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Abstract

The problem of estimating the statistical model of indepen-

dent component analysis in the presence of Gaussian noise is

considered. Because of the additive noise, a combination of fac-

tor analysis and a noise-free ICA algorithm doesn't give a consis-

tent estimator of the mixing matrix. In this paper, following the

semiparametric statistical approach to the noise-free ICA model

by Amari and Cardoso(1997), we propose a method of estimating

the mixing matrix consistently even if the additive noise exists.

The proposed algorithm consists of two stages: First �nd the

factor subspace by means of factor analysis, and then determine

the directions of independent components based on an estimat-

ing function in this semiparametric model.
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1 Introduction

Independent component analysis (ICA) uses a statistical model where ob-
served data are expressed as a linear combination of statistically indepen-
dent random variables. Since Jutten & Herault(1991) published the �rst
algorithm for the blind source separation, a lot of new ideas and algo-
rithms have been proposed by researchers on signal processing and neu-
ral networks. These algorithms were rationalized theoretically by Amari
and Cardoso(1997) in the framework of semiparametric statistical models
(Bickel et al.,1993).

Many papers on ICA treat the following simplest case. Let s = (s1; : : : ; sn)
T

be a vector of n source signals whose components are mutually stochastically
independent. Let

x = As

be an observed mixed signal vector, where we assume A is an unknown n�n
invertible matrix, and the probability distribution �(s) of s is unknown ex-
cept that the n source signals are mutually independent. When a sequence
of observed signals fx(1); : : : ;x(T )g is given, ordinal ICA algorithms are de-
signed for estimating the mixing matrix A within this model and recovering
the original signals by

y(t) = Wx(t)

where W corresponds to the inverse of A.
However in realistic situations such as in MEG data analysis, it is not

rare that certain measurement noises are added after mixing source signals.
Ordinal ICA algorithms perform worse as the noise level increases and it is
very di�cult to derive meaningful outcomes. Therefore investigation of the
ICA model with additive noise

x = As+ �

becomes one of the most important topics now. There exist several pa-
pers which handled ICA models with measurement noise. Both the maxi-
mum joint likelihood method (Hyv�arinen,1999) and the maximum marginal
likelihood method (Attias,1999) work on the condition that the distribu-
tions of the source signals are known. The bias removal learning algorithm
proposed by Chichocki et al.(1998) assumes that the amplitude of noise is
small. The JADE algorithm (Cardoso et al.,1993) and the Fast ICA algo-
rithm with Gaussian moments (Hyv�arinen,1999) are semiparametric meth-
ods which give an estimate of the mixing matrix without knowledge of the

2



unobserved source distributions. Although the original algorithms assume
that the noise variance is known or sphere, they can be used with quasi-
whitening by factor analysis even for the noisy ICA model where the noise
variance is unknown.

In this paper, we explain a semiparametric approach for the noisy ICA
model where desired estimators are described in terms of estimating func-
tions. Then we propose a noisy ICA algorithm which consists of two stages:
First �nd the factor subspace by means of factor analysis, and then de-
termine the directions of independent components based on an estimating
function in this semiparametric model.

This paper is organized as follows. In section 2, some notions and de�ni-
tions such as semiparametric models, estimating functions, and multivariate
Hermite polynomials are prepared. Then theorems about estimating func-
tions in the noisy ICA model are summarized in section 3. Because it is not
the aim of this paper to discuss the estimating functions generally and thor-
oughly, further detail will be presented in a forthcoming paper. Moreover
those who are interested in the proposed algorithm can skip this section.
After factor analysis are explained briey in section 4, Section 5 is devoted
for explaining a noisy ICA algorithm based on an estimating function and
the reason why it gives a consistent estimator in this semiparametric situ-
ation. In section 6, we investigate performance of the presented algorithm
via numerical experiments. Relationships to other noisy ICA algorithms are
discussed in the �nal section.

2 Mathematical Preliminaries

2.1 Semiparametric Models and Estimating Functions

Let us consider a sequence of n-dimensional random vectors generated from
an ICA model with additive noise

x(t) = As(t) + �(t); t = 1; : : : ; T: (2.1)

where A is an unknown n � m matrix, and the vector � is measurement
noise. And s(t) = ( s1(t); : : : ; sm(t) )

T is a sequence of m unobserved source
signals which are mutually independent. Although there are a lot of papers
considering time-dependent sources in the noise-free ICA model, we assume
for simplicity that the source signal vectors s(t) are independent and identi-
cally distributed in time, and sometimes the index of time is omitted in the
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following. The joint probability density function �(s) of s is then factorized
as

�(s) =
nY
i=1

�i(si) (2.2)

where �i(si) is the density function of the i-th signal si. We consider the
semiparametric situation that the function forms of �1; : : : ; �m are unknown
except for

E�i [si] = 0; i = 1; : : : ;m: (2.3)

With respect to the additive noise, we assume that the random vector �
is independent from the sources s and subjects to a multivariate normal
distribution N(0;�) where � = diag(�2i ).

