately, this could be improved by means of
introducing an accumulating parameter in much the same spirit as [Bir84, HIT99].
To this end, we generalize fs to fs’, by introducing an accumulating parameter as
follows.

fs' os vssleast r = (r++) x (fs os vss least)

And clearly we have
fs 0s vss least = fs' os vss least [].

Calculating the definition for fs’ is easy by induction on o0s, and thus we omit
the detailed derivation. The end result is as follows.

fs'] vss least r = if #vss > least then [r] else []
fs (0:0s8) vssleast r = fs' 0s vss least r ++
fs os ((0 ‘isElem‘) quvss) least (r ++[o])

The accumulation transformation has successfully turned an expensive map
operator of (o :)* into a simple operation that appends o to r. In addition, we
have got a nice side-effect from accumulation transformation that fs' is defined
in an almost tail recursive form, in the sense that each recursive call produces
independent part of the resulting list. This kind of recursive form could help us to
discover nice properties of function from its base case definition. This technique
is called the base case filter in [Chi90]. For the above fs', we can deduce from its
base case definition that if

#Huss < least

then
fs' o0s vss least r ==[].

We shall call it the pruning property that will be used in the later derivation.

Tupling (Tabulation)

Although much improvement has been achieved through fusion and accumulation,
there still remains a source of serious inefficiency because the main parameter os
is traversed multiple times by fs’, resembling the case for fib function in Section
2.2. This inefficient state shall be handled by the tupling transformation.

The tupling technique that we shall use is called dynamic tupling [CH95] or tab-
ulation [Bir80], as opposed to the static tupling where we know statically the fixed
number of values that should be memoized. The purpose of our dynamic tupling is
to merge two recursive calls of fs’ together so that os can be traversed once. The

A Case Study on a Modular Transformation Strategy 10

difficulty in such tupling is to determine which values should be tabulated. Now,
taking a close look at the derived definition for fs’

s (0:0s) vss least T = fs' 0s vss least r ++
fs os ((0 ‘isElem‘) <wss) least (r ++[o]))

reveals some dependency of the second and the fourth arguments of fs' among
the left and the right recursive calls to fs’, as indicated by the underlined parts.
Moreover these two arguments will be used to produce the final result, according
to the base case definition of fs’. This hints us to keep (memoize) all necessary
intermediate results of the second and the fourth parameters in a list like

[(r1,vss1), (re,vss2),...]
where we can suppose that each element (r;,vss;) meets the invariant
H#vss; > least.

as hinted by the conditional part in the definition of fs'.
Now we apply the tupling transformation to fs' by defining

tup os least [] =[]
tup os least ((r,vss) : ts) = fs' os vss least r ++tup os least ts

and clearly fs' is a special case of tup:
fs' 0s vss least r = tup os least [(r,vss)].

We hope to synthesize a new definition that defines tup inductively on os where os
is traversed only once (it is now traversed by both fs’ and tup). The general form
for this purpose will be

tup [] least ts = select least ts
tup (o : 0s) least ts = tup os least (add o least ts)

where select and add are two newly introduced functions that are to be transformed
further. We can synthesize select by induction on ts. From

tup [] least []
= { def. of tup }

[]

and

tup [] least ((r,vss) : ts)
= { relation between tup and fs', the invariant tells: #vss > least }
fs' [] vss least r ++tup [] least ts
= {def of fs'}
(if #vss > least then [r] else []) +tup [] least ts
= { by the invariant: #vss > least }
[r] + tup [] least ts
= { relation between tup and select }
[r] +H select least ts

A Case Study on a Modular Transformation Strategy 11

we soon have

select least || []
select least ((r,vss) : ts) = [r] ++ select least ts

ie.,
select least = fst*.

The definition of add can be inferred in a similar fashion. And we can obtain

add o least [] =]

add o least ((r,vss) : ts) = (if #((o ‘“isElem‘) qwvss) < least
then [(r,vss)]
else [(r,vss), (r ++[o], (0 ‘isElem*) <vss)]) ++
add o least ts.

Notice the crucial calculation step of using the pruning property in the deriva-
tion of add. It plays an important role in elimination of unnecessary computation.

