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Summary.

In this paper, we propose a new mechanism called calculation car-
rying programs that can relax the tension between efficiency and clarity
in programming. The idea is to accompany clear programs with some
calculation specifying our intention of how to manipulate programs to
be efficient. And this calculation specification can be executed auto-
matically by our compiler to derive efficient programs. As a result, each
calculation carrying program makes itself be a complete document in-
cluding a concise specification of given problem as well as an effective
way to derive both efficient and correct code.
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1 Introduction

Consider to write a program to check whether a list of numbers is steep. A list is said
to be steep if each element of the list is greater than the average of the elements that
follow it; a similar problem was discussed in [dMS98]. A straightforward program
to solve the problem is

steep it [Int] — Bool
steep [] = True
steep (a:x) = (a > average x) A steep x

average i [Int] — Int
average © = sum z / length x.

This program, though being clear, is terribly inefficient (a quadratic algorithm)
due to repeated applications of average to the sublists. In fact, a linear efficient
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program does exist.

steepOpt it [Int] = Bool

steepOpt = let (st,s,1) = steep’ x
in st

steep' [] = (True,0,0)

steep’ (a:x) = let (st,s,l) = steep’ =
in ((a > (s/l))Ast,a+s,1+1)

Programmers are now forced to select one from the two programs by most
practical programming systems, but this selection is essentially difficult.

e The straightforward one is of high readability and good modularity. It, how-
ever, comes at the cost of inefficiency, which may probably be intolerable.
One may hope that a language compiler could automatically improve the
program, but this is practically difficult. As far as we know, no popular
Haskell compilers can automatically generate linear code from the straight-
forward program of steep.

e The efficient one is rather appealing, but it is far from being obvious why the
program does correctly solve the problem without enough comment. Unfor-
tunately, comment to the program is usually several lines in practice, which
is too informal and too simple for program readers to understand algorithm
completely. This makes the program difficult to be maintained, and even
harder to be adapted to solve similar problems.

To remedy this situation, we shall propose a new mechanism called calcula-
tion carrying programs that can relax the tension between clarity and efficiency
in programming. The idea is to accompany straightforward programs with some
calculation specifying the intention of how to manipulate programs to be efficient.
Thus, a calculation carrying program is not just means to show how to solve a
problem, but also to show how to achieve improvement.

Program Calculation

Program calculation is a kind of program transformation based on the theory
of Constructive Algorithmics (also known as Bird-Meertens Formalisms) [Bir87,
Mal90, MFP91, Fok92, Bac95], which is a program calculus for program derivation.
In Constructive Algorithmics, calculation is a series of applications of calculational
laws (i.e. rules) that describe some properties of programs. Theorems may be
used to capture larger steps in calculation in which there is ample opportunity
for machine assistance. Theoretically, data types in constructive algorithmics are
categorically defined as initial algebras of functors, and functions from one data
type to another are represented as structure-preserving maps between algebras. By
doing so, an orderly structure can be imposed on the program and such structure
can be exploited to facilitate program transformation. This is in sharp contrast to
the popular fold/unfold program transformation technique [BD77] whose emphasis
is on the generality of transformation process instead of the structure of programs.

Our work on calculation carrying programs was highly motivated by the suc-
cess of the application of program calculation both to derivation of various kinds
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of efficient programs [Gib92, dM92, Jeu93], and to construction of some optimiza-
tion passes of compilers [GLJ93, OHIT97]. Particularly, it has been shown that
many important program transformations such as deforestation (or fusion), tupling
transformation, parallelization and accumulation can effectively and elegantly be
formalized in calculational form [TM95, HIT96, HITT97, HTC98, HIT99].

Why to Code Calculation

We believe that it is both worthwhile and challenging to provide a flexible mech-
anism to code program calculations, and to make such calculations be part of
programs. There are two main reasons.

e Coding calculation can help programmers to document and reuse their pro-
gram development process.

As argued in [dMS98], a typical functional programmer usually develops his
program using calculation on the back of an envelope, and only records the
final result in his codes, like the above program for solving the steep problem.
Of course, he could document his ideas in comments, but as we all know, this
is rarely done. Furthermore, when the programmer finds himself in a similar
situation using the same technique to develop a new piece of code, there is
no way he can reuse the development recorded as a comment.

e Coding calculation can help to mechanize derivation of efficient programs.