The density function of observed data x can be expressed as

p(x;A;�; �) =

Z
p(xjs;A;�)�(s)ds; (2.4)

p(xjs;A;�)

=
1

(2�)n=2j�j1=2
exp

�
�
1

2
(x� As)T��1(x�As)

�
: (2.5)

The equation (2.4) is a mixture of the normal distributions (2.5) by the
unknown function �. This is a semiparametric model, where the mixing
matrix A and the noise variance � are parameters of interest and the den-
sity � is a nuisance parameter in a function space. We remark that this
parameterization is redundant as follows. Let D = diag(d1; : : : ; dm) be any
diagonal matrix and put eA = AD�1, es = Ds, e�i(esi) = �i(esi=di)=di, then
the densities correspond to these two parameters are the same. Therefore, it
is necessary to impose certain appropriate restrictions on the mixing matrix
A or the scale of the source signals s. For instance, we can add restrictions

E�i

h
s2i

i
= 1; i = 1; : : : ;m: (2.6)

Estimating functions introduced by Godambe(1976) provide a general
framework for discussing semiparametric estimators. Let us consider gen-
eral semiparametric models in the form of f p(x;�; �) g, where � is the r-
dimensional parameter to be estimated and � is a nuisance parameter which
belongs to an in�nite dimensional or a function space. A r-dimensional
vector function f (x;�) that does not depend on � is called an estimating
function when the following conditions are satis�ed for all � and all �.

E�;� [f(x;�)] = 0 (2.7)
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det jKj 6= 0; where K = E�;�

�
@

@�
f(x;�)

�
(2.8)

E�;�

h
f(x;�)fT(x;�)

i
< 1 (2.9)

If such an estimating function f(x;�) exists, we can obtain an M-estimator
from given i.i.d. data x1; : : : ; xn by solving the estimating equation

nX
i=1

f(xi; b�) = 0: (2.10)

It can be shown under some additional regularity conditions that the M-
estimator is consistent whatever � is. Its covariance matrix is given asymp-
totically by

V
hb�i = 1

n
K�1E�;�

h
f fT

i �
K�1

�T
: (2.11)

2.2 Decomposition into Regressor and Residual

The noisy ICA model (2.1) at a time has some analogy with the general re-
gression model, where A is a matrix of explanatory variables, s is regression
coe�cients and � is assumed to be known. We will prepare and use some
notions and terminologies of the regression analysis in order to investigate
the estimating functions for the noisy ICA model.

Given the source signals the conditional density (2.5) can be decomposed
as

p(xjs;A;�) =
1

(2�)n=2j�j1=2
exp

�
�
1

2
(y � s)TV �1(y � s)�

1

2
zT��1z

�
(2.12)

where we de�ne

y(x;A;�) � (AT��1A)�1AT��1x 2 Rm; (2.13)

z(x;A;�) �
n
I � A(AT��1A)�1AT��1

o
x 2 Rn; (2.14)

and V = (vij) � (AT��1A)�1. By the decomposition theorem y can be
regarded as a su�cient statistics for s under �xed A and �, while z is an
ancillary statistics (remind that estimating functions are functions of the
parameters A and �). Furthermore y and z are independent from each
other. This can be shown by the orthogonal property explained after the

5



equation (2.18). Because W � (AT��1A)�1AT��1 satis�es WA = Im (a
generalized inverse matrix A), y can be expressed as

y = s+ �; � �W� � N(0; V ): (2.15)

Therefore, y is subject to N(s; V ) for given s. On the other hand, z does
not depend on s and distributes with an (n�m)-dimensional degenerated
normal distribution (AT��1z = 0).

z � N(0;�); � = (ij) = ��AV AT (2.16)

The marginal distribution (2.4) which is integration of (2.5) with the
density � of s can be decomposed as

p(x;A;�; �) =
1

(2�)n=2j�j1=2
exp

�
�
1

2
zT��1z

�
�

Z
exp

�
�
1

2
(y � s)TV �1(y � s)

�
�(s)ds: (2.17)

In the same way y can be regarded as su�cient statistics of the nuisance
function �, z as ancillary statistics, and they are independent. We remark
that these properties hold without mutually independence of the source
signals si.

The data x can be decomposed into the projection to the subspace
spanned by the column vectors of A and its orthogonal complement

x = Ay + z (2.18)

where orthogonality is de�ned by the metric ��1 (inverse of noise variance)
and expressed as (Ay)T��1z = 0. Using the terminologies of regression
analysis, y corresponds to the weighted least square or minimum variance
unbiased estimator of s and z corresponds to the residual.