A Further Improvement

The algorithm we obtained is very efficient; it does not contain unnecessary inter-
mediate result, only needs a single pass of the objects of interest, and make use of
some necessary intermediate result. Further improvement can be made to improve
the functions that are used in the definition body. In fact, we can specialize the
general isFElem to the following more efficient one using our assumption that all
sublists are in an increasing order.

isElem : Int — [Int] — Bool
e ‘isElem’ [] = False
e ‘isElem’ (xz : xs) = if e < x then False
else if e == z then True

else e ‘“4sFElem‘ zs

Putting all together, we get the final result in Fig. 1.

4.3 Experiment

So far, we have successfully reached a new algorithm for finding frequent sets. To
see how efficient our algorithm is, we will not give a formal study of the cost which
needs to take account of the distribution in addition to the size of data. Rather
we use a simple experiment to compare our algorithm with the existing algorithm'
[MT96] that is quite commonly used in the data mining community.

We tested the following three programs, whose source codes can be found in
the appendix.

e Program 1: our initial program
e Program 2: a functional coding of an existing algorithm [MT96]

e Program 3: our final program

! The idea of the algorithm is to generate all frequent sets of length 7 4+ 1 from those of length
l, starting from the frequent sets of length 1.

A Case Study on a Modular Transformation Strategy 12

fs os vss least = fs' o0s vss least []

fs os vss least r = tup os least [(r,vss)]

tup [] least ts = select least ts

tup (o : 0s) least ts = tup os least (add o least ts)
select least = fstx

add o least [] =[]

add o least ((r,vss) : ts) = (if #vss' < least
then [(r,vss)]
else [(r,vss), (r ++[o],vss")]) +add o least ts
where vss' = (o0 ‘isElem‘) < vss

e ‘isElem’ [] = False
e ‘isElem' (z: xs) = if e < = then False
else (if e == z then T'rue else e ‘isElem’ xs)

Fig. 1 Our Final Program for Finding Frequent Sets

The input sample data was generated randomly. We generated object list of
size 20, then generated its sublists of size 100, and set the threshold to be 10
(10% of frequency). We used Glasgow Haskell Compiler together with its profiling
mechanism. The experimental result is as follows.

total time (secs) | memory cells (mega bytes)
Program 1 1209.06 3922.5
Program 2 14.3 86.5
Program 3 0.72 1.6

It shows that our final program has been dramatically improved comparing to our
initial one, and that it is also much more efficient than the functional coding of an
existing algorithm (about 20 times faster but using just 1/50 of memory cells).

A fairer comparison may be to implement the three algorithms using traditional
languages, say C, and to use a more practical sample data. We are working on this
now.

5 Related Work and Concluding Remarks

Besides the related work explained in the introduction, we show others below.

Some attempts have been made to combine the existing transformation tech-
niques for program development. Bird [Bir84] showed how to derive a more efficient
algorithm by combining promotion (sort of fusion) with accumulation techniques.
Chin [Chi95] investigated the synergies and conflicts when applying fusion and tu-
pling interleavely. And Hu et. al [HIT97] shows that a more modular approach
of combining fusion and tupling is practically useful. In this paper, we extend
this further, showing that accumulation can be usefully combined with fusion and
tupling.

This work is much related to the study on data mining [AIS93, MT96]. In
particular, the excellent thesis [Toi96] gives an extensive study on the frequent set

A Case Study on a Modular Transformation Strategy 13

problems. We deliberately avoid surveying the existing algorithms for the frequent
set problem before the derivation of our algorithm, in order to see how much we
could get from our proposed modular transformation. We are happy that our
modular transformation gave a very efficient algorithm that has not appeared in
[T0i96]. In addition, our algorithm is provably correct due to our use of correctness-
preserving transformation steps. We are working on a survey of other existing
algorithms for the frequent set problem.

This work is a continuation of our effort to apply calculational transformation
techniques [THT98] to the development of efficient programs [OHIT97, HITT97,
HTC98]. Our previous work put emphasis on mechanical implementation of the
transformation techniques, while this paper aims to show that modular transfor-
mation strategy is also very helpful for guiding programmers/researchers in devel-
opment of new algorithms.

Acknowledgments

This paper owes much to the thoughtful and inspiring discussions with David Skil-
licorn. He first recognized that program calculation might be useful to derive an
efficient algorithm to solve the frequent set problem. He kindly explained to the
first author the problem as well as some existing algorithms, and generously shared
his idea with us during the development of our efficient algorithm. We would also
like to thank Christoph Armin Herrmann who gave us his functional coding of an
existing algorithm, and helped testing our programs with his HDC system.

References

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In 1993 International Conference on Management
of Data (SIGMOD’93), pages 207-216, May 1993.