Many calculation laws and theorems such as fusion, tupling, parallelization
have been developed, but few of them have been fully implemented in prac-
tical compilers. There are two major difficulties. First, even for a simple
calculation law like the cheap fusion in [GLJ93, TM95], one cannot code it
as naturally as expressed in the paper. Rather one has to take pain to design
an algorithm to implement the law by induction on the syntax tree. Second,
the creative steps, which are often required during calculation, are hard to
be mechanized in general. By coding calculation, we can program these cre-
ative steps by ourselves and only leave those parts that can be mechanized
for compiler.

Our Work

This paper makes the first attempt at the design and implementation of a (func-
tional) language that can support calculation carrying programs. In this language,
programmers can write both a straightforward solution to a problem as they usu-
ally do, and a calculation declaring their intention for transforming the solution
better. As a result, each calculation carrying program makes itself be a complete
document including a concise specification of given problem as well as an effective
way to derive both efficient and correct code.

To realize calculation carrying programs, we are confronted with several design
issues; how to code calculation in a natural and declarative way, how to ensure the
correctness of generated programs by calculation, how to make object programs
and meta programs coexist well in a single framework.

The two important technical contributions of this paper are as follows.



Calculation Carrying Programs 4

e We design a core language (Section 3) for the purpose of writing the calcula-
tion carrying programs, which has the following two distinguishing features.

— First, the language is very similar to existing functional languages like
Haskell, but it is unique in that the patterns that are used in )\ abstrac-
tion, let binding and case matching are generalized to be higher order
ones [HL78, Hec88, dMS98, dMS99]. With this explicit higher order
matchings, we are able to code calculation in a very natural way, where
termination and correctness can be guaranteed.

— Second, the typing system of the language can guarantee the correctness
(both in type and in meaning) of generated programs after calculation.
This correctness issue has been considered a big difficulty in meta pro-
gramming [TS97, TBS98]. We tackle this problem by not allowing open
code (code containing free variables) to be generated. This leads to a
integrated framework in which object programs and meta programs can
co-exist well.

e We have implemented an experimental programming environment to sup-
port developing calculation carrying programs. The main point is that the
system can automatically derive efficient and correct programs by executing
calculations. As shown in Section 4, we have successfully applied it to many
interesting practical examples, demonstrating how one can concisely code
calculation rules, calculation strategies, and even algorithmic development
process. To the best of our knowledge, we have not seen any other similar
systems which can do as concisely and powerfully as ours.

The rest of this paper is organized as follows. We illustrate informally the basic
idea of calculation carrying programs by two simple examples in Section 2. Then
in Section 3, we give the formal definition of the core language for writing the
calculation carrying programs, including its syntax, semantics and typing rules.
More application examples for coding calculation rules, calculation strategies, and
development processes are given in Section 4. Finally, we discuss the related work
and make a concluding remarks in Section 5 and Section 6 respectively.

2 Basic Idea: Calculation Carrying Programs

Each calculation carrying program consists of two parts: an object program that
describes concise solution to given problem, and a meta program that describes
how to improve the object program to be more efficient one. In this section, we
will illustrate informally the basic idea by two simple examples. More practical
examples can be found in Section 4.
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2.1 Coding Calculation Rules by Matching

Before giving a whole calculation carrying program, we start with coding the fol-
lowing famous fusion calculation rule:

fe =
fla®r)=afr
fo foldr (&) e = foldr (®) €

reading that one can fuse the composition of a function f and a foldr structure
into a single foldr, provided that the two promotable conditions are satisfied. This
rule plays an important role not only in calculating efficient functional programs
[Bir89, MFP91], but also in compiler construction like the warm fusion [LS95] in
the Glasgow Haskell Compiler (GHC).

Even for such a simple calculation rule just in three lines, it requires a tedious
work to implement it. The reason is that one cannot code the rule as naturally
as expressed as above. Rather one has to reinvent an algorithm to implement the
law by induction on the syntax tree of programs. To remedy this situation, we
introduce explicit matching to our language.