2.3 Multivariate Hermite Polynomials

Multivariate Hermite polynomials will be used to specify the estimating
functions in the noisy ICA model. They are extensions of well known Her-
mite polynomials to multivariate normal distributions. We express the den-
sity function of the m-variate normal distribution with mean 0 and covari-
ance matrix V = (vij) as

�(y;V ) =
1

(2�)m=2jV j1=2
exp

�
�
1

2
yTV �1y

�
: (2.19)
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Let us put two di�erential operators, Di � @=@yi and eDi � @=@eyi, whereey = V �1y. Then two types of multivariate Hermite polynomials are de�ned
as follows.

De�nition 1 Covariant Hermite Polynomials H and Contravariant Her-
mite Polynomials eH

Hr1:::rm(y;V ) = (�D1)
r1 � � � (�Dm)

rm�(y;V )=�(y;V ) (2.20)eHr1:::rm(y;V ) = (� eD1)
r1 � � � (� eDm)

rm�(y;V )=�(y;V ) (2.21)

Here the subscripts r1; : : : ; rm of these polynomials mean the power expo-
nents.

In this paper, we express the power exponents as r = (r1; : : : ; rm) in the
vector form and adopt the simpli�ed notations

r! � r1! � � � rm!;

tr � tr11 � � � t
rm
m :

The generating functions of multivariate Hermite polynomials are

X
r

tr

r!
Hr(y;V ) =

�(y � t)

�(y)
= exp

�
tTV �1y �

1

2
tTV �1t

�
; (2.22)

X
r

tr

r!
eHr(y;V ) = exp

�
yTt�

1

2
tTV t

�
: (2.23)

These are used for proofs of the next lemma and other properties.

Lemma 1 fHrg and f eHerg form mutually orthogonal polynomials.

Z
Hr(y;V ) eHer(y;V )�(y;V )dy =

(
0 if r 6= er
r! if r = er : (2.24)

3 Estimating Functions in the Noisy ICA Model

In this section we will explain estimating functions in the noisy ICA model
briey. As the most important property is unbiasedness (2.7) for any nui-
sance parameter �, the most part in this section are used in order to charac-
terize scalar functions which satisfy the same unbiasedness as (2.7). These
unbiased functions are candidates for components of estimating functions.
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Indeed, if we can collect n�m+n unbiased functions (the same number as
the parameter to be estimated) which satisfy the other conditions (2.8) and
(2.9) in all, then the set of the functions becomes an estimating function.

Let us express model assumptions concretely. On the density function �
of the source s, the following constraints must be imposed.

condition I:

Z
�i(si)dsi = 1; i = 1; : : : ;m (3.1)Z
si�i(si)dsi = 0; i = 1; : : : ;m (3.2)

The former is normalization of density, while the latter comes from the
condition (2.3). If we restrict the mixing matrix A to cancel the redundancy
of the noisy ICA model, we should discuss under the condition I. On the
other hand, in case we restrict scales of the source signals, constraints on
variances (2.6) are employed in addition to the necessary constraints,

condition II: condition I +Z
s2i�i(si)dsi = 1; i = 1; : : : ;m: (3.3)

Let us de�ne F?
A;� as the set of functions whose conditional expectation

for given y = y(x;A;�) are zero.

F?
A;� � ff(x); EA;�[f(x)jy] = 0g (3.4)

We remark that the conditional distribution of x for given y does not depend
on the nuisance parameter � because of (2.17). It can be shown that the
unbiased scalar functions consist of elements of F?

A;�, the unbiased functions
of y = y(x;A;�) and their linear combinations. Roughly speaking, the
former contribute to estimating the signal subspace, while the latter will do
for pursuit of the independent component directions.

Theorem 1 Under the condition I, the set of the scalar unbiased functions
are expressed as

F?
A;� � ff(y;A;�) ; satisfy (3.6)g (3.5)

EA;� [f(y;A;�)js] =
mX
i=1

si �i(s�i) (3.6)

where � means the direct sum and �i is an arbitrary function of
s�i � (s1; : : : ; si�1; si+1; : : : ; sm).
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Proof Any scalar function f(x;A;�) can be decomposed as

f(x;A;�) = EA;�[f(x;A;�)jy] + f f(x;A;�)� EA;�[f(x;A;�)jy] g (3.7)

where the �rst term of the right hand side of (3.7) is a function of y =
y(x;A;�) and the second term is an element of F?

A;�, that is, its conditional
expectation vanishes. The uniqueness of such decomposition is obvious. For
any element ef(x;A;�) of F?