[Bac95] R. Backhouse. The calculational method. Special Issue on the Calculational
Method, Information Processing Letters, 53:121, 1995.

[BD77] R.M. Burstall and J. Darlington. A transformation system for developing re-
cursive programs. Journal of the ACM, 24(1):44-67, January 1977.

[Bir8&0] R. Bird. Tabulation techniques for recursive programs. ACM Computing Sur-
veys, 12(4):403-417, 1980.

[Bir84] R. Bird. The promotion and accumulation strategies in transformational
programming. ACM Transactions on Programming Languages and Systems,
6(4):487-504, 1984.

[Bir86] R. Bird. Transformational programming and the paragraph problem. Science
of Computer Programming, 6(2):159-189, 1986.

[Bir87] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design, pages 5—42. Springer-Verlag,
1987.

[CH95] W. Chin and M. Hagiya. A transformation method for dynamic-sized tabula-
tion. Acta Informatica, 32:93-115, 1995.

[Chi90] W.N. Chin. Automatic Methods for Program Transformation. Phd thesis, De-
partment of Computing, Imperial College of Science, Technology and Medicone,
University of London, May 1990.

[Chi92]

[Chi93]

[Chi95]

[Dar81]

[Fea87]

[HIT97]

[HIT99]

[HITT97]

[HTCO8]

[MTY6]

[OHIT97]

[Pet87]

[PP96]

[PS87]

[THT98]

[Toi96]

[Wad89)

A Case Study on a Modular Transformation Strategy 14

W. Chin. Safe fusion of functional expressions. In Proc. Conference on Lisp
and Functional Programming, pages 11-20, San Francisco, California, June
1992.

W. Chin. Towards an automated tupling strategy. In Proc. Conference on
Partial Evaluation and Program Manipulation, pages 119-132, Copenhagen,
June 1993. ACM Press.

W. Chin. Fusion and tupling transformations: Synergies and conflits. In

Proc. Fuji International Workshop on Functional and Logic Programming,
pages 106-125, Susono, Japan, July 1995. World Scientific.

J. Darlington. An experimental program transformation system. Artificial
Intelligence, 16:1-46, 1981.

M.S. Feather. A survey and classification of some program transformation
techniques. In TC2 IFIP Working Conference on Program Specification and
Transformation, pages 165-195, Bad Tolz, Germany, 1987. North Holland.

Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of efficient parallel
programs by construction of list homomorphisms. ACM Transactions on Pro-
gramming Languages and Systems, 19(3):444-461, 1997.

Z. Hu, H. Twasaki, and M. Takeichi. Caculating accumulations. New Genera-
tion Computing, 17(2):153-173, 1999.

Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation elimi-
nates multiple data traversals. In ACM SIGPLAN International Conference
on Functional Programming, pages 164-175, Amsterdam, The Netherlands,
June 1997. ACM Press.

Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms. In
25th ACM Symposium on Principles of Programming Languages, pages 316—
328, San Diego, California, USA, January 1998.

H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed

representations. In 2nd International Conference on Knowledge Discovery and
Data Mining (KDD’96), pages 189 — 194, Portland, Oregon, August 1996.
AAAT Press.

Y. Onoue, Z. Hu, H. Twasaki, and M. Takeichi. A calculational fusion system

HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and
Calculi, pages 76-106, Le Bischenberg, France, February 1997. Chapman&Hall.

A. Pettorossi. Program development using lambda abstraction. In Int’l
Conf. on Fundations of Software Technology and Theoretical Computer Sci-
ence, pages 420-434, Pune, India, 1987. Springer Verlag (LNCS 287).

A. Pettorossi and M. Proiett. Rules and strategies for transforming functional
and logic programs. Computing Surveys, 28(2):360-414, June 1996.

A. Pettorossi and A. Skowron. Higher-order generalization in program deriva-
tion. In Conf. on Theory and Practice of Software Development, pages 182-196,
Pisa, Italy, 1987. Springer Verlag (LNCS 250).

A. Takano, Z. Hu, and M. Takeichi. Program transformation in calculational
form. ACM Computing Surveys, 30(3), December 1998. Special issues for 1998
Symposium on Partial Evaluation.

H. Toivonen. Discovery of Frequent Patterns in Large Data Collections. Ph.D
thesis, Department of Computer Science, University of Helsinki, 1996.