Recall that pattern matching is a well-appreciated concept of functional pro-
gramming [Pey88]. It contributes to concise function definitions by implicitly de-
composing data type values. For example, the following defines length, a function
to compute the length of a list, according to two list patterns; an empty list [], and
a list whose head element is a and the rest list is z.

length [] =0
length (a:z) = 1+ length

Pattern matching indeed provides a good way for describing manipulation of
data, but it does not fulfill our needs to specify manipulation of programs. If we
would insist on using usual pattern matching of program syntax trees to code the
fusion calculation rule, we would need a second invention to express the procedure
showing how to derive ® from @ and f by traversing the syntax trees explicitly,
which would lead to a rather long program.

Our idea is to relieve pattern matching from the restriction that pattern to be
matched must be constructed by data constructors and pattern variables, allowing
any ezpression (higher order patterns) to be a target for matching. With this
general matching, we can now code fusion simply as follows.

fusion = <[a] =>b> — <[a]—>b>
fusion < fo foldr (&) e >
= letm

< foldr (®) € >

The fusion defines a calculation transforming the code of an expression with
type [a] — b to another. We use brackets <> to surround expressions (or types)
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to denote expression codes (or code types). To see the meaning of the definition of
fusion, we demonstrate how

fusion < lengtho foldr (:) [] >

works. Upon receiving the expression code of < length o foldr (:) [] >, fusion
matches it with < f o foldr (®) e > to bind f, ® and e, and gets

f > length
O =
e —[].

Then with these bindings, we reduce f e to a form that does not contain any 3
and 7 redex, and then match it with €’ to bind €/, and gets

e =0

since the reduction of length [] gives 0. Similarly, matching the reduction result of
f (a® z) with a ® r gives several bindings for ® and r, from which we only choose
one such that r is syntactically equivalent to length x:

® = AaAz. (14 z)

Finally, we build the code by replacing ® and €’ by their bindings in < foldr (®) €' >,
and get
< foldr (Aa.Xz.(1+x)) 0> .

Formal account of the meaning of the language can be found in Section 3.

It is worth noting that the important role of (second order) matching to express
powerful transformation has been recognized by Huet and Lang [HL78], but the
matching there are only used for implementation transformation systems without
being embedded into a functional language. Heckmann [Hec88] combined features
of functional language with special means of pattern specification language to de-
scribe tree transformation on abstract syntax tree. The language he proposed is
rather complicated. In contrast, we take advantage of higher order matching to
describe transformation in a declarative way rather than using lower-level traver-
sal of abstract syntax trees. Most recently, de Moor and Sittampalam [dMS99]
present a simple but practical algorithm for higher-order matching in the context
of automatic program transformation.

2.2 A Complete Calculation Carrying Program

Figure 1 gives the example of a complete calculation carrying program for the steep
problem. It contains three parts: a straightforward program, a calculation, and
a relationship between them. The straightforward program has been given in the
introduction, we will concentrate on the calculation part, showing how to code our
calculation to make it be efficient.

As explained in the introduction, the straightforward program is inefficient
because of redundant repeated computation of sum and length. This inefficiency
can be handled by tupling steep, sum and length, using the tupling transformation
[Chi93, HITT97]. The specific tupling transformation for steep is coded in the
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— Straightforward solution:

steep it [Int] — Bool
steep [] = True
steep (a:x) = (a > average x) N steep x

average i [Int] — Int
averag T = sum x | lengh x
— Calculation:

steepOpt :: < [Int] — Bool >
steepOpt = letm

e = steep []
€2 = sum ||
es = length []

a ®1 (average x, steep x) = steep (a : x)
a ®2 (sum z) = sum (a: x)
a @3 (length z) = length (a : )
g (sum z) (length x) = average x
in

< Az.let (st,s,l) = steep’ x in st

steep’ [] = (e1, ez, e3)

steep' (a: x)

= let (st,s,l) = steep’ =
in (a®1 (951, st),adss,a®3l)

>

— Relation between steep and steepOpt:

steep = steepOpt

Fig. 1 A Calculation Carrying Program for the Steep Problem.

calculation part. We use matching to extract body structures from steep, sum and
length respectively, and then glue them together inside code-generation brackets
<>.

Expanding the relation between steep and steepOpt, our system will automat-
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ically give the following efficient program:

steep = Az.let (st,s,l) = steep’ x in st
steep’ [] = (T'rue,0,0)
steep’ (a:z) = let (st,s,l) = steep’ x
in
let
@1 (y,2) = (x> y) Az
rTPoy=x+y
@3y =1+y
gsl=s]/l
in

(a®1 (g sl st),ads s,aDsl)

which is essentially the same as the efficient one given in the introduction. Note an
alternative way to use let instead of explicit substitution when instantiating bound
variables of @®;’s and g in code generation.