A;�,

EA;�;~�

h ef(x;A;�) i = EA;�;~�

h
EA;�

h ef(x;A;�)���yi i = 0

holds for all e�. This indicates that F?
A;� is included in the set of the scalar

unbiased functions.
With respect to functions of y, a function f(y;A;�) whose conditional

expectation for given s can be expressed as (3.6) is unbiased for all �, because
the components si are mutually independent and have zero mean. Proof of
the converse is omitted here. 2

Remark Under the condition II, (3.6) is replaced by

EA;� [f(y;A;�)js] =
mX
i=1

si �i(s�i) +
mX
i=1

(s2i � 1)�i(s�i) (3.8)

It is di�cult to determine general form of functions of y whose condi-
tional expectation for given s can be expressed as (3.6). However we can
describe polynomials concretely which have this property. For simplicity, we
assume that any moment of the source signals si exist in this section.

Theorem 2 Under the condition I, the set of the unbiased polynomials are
expressed as

IYA;� = spanf eHr(y;V ); r = (r1; : : : ; rm);

at least one of the indices r is equal to 1g (3.9)

Proof Polynomials of y are spanned by the covariant Hermite polynomi-
als fHr(y;V )g or the contravariant Hermite polynomials f eHr(y;V )g. From
the generating function of the covariant Hermite polynomials, the following
equation holds,

�(y � s;V )

�(y;V )
=
X
q

sq

q!
Hq(y;V ):
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Using this equation and lemma 1, the conditional expectation of a con-
travariant Hermite polynomial eHr(y;V ) becomes

EA;�[ eHr(y;V )js] =

Z eHr(y;V )�(y � s; V )dy

=

Z eHr(y;V )�(y;V )X
q

sq

q!
Hq(y;V )dy

= sr = sr11 � � � s
rm
m :

Therefore if an Hermite polynomial is unbiased, one of its power indices
r1; : : : ; rm must be 1. It means that the set of unbiased polynomials of y is
described as IYA;�. 2

Examples of unbiased polynomials are

yjyk � vjk; j < k; (3.10)

y3j yk � 3vjjyjyk � 3vjky
2
j + 3vjjvjk; j 6= k; (3.11)

y2j ykyl � vjjykyl � vkly
2
j � 2vjkyjyl � 2vjlyjyk + vjjvkl + 2vjkvjl: (3.12)

We call them (1; 1)-type, (3; 1)-type and (2; 1; 1)-type respectively.

Remark Under the condition II, for instance the following polynomials
satisfy the unbiasedness.

eHB2

j
0(y;V )� 1 = y2j � vjj � 1; 0 = (0; : : : ; 0) (3.13)eHB2

j
r(y;V )�

eHr(y;V ); r = (r1; : : : ; rj�1; 0; rj+1; : : : ; rm) (3.14)

where Bj means an operator which add 1 to the j-th su�x rj (rj ! rj +1).

We can construct unbiased functions other than polynomials. Some func-
tions which are product of a polynomial and a Gaussian density become un-
biased. These functions appeared in the Fast ICA with Gaussian moments
(Hyv�arinen,1999).

Theorem 3 For any d > 0 and any integer r,

fyjHr(yk; d) + vjkHr+1(yk; d)g�(yk; d); j 6= k (3.15)

is unbiased for all �.
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Finally we briey deal with the assumption (2.8) of estimating functions.
If (2.8) is not satis�ed it may happen with non zero probability that we
can not determine an estimator even locally and the M-estimator is not
guaranteed to have the good asymptotic properties as described in section 2.
A necessary condition of (2.8) is that any components fi(x;�) (i = 1; : : : ; r)
of an estimating function f(x;�) should satisfy

9j s.t. E�;� [ fi(x;�)uj(x;�; �) ] 6= 0 (3.16)

for all i = 1; : : : ; r, where uj � @ log p(x;�; �)=@�j is the the score function
of �j (Amari and Kawanabe,1997). In information geometry (Amari,1985),
E[ fi uj ] in the equation the equation (3.16) is employed as the inner prod-
uct of these functions. Therefore, to put the necessary condition di�erently,
any components of an estimating function are not orthogonal to the score
functions of the parameter to be estimated. Roughly speaking, only score
functions carry the su�cient information to estimate the parameters, there-
fore if fi is orthogonal to all the scores, it means fi does not include any
information. In the noisy ICA model, the score functions of the parameter
A and � are expressed as

UA = ( uaij )

=
@

@A
log p = ��1xE[sTjy]� ��1AE[ssTjy]; (3.17)

u�2
i
=

@

@�2i
log p

= �
1

2�2i
+

x2i
2�4i

�
xi
�4i

X
j

aijE[sj jy] +
1

2�4i

X
j;k

aijaikE[sjskjy]: (3.18)

We characterize here which kind of polynomials in the set IYA;� are not or-
thogonal to all these score functions and available for components of esti-
mating functions.

We can obtain the inner product of contravariant Hermite polynomials
and the score functions.