P. Wadler. Theorems for free. In Proc. Conference on Functional Programming
and Computer Architecture, pages 347-359, 1989.

A Case Study on a Modular Transformation Strategy 15

Program 1: our initial straightforward program

fs :: [Int] -> [[Int]] -> Int -> [[Int]]
fs os vss least = filter (fsp vss least) (subs os)

fsp :: [[Int]] -> Int -> [Int] -> Bool
fsp vss least ys = length (filter (ys ‘isSublist‘) vss) >= least

[1 ‘isSublist‘ ys = True
(x:xs) “isSublist® ys = (x ‘isElem‘ ys) && (xs ‘isSublist‘ ys)

e ‘isElem‘ [] = False
e ‘isElem‘ (x:xs) = if e==x then True else e ‘isElem‘ xs

subs [1 = [[1]

subs (x:xs) = subs xs ++ (x:)* (subs xs)

Program 2: a program coding an existing algorithm

fs :: [Int] -> [[Int]] -> Int -> [[Int]]
fs os vss least = let ubnd = foldr max O (lengthx vss)
in datamineSet os ubnd vss least

datamineSet :: [Int] -> Int -> [[Int]] -> Int -> [[Int]]
datamineSet os u vss least
= let -- list of single items that satisfy fraction condition:

si0K = map (\x->[x]) (filter (\x -> fracOK vss least [x]) os)
in (fst (foldl (freqSets vss least (map (!!0) siOK)) (siOK,siOK) [2..ul))

freqSets :: [[Int]] -> Int -> [Int] ->
([[Int]], [[Int]1]) -> Int -> ([[Int]], [[Int]])
freqSets vss least sngl (f,filast) i
= let fi = filter (fracOK vss least)
(remDuplicates (filter (\xs -> length xs == i)
[insertSet s1 s2 | sl <- sngl, s2 <- filast]))
in (f++fi,fi)

fracOK :: [[Int]] -> Int -> [Int] -> Bool
fracOK bs least b = countSubsets b bs >= least

compareSet :: Ord a => [a] -> [a] -> Int
compareSet xs ys
= if length xs == length ys
then let firstdiff =
skel_while (\i -> if (i<length xs) then (xs!!i==ys!!i)
else False) (+1) 0
in if firstdiff == length xs
then 0O
else if xs!!firstdiff > ys!!firstdiff then 1 else (-1)
else if length xs > length ys then 1 else (-1)

A Case Study on a Modular Transformation Strategy 16

isElem :: Ord a => a -> [a] -> Bool
isElem e s = any (==e) s

isSubSet :: Ord a => [a] -> [a] -> Bool
isSubSet sub super = all (\s -> isElem s super) sub

insertSet :: Ord a => a -> [a] -> [a]
insertSet x xs = filter (<x) xs ++ (x : filter (>x) xs)

remDuplicates :: Ord a => [[al] -> [[al]
remDuplicates
= let pivot xs = xs!!(length xs ‘div‘ 2)
p xs = length xs < 2
b xs = xs
d xs = let less = filter (\x -> compareSet x (pivot xs) == (-1)) xs
greater = filter (\x -> compareSet x (pivot xs) == 1) Xs
in [less,greater]
c xs [as,bs] = as ++ (pivot xs : bs)
in dcO p b d c

countSubsets :: [Int] -> [[Int]] -> Int
countSubsets b bs = length (filter (isSubSet b) bs)

skel while p £ v = if p v then skel_while p £ (f v) else v

dc0 :: (a->Bool)->(a->b)->(a->[al)->(a->[b]->b)->a->b
dcOpbdcx=rx
where r x = if p x then b x else ¢ x (map r (d x))

Program 3: our efficient program

fs :: [Int] -> [[Int]] -> Int -> [[Int]]
fs os vss least = fs’ os vss least []

fs’ os vss least r = tup os least [(r,vss)]

tup [] least ts = select ts
tup (o:0s) least ts = tup os least (add o least ts)

select :: [([Int],[[Intl1)] -> [[Int]]
select = map fst

add o least [] = []
add o least ((r,vss):ts) = let vss’ = filter (o ‘isElem‘) vss
ts’ = add o least ts
in if length vss’ < least
then (r,vss):ts’
else (r,vss):(o:r,vss’):ts’

e ‘isElem‘ [] = False

e

‘isElem®

A Case Study on a Modular Transformation Strategy

(x:xs) = if e<x then False
else (if e==x then True else e ‘isElem‘ xs)

17