3 Formal Development

In this section, we give the formal definition of the core language for writing the
calculation carrying programs, including its syntax, semantics and typing rules.
Rather than inventing a completely new language, we tried our best to extend the
existing functional languages as little as possible, so that those who are familiar
with a functional language should have no difficulty in using and understanding our
language. The features of our language, as summarized in Figure 2, are two-fold.

e First, it is similar to existing functional languages like Haskell. The crucial
difference is that patterns that are used in A abstraction, let binding and case
matching are extended to be higher order ones which may contain function
variables. To make this more explicit, we introduce three new constructs,
namely A", letm, and casem.

e Second, it is a kind of meta language inspecting and generating codes, but
with the requirement that open code containing free variables not be allowed
to be generated. The advantage of doing so is that we can guarantee the
type correctness of generated programs, which have been considered a big
difficulty in meta programming [TS97, TBS98].

3.1 Object Language: Describing Naive Solutions

The object language, as defined by the upper part in Figure 2, is nothing special
but a subset of Haskell, a polymorphically typed pure functional language. We
do not discuss their details. Rather we give more examples for the definitions of
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functions used so far or to be used later.

sum : [Int] — Int
sum = Az.case z of
[]—0

(a:z) > a+sumz

length :: [Int] — Int
length = A\z.case x of
[]—=0
(a:z) — 1+length

foldr : (a—=b—b) —-b—[a] =0
foldr = \(®).\e.\x.case x of

[J—e

(a:2) > a® foldr (@) ex

For the sake of readability, we sometimes take liberty to use some familiar
syntactic sugars like infix notations, pattern matching equations instead of case
constructs, let binding instead of A abstraction, and etc.

3.2 Meta Language: Coding Calculation

The meta language basically consists of two parts. One is for encoding and decoding
expression, namely < e > and $¢®. And the other is for inspecting expressions by
higher order matching as used in A", letm and casem. We explain each construct
informally below, before giving the formal definition later.

e Je>

It is used to build expression code. For instance,
<24+3>
builds the code of expression 2 + 3. If e has some free variable like
< x.x+y>

we require the free variables (y for this example) be bound. For instance, if
y is bound as
y—2+3

then the e is equal to the code
<lety=2+3in z.x+y>.

.6$

It is used for decoding, being analogous to the unguote in Lisp. Basically, we

have

$

< e >" evaluates to e.
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o \¢p. e
It is used to define a meta function, which matches the input with e, to
bind the free variables in ej, and then computes e;. For example, the fusion
calculation rule in Section 2 can be specified by
fusion = \™ < fo foldr (®) e > .
(letm...in...).

For readability, we sometimes write f = A"'e,. e} as
fep = e

Note that we require the pattern expression e, (also that in the later letm
and casm) be tight (i.e., has neither 3 nor 7 redex) to take advantage of the
higher-order matching algorithm in [dMS99].

e letme, =¢, <ec.ine

It is used to match expression e, with expression pattern e, to bind free
variables in e, while satisfying the condition e., and then to compute e as its
result. This e, is useful to reduce the number of solutions' of bindings when
matching e, with e,. With this construct, we can code a simple one-step
hoisting transformation by

hoistl ©: <a> — <a>

hoistl <e> =
letm
c(letz = (lety=epine;) iney) = e
< not(y ‘isElem* fv ey)
in

<c(let y=-epin (let z =e; in e3)) >

If y is not free in e, under a context ¢, we can hoist y up. Here, fv es
computes all free variables in es.

e casem e of ¢, —e1;...5¢p, — €y

This construct provides a convenient way to specify manipulation of expres-
sion case by case. It will match e with e,,,...,e,, one by one till it succeeds,
say at e, and it will then compute e; to give the result. It should be noted
that a meta expressions does not need to return an expression code as result.
As an example, the following definition of isContext, determining whether
an expression represents a context, gives a boolean result.

1sContext :: <a> — Bool

1sContext = A" < e > .casem e of
Ax.e/ — x ‘isElem’ fv €
_ — False

Here, an expression is said to be a context if it is a function with its bound
variable appearing in the body as holes.