Theorem 4 The inner product of a contravariant Hermite polynomials eHr
and the score functions uaij , u�2

i
can be expressed as

E
h eHruaiji =

X
h

rhwhi �
(B�1

h
Bjr); (3.19)
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E
h eHru�2

i

i
=

1

2

(X
h

rh(rh � 1)w2
hi �

(B�2

h
r)

+
X
h 6=~h

rhr~hwhiw~hi �
(B�1

h
B�1

~h
r)

9=; ; (3.20)

where W = V AT��1 = (AT��1A)�1AT��1 is a generalized inverse matrix
of A, �'s denote moments of the source signals.

�(r) = �
(r1)
1 � � ��(rm)m ; �

(ri)
i = E [srii ]

Bj means an operator which replaces rj with rj + 1 as de�ned before, and

B�1
j is its inverse operator which replace rj with rj � 1 (de�ne �

(ri)
i = 0 for

ri < 0).

From this theorem and �
(1)
i = 0, next corollary follows.

Corollary 5

1. If r = (1; 0; : : : ; 0) (or its permutations), eHr is orthogonal to all score
functions.

2. If r = (1; r2; : : : ; rm); rj = 0 or 2, (or its permutations), eHr is orthog-
onal to u�2

i
.

3. If the number of 1 included in r is greater than three, eHr is orthogonal
to all score functions.

Furthermore, we assume that s1; : : : ; sm have symmetric distributions

around the origin. Then for any odd integer j, �
(j)
i = 0 holds.

Corollary 6 Suppose s1; : : : ; sm are symmetrically distributed around the
origin. Score functions and eHr are orthogonal except for

r = (1; r2; r3; : : : ; rm); r2 : odd, r3; : : : ; rm : even: (3.21)

or its permutation. If r is (3.21), the inner products of score functions andeHr are expressed as

E
h eHruai1i = r2w2i �

(2)
1 �

(r2�1)
2 �

(r3)
3 � � ��(rm)

m ; (3.22)
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E
h eHruai2i = w1i �

(r2+1)
2 �

(r3)
3 � � ��(rm)m ; (3.23)

E
h eHruaiji = 0; (j � 3); (3.24)

E
h eHru�2

i

i
= r2w1iw2i �

(r2�1)
2 �

(r3)
3 � � ��(rm)m : (3.25)

The examples (3.10) � (3.12) are the simplest polynomials that are not
orthogonal to all the score functions in the situation of Corollary 6. Exam-
ples of the polynomials that cannot be used as the estimating function are
(2; 1)-type Hermite polynomials. The inner products of score functions and
(2; 1)-type Hermite polynomials

y2j yk � vjjyk � 2vjkyj ; j < k; (3.26)

are zero except for

E
h eHruaiji = wki �

(3)
j (3.27)

because �
(rj�1)
j = �

(1)
j = 0. When s1; : : : ; sm are symmetrically distributed

around the origin, they are orthogonal to all score functions because �
(3)
j = 0.

Therefore, these polynomials do not contain su�cient information in order
to determine the parameter.

4 A Noisy ICA Algorithm Based on Estimating

Functions

Now we propose an algorithm which is a combination of factor analysis and
an estimating function method for the noisy ICA model. The latter part
can be regarded as a modi�cation of Jutten & Herault's procedure with the
concept of the estimating function.

1. Find the factor subspace by using factor analysis such as the un-
weighted least squares method (ULS) or the maximum likelihood method

(ML). Let
�
A(0);�(0)

�
be the solution derived by factor analysis.

2. Calculate initial estimates of source signals and their conditional co-
variances.

y(0)(t) =
n
(A(0))T(�(0))�1A(0)

o�1
(A(0))T(�(0))�1x(t) (4.1)

V (0) =
n
(A(0))T(�(0))�1A(0)

o�1
(4.2)
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3. Let Q be an m � m transformation matrix to the direction of the
independent components, that is, the mixing matrix is expressed as
A = A(0)Q�1 and

y(t) =
n
AT(�(0))�1A

o�1
AT(�(0))�1x(t) = Qy(0)(t) (4.3)

V =
n
AT(�(0))�1A

o�1
= QV (0)QT (4.4)

The matrix Q can be determined by the following estimating equations
(i 6= j)

TX
t=0

n
y3i (t)yj(t)� 3vijy

2
i (t)� 3viiyi(t)yj(t) + 3viivij

o
= 0 (4.5)

,
X
b;c;d;e

qibqicqidqie

TX
t=0

n
y
(0)
b (t)y(0)c (t)y

(0)
d (t)y(0)e (t)

�3v
(0)
be y

(0)
c (t)y

(0)
d (t)� 3v

(0)
bc y

(0)
d (t)y(0)e (t) + 3v

(0)
bc v

(0)
de

o
= 0 (4.6)

with appropriate additional constraints such as

TX
t=1

n
y2i (t)� vii � 1

o
= 0; i = 1; : : : ;m; (4.7)

mX
j=1

q2ij = 1; i = 1; : : : ;m: (4.8)

We will explain why this algorithm gives a consistent estimator regardless
of the density � of the source signals s in terms of estimating functions.

4.1 Factor Analysis and Prewhitening

In factor analysis, the model is also expressed as

x = As+ �

where A is called the factor loading matrix and s the factors. However,
distributional assumption on the factors s are di�erent. In case of factor
analysis, the factors s are often supposed to have a normal distribution
N(0; Im) and information of only second order moments are employed. So
we can only determine the factor subspace which is spanned by the column
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vectors of the factor loading matrix A, and a base of this subspace is se-
lected by another criterion such as othomax and oblimin in order to obtain
explainable factors. On the other hand, we assume that at least m� 1 sig-
nals is subject to non-normal distributions in the noisy ICA model. Under
this assumption, the mixing matrix A is identi�ed up to permutation and
scaling of its columns. In order to avoid the redundancy of the model, we
constrain the signals to have unit variances

E
h
ssT

i
= Im: (4.9)

We remark that this is also imposed in orthogonal factor models.
Although the distributional assumptions are di�erent from the noisy ICA

model, factor analysis can be used to determine the factor subspace and the
noise variance �. They can be estimated correctly, because the covariance
matrix of x is also expressed as

	 = E
h
xxT

i
= AAT +�; (4.10)

in the noisy ICA model. We note that the covariance matrix 	 is una�ected
by multiplying any m � m orthogonal matrix P on the right of A. An
additional constraint may be imposed to determine A uniquely. Let us
express the sample covariance matrix as

S =
1

T

TX
t=1

x(t)x(t)T: (4.11)

Several algorithms for estimating the factor loadings and the noise variances
have been proposed so far. We employ two major algorithms, the unweighted
least squares algorithm (ULS) and the maximum likelihood algorithm (ML).

In the ULS method, estimators are de�ned as the minimizer of the
quadratic loss criterion

Fu(	) = tr(S �	)2 (4.12)

Di�erentiating the criterion (4.12) by the parameters, we obtain the follow-
ing estimating equations

(S �	)A = 0 (4.13)

�2i = sii �
X
j

a2ij (4.14)
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Further, in order to determine the rotation uniquely for the present, we
assume that

o�diag(ATA) = 0 (4.15)

and the diagonal elements are in decreasing order. Then the estimators can
be derived by the Newton method where an eigen value decomposition is
available for calculating increments because of (4.15).

The ML method gives estimators which minimize the following loss cri-
terion

FM (	) = tr(S	�1)� log jS	�1j � n; (4.16)

which is derived from the negative log likelihood under the assumption that
s and � distribute normally. Di�erentiating the likelihood criterion (4.16)
by the parameters, we obtain the following estimating equations

(S	�1 � In)A = 0 (4.17)

�2i = sii �
X
j

a2ij (4.18)

Further, in order to determine the rotation uniquely for the present, we
assume that

o�diag(AT��1A) = 0 (4.19)

and the diagonal elements are in decreasing order. Then the estimators can
be derived by the Newton method where an eigen value decomposition is
available for calculating increments because of (4.19).

The n � n matrix valued function xxT � 	 = xxT � AAT � � which
appears in the estimating equations (4.13), (4.14), (4.17) and (4.18) is un-
biased, because E[xxT] = AAT + � holds for any distribution in the noisy
ICA model. Therefore, if we can obtain an estimator of the factor subspace
and the noise variance from these estimating equations, they will be consis-
tent regardless of the density � of the source signal s. In reference to the
previous section, let us decompose this function as

xxT �	 = (Ay + z)(Ay + z)T � AAT � �

= A(yyT � V � Im)A
T +AyzT + zyTAT + zzT � �;(4.20)

where � = � � AV AT is the degenerated covariance matrix of z. Then,
the components of the second, third and fourth term belong to (FA;�;�)

?.
The o�diagonal components of the �rst term (yyT�V � Im) are (1; 1)-type
contravariant Hermite polynomials, while the diagonal components become
unbiased under the additional condition (3.3).
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Finally, we discuss the results of factor analysis when the sample size T is
large. We express the true parameters with superscript � which indicate the
generating model of the observed samples. Let us de�ne a transformation
Ay = A�Q� where for each procedure Q� is an orthogonal matrix de�ned
as follows. If the ULS method is used, Q� consists of the eigen vectors of
(A�)TA�, i.e.

(A�)TA� = Q��(Q�)T: (� is a diagonal matrix) (4.21)

When the MLmethod is used, we de�neQ� as the eigen vectors of (A�)T(��)�1A�,
i.e.