1 Note that matching two expression terms may give many solutions, which is different from the
pattern matching in functional languages [Pey88].
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3.3 Semantics

The semantics for the core language is quite similar to that of general functional
languages except for the following two points.

e Qur expression evaluates to a list of values rather than a single one, because
our core language allows higher order pattern matching which may com-
pute many solutions. This is opposed to data constructor pattern matching
[Pey88] whose solution is unique.

e We add expression codes to the resulting value domain to treat them as first-
class values, so that we can manipulate expression codes in a similar way as
we manipulate data like lists.

We shall take a closer look at the higher-order matching we use, before giving
the semantics of the language.

Higher-order Matching

Higher-order matching plays an important role in our meta language. Given two
expressions e, (the pattern) and e; (the term) in the object language, matching is
to find all possible substitutions ¢ such that

¢ep:€t

Here equality is taken modulo renaming (a-conversion), elimination of redun-
dant abstraction (n-conversion), and substitution of arguments for parameters (-
conversion). We call such ¢ a match, which is a map from variables to expressions:

¢ :: Var — Exp

where Exp denotes all object expressions.

Clearly it is undesirable that matching gives a potentially infinite set of matches
in the context of automatic program transformation. In [HL78], Huet and Lang sug-
gested restricting attention to matching of second-order terms, and gave a matching
algorithm which is both decidable and complete to compute a finite number of in-
comparable matches. Recently, de Moor and Sittampalam [dMS99] extended the
second-order matching algorithm, and present a new one to suit transformation of
Haskell programs. The new algorithm can accept higher-order and polymorphi-
cally typed terms, sharing the property that it returns a well-defined, finite set
of matches. We will not be involved in more detailed discussion on higher-order
matching. Rather we use these results in this paper through the function matching:

matching :: Exp — Exp — [Var — Exp]
which accepts two expressions e, and e;, and returns a list of matches. For instance,
matching (Az.v z ¢) (A\z.c z ¢)
gives two matches, namely

fv=d} and {ve Az )y.c z c}.
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Here ¢ and ¢’ represent some constants.

As it is required in [dMS99] that the pattern e, be free of 7)-redex, and that the
term e; be free of 8 and 7 redex, we use the function

reduce :: Exp — Exp

to reduce 8 and 7 redex in an expression.

Interpretation

To interpret meta expressions to values, we extend our ordinary values with ex-
pression codes such that expressions can be manipulated in a similar way as other
values like integers. We use Env for the environment, and Val for the values. The
environment maps a variable to a value:

Env — Val.

Figure 3 gives a formal definition of the semantics of the core language. For
simplicity, we have assumed that each bound variable has been renamed with a
unique name, and hence we do not consider name conflicts in definition of semantics.

£ evaluates a meta expression, under an environment, to a list of values instead
of a single one. This is due to many possible matches for a single matching. Using
list here resembles the technique used to deal with nondeterminism in construction
of the monadic parser [HM98]. U flattens a list of lists. p; @ pa, for extending
environment p; with po, is defined by

(p1 ® p2) © = p2 z, x is defined in py
= p1 z, otherwise.

The main characteristics of £ is that it binds local variables using matching.
With this in mind, it should not be difficult to understand its definition. Note that
we use the list comprehension notation in definition of £.

Now, the meaning of f = f’ is simple, just to associate f with one of the codes
from computation of E[f']p.

3.4 Type System

In typing, there is no big difference between the higher-order matching in pure
language and the ordinary matching in traditional functional languages. To handle
meta codes, we just extend the traditional type system to include the type to
represent codes. Thus the syntax for our types are

Polytype: o = Va.o

| 7 monotype

| <7> code type
Monotype : 7 := « type variable

| b base type like Int

| 71 — 7 function type

Figure 4 summarizes the typing rules, each of which is defined by a judgment
I' F e:: o, where e is our well-typed expression, ¢ is the type of the expression,
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and I is the environment assigning types to term variables. Since we do not allow
to generate open code, we can thus treat variables in meta codes in the same way
as in other places, and easily guarantee the correctness of generated codes.

Proposition 1 (Type Soundness) For all well-typed expression, I' e :: o, then
Ele] :: [[o]], where [-] is a map from type attribute to its set of value meanings. O

4 More Application Examples

In Section 2, we have illustrated the idea of calculation carrying programs by
two simple examples. We will give more practical application examples in this
section. Specifically, we will demonstrate in general how to declare calculational
rules, calculational strategies, as well as program development process.