(A�)T(��)�1A� = Q��(Q�)T: (� is a diagonal matrix) (4.22)

The sample covariance matrix S converges to the covariance matrix 	� =
A�(A�)T + �� = Ay(Ay)T + �� of the true model as the sample size T
goes to in�nity. Therefore it can be shown that the parameter (Ay;��)
asymptotically minimizes the criterion Fu (or FM ) and (Ay)TAy = � (or
(Ay)T(��)�1Ay = �) becomes a diagonal matrix. Suppose that 	� =
A�(A�)T +�� is identi�able, that is, parameter (A;�) that satis�es AAT+
� = 	� can be determined uniquely except for a rotation matrix.

Theorem 7 The estimator (A(0);�(0)) derived by the ULS method or the
ML method converges to (Ay;��) as T goes to in�nity.

This theorem leads to the fact that y(0) constructed by factor analysis
can be regarded as quasi-whitened data of x. When the sample size T is
very large, y(0) can be approximately expressed as

y(0)
:
= (Q�)Ts+ �(0)

where Q� is the orthogonal matrix and �(0) is a linear transformation of the
additive noise �. The variance of the signal part (Q�)Ts included in y(0)

becomes an identity matrix Im. The Quasi-whitening is also used in noisy
ICA algorithms proposed so far, though the noise variance � is assumed to
be known or sphere. As described here, we can carry out the quasi-whitening
by factor analysis even if � is unknown.

4.2 Pursuit of independent component directions

After estimating the factor subspace and the noise variance, we must deter-
mine the directions of the independent components. Here we show that we
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can estimate the correct transformation matrix to the independent compo-
nents by solving the estimating equations. Assuming that T is very large,
we consider for simplicity that (A(0);�(0)) = (Ay;��) holds. Since

A� = Ay(Q�)T = A(0)(Q�)T; (4.23)

the correct transformation is expressed as Q = Q� or Q = PDQ� where D
is any diagonal matrix and P is any permutation matrix (remember A =
A(0)Q�1). Due to the additional conditions (4.7) or (4.8) we can derive Q�

except for inde�niteness of sign and order of independent components. We
ignore this inde�niteness here. It is also possible to construct estimation
procedures on the restricted set of orthogonal matrices.

Let us express the estimates of the source signals and their conditional
covariances at the true parameters (A�;��) as

y�(t) =
n
(A�)T(��)�1A�

o�1
(A�)T(��)�1x(t); (4.24)

V � =
n
(A�)T(��)�1A�

o�1
: (4.25)

Even if we know the true parameters (A�;��), it is shown that the weighted
least squares estimates y�(t) or the best linear predictors

ey�(t) =
n
Im + (A�)T(��)�1A�

o�1
(A�)T(��)�1x(t) (4.26)

=
n
Im + (A�)T(��)�1A�

o�1
(A�)T(��)�1A�y�(t) (4.27)

are not mutually independent. In fact, the covariance matrices are

Var [y�(t) ] = Im + V � (4.28)

Var [ ey�(t) ] = (Im + V �)�1 (4.29)

which are not diagonal matrices in general. Therefore applying a noise-
free ICA algorithm to the quasi-whitened data y(0) leads to an inconsistent
estimator of the mixing matrix because it forces dependent random variables
to be mutually independent.

From the equation (4.23), the relationships

y(0)(t) = (Q�)Ty�(t) (4.30)

y�(t) = Q�y(0)(t) (4.31)

hold between the initial value and the estimates at the true parameters of the
source signals. We remark that these expressions have some analogies to the
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noise-free ICA model: y(0)(t) corresponds to x(t), y�(t) does to s(t), (Q�)T

does to A, and Q does to W . These analogies are helpful to understand the
latter part of our algorithms as modi�ed Jutten & Herault's algorithms.

Then we show that the solution of the estimating equation is guaranteed
to converge to Q� because of property of estimating functions.

Theorem 8 The transformations Q = PDQ� for any diagonal matrices
D and any permutation matrix P satisfy unbiasedness of the non-diagonal
terms of the estimating function. From the additional constraints (4.7) or
(4.8), the solution Q� is selected in these transformations.

Proof If Q = Q�, y = y� and V = V �. From the distributional assump-
tions, we can show that the random vector y = y� is subject to the normal
distribution N(s; V �) for given s. Therefore we get the conditional moments
as follows.

E [y�j s] = s

E
h
y� (y�)T

��� si = ssT + V �

E
h
(y�i )

3 y�j

��� si = s3i sj + 3v�ijs
2
i + 3v�iisisj + 3v�iiv

�
ij

Then the expectation of the estimating function becomes

E
h
(y�i )

3 y�j � 3v�ij (y
�
i )
2 � 3v�iiy

�
i y

�
j + 3v�iiv

�
ij

i
= E

h
s3i sj

i
= 0; i 6= j

because of mutual independence and the zero-mean assumption of s.
When Q = DQ� for D = diag(dii), yi = diiy

�
i , and vij = diiv

�
ijdjj . Then

because

y3i yj � 3vijy
2
i � 3viiyiyj + 3viivij

= d3iidjj
n
(y�i )

3 y�j � 3v�ij (y
�
i )
2 � 3v�iiy

�
i y

�
j + 3v�iiv

�
ij

o
;

unbiasedness holds again.