4.1 Coding Calculational Rules

Rules (laws) are most fundamental to transform expressions. In our language they
are naturally described by using higher-order matching.

Simple Rules

Consider to define the rule transforming 0 + = to z. We can simply code it as

removeZero :: < Int> — <Int>
removeZero = A" <0+zx>. <x>.

For readability, we often write the above as:

removeero <0+zxz>=<zx>.

Two remarks are worth making. First, the expressions to be matched can have
multiple occurrences of the same variable [HL78], i.e., the rules are not necessary
to be left linear. So,

sum2Double :: Num a =><a>—<a >
sum2Double = \" <z 4+ >. <2%xx >

is a valid rule.

Second, like programming in ordinary pattern matching, we can define calcu-
lation in a case-by-case way. For example, the following concatRm are used to
remove the concatenation operator “+” by matching for two cases:

concatRm :: < [a] >—=< [a] >
concatRm <[] ++z >

= <z>
concatRm < (a:zx)++y >

= <a: (concatRm <z ++y>)% >

This is equivalent to

concatRm =
A" < e > .casem e of
[]+H2 - <z>

(a:x)+Hy — <a:(concatRm < z+y>)%>.
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Tuping Calculation Rule

In Section 2, we have shown how to code a fusion calculation rule. We will show
how to code another very important one called tupling [Fok92, HITT97]:

hx = (f z,g )

f 1l =e
fla:z)=ad(f 7,9 z)
g ] = ey

gla:z) =a®(f z,9 x)
h = fOld’)" (@) (61,62)
where
a® (xay) = (a @ (x,y),a@ (x,y))

which says that tupling of mutumorphisms (regular mutual recursively defined
functions) yields a catamorphism (fold).

This rule can be straightforwardly programmed by

tupling = <[a] = (b,c) >—=<[a] — (b,c) >
tupling = A" < Xx.(f z,9 ©) > .

letm
el =[]
a6 (f 2,9 7) = f (a: )
€2 =g

[]
a®(fz,9z)=g(a:z)
in <leta® (z,y) = (a® (z,9),a ® (z,y))
in foldr (®) (e1,e2) > .

Following this way, it should not be difficult to code other interesting calcula-
tion laws such as the parallelizing theorem [HTC98], the accumulation calculation
theorem [HIT99], and the diffusion calculation law [HTI99].

4.2 Coding Calculation Strategies

Valid transformations on program can be described by a set of calculation rules;
while calculation strategies are applied to obtain the desired optimization effects
[VBT98]. In this section, we would like to demonstrate that those important strate-
gies in [VBTY8] can be programmed here in a more concise and direct way.

Basically, the sequential application of two rules r; and ro to a term < ¢ > can
be coded by
ro (r1 <t>)
and the choice application of rules rq,...,r, to term < ¢ > can be coded something
like
casem t of
caser — 11t

case, — 1Ty t

as we have shown in the definition of concatRm.
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To appreciate its use, suppose we want to apply the fusion calculation fusion
to an expression to remove as many function compositions as possible.

applyFusion @ <a>—=<a>

To this end, we repeatedly select the fusible subexpressions and apply the fusion
calculation to them, until we have no fusible subexpressions any more. This is
coded by
applyFusion < e >=
casem e of
¢ (Ao f (g 2)) =
let h = fuse2 < f> <g>
inif h!= Fail
then applyFusion <ch >
else let ¢ = (applyFusion < c¢>)
f' = (applyFusion < f >)3
g = (applyFusion < g >)%
in <d (Az.(f' (¢' ) >
_—<e>
where fuse2 is a meta function to fuse two functions into a single one, defined by

fuse2 : <b—=>c>—=<a—=>b>=3<a—c>
fuse2 = A" < f > A" <g>.
letm e =g []
(a®gz)=g(a:x)
in fusion < fo foldr (®)e>.

4.3 Coding Programming Development

The creative steps in transformational programming are very difficult to be imple-
mented in a fully automatic way. The calculation carrying code provides us with
a flexible means to code these creative steps.
Consider we want to develop an efficient program to reverse a list. A naive

definition is

rev = [a] — [a]

rev[] =]

rev (a:x) = rev x +[d]
which is a quadratic program. We would like to accompany it with a calculation to
turn it to be a linear one. It has been shown in [Hug86] that we need two creative
steps for this improvement. First, we need to introduce an accumulation parameter
starting from [], as define by

Tev T = fastrev x []
fastrev x y = rev z ++vy.

Second, to derive efficient definition for fastrev, we need to apply the fusion cal-
culation to (+H y) o reverse, where we are required to use the associative property
of H:

(z+y) +2z = z++(y++2).
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Although these two steps are difficult to be made automatic in general, we are
able to code them as
revOpt = < [a] = [a] >—< [a] = [a] >
revOpt = letm e =[] ++y
a® (x+y) = (assoc <rev (a:z)++y >)
in < (\y. foldr (®) e) [] >

where assoc specifies the association rule,as defined by:

assoc t<a> = <a>
assoc < (x+ty)+z>=<z+(y++z)>.

To complete the calculation carrying program for rev, we associate the naive
definition of rev with the the above calculation by

rev = revOpt.

Now our compiler can automatically derive fastrev after executing the above pro-
gram.

This example shows that our framework is helpful to support transformational
programming approach to develop efficient programs.

5 Related Work

Incorporating the use of higher order matching (or unification) to concisely express
program transformations have been seen in many systems, such as Ergo [PESS§],
KORSO [BLSW95] and MAG [dMS98]. Our work has received much influence
from the MAG system which is designed to support generic transformational pro-
gramming. Like our system, MAG could associate the original clear program with
a theory consisting of the optimization rules needed to obtain the second efficient
program. However, MAG uses higher order matching only implicit by the sys-
tem. In contrast, we design a language with general matching mechanism so that
programmers can express explicitly what exactly they want to match. This pro-
vides a flexible way to code transformation (calculation) strategies and program
development process as seen in Section 4, which would be very difficult in MAG.

There are a number of specialized pattern languages for the purpose of program
inspection and transformation [Hec88, AFFW93, Mal93, Cre97, Big98]. Often,
these do not include higher order patterns. Instead, they provide a set of primi-
tives for matching and building subtrees, but for the most part require that tree
traversal be programmed explicitly in imperative style, node by node. In particu-
lar, we should compare our work with that in [Hec88]. In [Hec88], a language was
proposed to combine features of general purpose functional language with special
means to specify tree transformations, and much effort was denoted to design a
pattern specific language allowing for partitioning syntax trees by arbitrary verti-
cal and horizontal cuts. This work has the same purpose as ours to embed powerful
pattern matching into a functional language, but it uses many lower-level matching
constructs. In contrast, our use of the higher order matching makes our programs
more concise and more readable than those in [Hec88]. It would be interesting to
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see what primitive patterns suggested in [Hec88] can be profitably combined with
higher order matching.

Our work is also related to the work on meta programming. MetaML [TS97]
is a statically-typed multi-stage programming language, allowing the programmer
to construct, combine, and execute code fragments. But using MetaML to code
calculation would be difficult and complicated, because it does not have powerful
matching mechanism. PATH [TH98] is a system in which an intermediate meta
language was designed for transforming functional programs. Different from our
system where we describe calculation independently, PATH uses annotations to
describe application of transformation rules to programs, and programmers need
to add suitable annotations during transformation. There are other languages
for scripting transformation like [Pul99], which are not so abstract enough for
programmer to specify their intention for manipulating programs as ours.

The system RML optimizer [VBT98] is close in spirit to our system. It studies
how to transform the source code of a program into another one in the compiler
for optimization, based on ideas from term rewriting. It argues that a good way is
to use explicit specification of rewriting strategies, and it shows that it is possible
to break down rewrite rules into two primitives: matching against term patterns
and building terms. Unlike our system, all these are done inside compiler rather
than being open to programmers. So, their implementation of the transformation
strategies in terms of the matching/building primitives is much more complicated
and difficult to understand than our coding of calculation strategies as shown in
Section 4.

There are a lot of work on developing fast implementation of matching algorithm
[CPT92, CQS96, dMS99]. Particularly the Oxford Programming Tools Group
(http://www.comlab.ox.ac.uk/oucl/groups/progtools/) are now actively re-
searching on this topic.

Finally, this work is a continuation of our effort in application of program
calculation technique to derivation of efficient programs and to construction of
optimizing passes in compilers. We have developed many cheap but powerful cal-
culational rules such as fusion [HIT96, OHIT97], tupling [HITT97], accumulation
[HIT99], parallelization [HTC98], and diffusion [HTI99]. Although all these can be
implemented in an automatic way in theory, it is quite time-consuming to imple-
ment them in practice; implementation of the HYLO fusion calculator [OHIT97]
in the Glasgow Haskell Compiler has actually taken us about two years. We be-
lieve that we are now in the position to construct an environment for coding and
implementing calculation rules.

6 Concluding Remarks

We have proposed a new framework for writing calculation carrying programs, for
the purpose of relaxing the tension between clarity and efficiency in programming.
As demonstrated by several convincing examples, this framework has shown its
significance and promise both in support of transformational/calculational pro-
gramming and in compiler construction based on program transformation.
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It should be noted that we do not need folding in our transformation at all.
This is in sharp contrast to many existing transformation systems that are based
on fold/unfold transformation technique. We believe that the partial correctness
problem and high implementation cost of fold / unfold transformation prevent it
from transforming large scale programs [GLJ93, TM95].

Although our framework works on functional languages, we could extend it to
be applicable for logic or imperative languages. As to our future work, we should
study more on higher-order meta functions and the modularity of calculations, both
of which have not been fully addressed in this paper. Furthermore, we are planning
to port the current experimental system to Gofer to make it be really Good for
expressing reasoning.
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Definition:
def ::= f = e function definition
Expression:
— Object Part —
e =20 expression variable
| n constant
| Av.e lambda abstraction
| e1 e function application
| caseeof pj = eq;...;p, — €, case expression
— Meta Part —
| <e> code of expression
| eb expression from code
| em expression with higher-order matching

Expression with Higher-order Matching;:

em = \"ey. ep generalized lambda expression
| letme,=¢e,<ecine generalized let expression
| casem e of e, — e1;...;€e,, — €, generalized case expression

Simple Pattern:

pu=w pattern variable
| Cpy -+ pn constructor pattern

Relation between Object and Meta Symbols:

bind ::= f = g binding between object and meta functions

Fig. 2 The Core Language
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Ele] 2 Env — [Val]
Elolp = [p ]
Elnlo = [n]
E[Mw.e]p € =E&le] (pe{v—e})
Eler e2]p = [e1 ey | €1 < Elea]p, €5 < Eea]p]
E[case e of p1 = e1;...;pn = en]p = [case € of py > €] ...;p, — €,
| e < Elelp, e} < Eledlp, - .-, e, + Elenlp]
El<e>]p = [<pe>]
E[< e >%p =[p e
E[N™ <ep>.ep)p <e > = U [E]es] (p @ @) | ¢ < matching e, (reduce ep)]
Elletm e, = e, < e, in €]p = U[E[e] (p® @) | ¢ < matching e, (reduce (pey)),

Elec] (p® @) == [True]]
E[casem e of e,, > e1;...5e, = en]p = U [ Eler] (p® é1) | ¢1 < matching ey, (reduce (pe))] +
PN _'_+_
[Elen] (p & én) | dn < matching ey, (reduce (pe))]]

Fig. 3 The Semantics of the Core Expressions
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— Object Expression —

I(z) = :
T E 7 g Variable T F 7 = baseType(n) constant

Fe{z—=o01} F euoy

. 'k e tog—09 T F e
I'F Az.e:zop = oo abstraction

F el es oo

'k exo
FeUyervpnivii— o} F proo, e o

e U'Um'EFV(pn){Uni = opit b opniio, e, o’ case
I - caseeof py > e;---,pp > ey 0

— Meta Expression —

'k e:o ''Fex<o>
F I_ <e>u<o> COde F I— e$ o deCOde
reuy,, Vi opi ) Foep <o >, ey o .
vleFVI(‘ePlz{ /\Zme Z)}__< 01p>_> 012 » 70 %2 etaAbstraction
p-€b
't e o
L'® Uy ervie,)ivi = 0pi} F e, 0, €. Bool, e o' letm
I'F letme,=¢,<e.ine:o’
'k exo
I‘@Uv“epv(em){vu — ot Foep o, e ol
L ®U,, ervie,, )10ni = oni} ey, 10, €0’ casem
I - casemeofe, e e, —>epo

= 91 application

Fig. 4 Typing Rules