E
h
y3i yj � 3vijy

2
i � 3viiyiyj + 3viivij

i
= d3iidjjE

h
s3i sj

i
= 0; i 6= j

Unbiasedness can be derived in the same manner even in case of Q =
PD�Q�.
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When we take Q = DQ�, it can be shown that the elements dii of D
must be equal to �1 from the additional constraints (4.7) or (4.8).

E
h
y2i � vii � 1

i
= d2iiE

h
s2i

i
� 1 = 00@or mX

j=1

q2ij = d2ii

mX
j=1

(q�ij)
2 = d2ii = 1

1A
() d�ii = �1; i = 1; : : : ;m:

Therefore with the additional constraints, the expectation of the estimating
function becomes zero only at Q = Q� except for changing signs and or-
ders of its rows. If we assume that the 8th moments of the source signals
exist, square integrability (2.9) of this estimating function is satis�ed. By
calculating the matrix K in (2.8), nonsingularity of K can be proved. 2

5 Numerical Experiments

In order to evaluate performance of the proposed algorithm and compare
that of other algorithms, we carried out the following numerical experiments.
For source signals we synthesize �ve di�erent acoustic sounds (synthesized
music instruments, male voices) s = (s1; : : : ; s5)

T whose size are 48000 (see
Figure 1). We normalized the source signals so that they have unit variances.
At each trial a 15�5 mixing matrix A was randomly generated so that each
component was subject to the standard normal distribution independently
and source signals s were mixed with this matrix A at �rst. Then, to the
mixed signals we added a Gaussian noise � where the standard deviation of
each components was determined by a uniform random number on (0; 6).
Generating each data set in this way, we made 500 sets of such samples.
We estimate the mixing matrices and the noise covariances, applying the
following ICA algorithms to the quasi-whitened data y(0) by factor analysis.

FastICA The FastICA algorithm with the kurtosis contrast function.

JADE The JADE algorithm without pre-whitening by PCA (quasi-whitening
was done by factor analysis already).

Akuzawa Akuzawa's quasi-Newton algorithm which was used to obtain
initial estimators of our algorithm (Akuzawa,2000).

20



EF The proposed algorithm constructed from the (3; 1)-type estimating
function.

We computed the matrices R = (rij) of crosstalk ratios in order to
compare the performance of the estimators. These matrices are constructed
by normalizing each row of the following matrix eR so that the maximum
absolute value of the components is one and replacing the components with
maximum absolute value by zero.eR = ( bAT b��1 bA)�1 bAT b��1A�; (5.1)

were ( bA; b�) are the �nal estimator, and A� denotes the true value. We show
several criterions calculated from the matrices R = (rij) of crosstalk ratios
from Table 1 to Table 4.

Table 1. Frobenius norm of R
method mean s.d. min max

FastICA 0.6779 0.4993 0.0555 2.4384

JADE 0.0492 0.0612 0.0146 1.3640

Akuzawa 0.0660 0.0640 0.0369 1.4149

EF 0.0526 0.0546 0.0301 1.2246

Table 2. maximum absolute value of R
method mean s.d. min max

FastICA 0.3512 0.2713 0.0230 0.9923

JADE 0.0247 0.0346 0.0083 0.7653

Akuzawa 0.0402 0.0351 0.0164 0.7610

EF 0.0297 0.0322 0.0141 0.7191

Table 3. mean of
P

j jrij j (i=1,: : : ,5)

method mean s.d. min max

FastICA 0.4406 0.3238 0.0395 1.7234

JADE 0.0349 0.0376 0.0103 0.8359

Akuzawa 0.0433 0.0368 0.0218 0.8065

EF 0.0356 0.0309 0.0181 0.6869

Table 4. maximum of
P

j jrij j (i=1,: : : ,5)

method mean s.d. min max

FastICA 0.7752 0.6208 0.0542 3.0131

JADE 0.0517 0.0733 0.0154 1.6308

Akuzawa 0.0689 0.0724 0.0350 1.5837

EF 0.0531 0.0454 0.0285 0.9848
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Figure 1: source signals
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All of these criterions indicate similar results. We write down conclusions
obtained from this numerical experiment.

1. The FastICA combined with factor analysis gives a biased estimator of
the mixing matrix in the presence of Gaussian noise. This is because
the FastICA used here does not take the additive noise into account.

2. As lead by the theoretical consideration in the present paper, our algo-
rithm, Akuzawa's algorithm, and the JADE give desirable estimators.
Our algorithm have almost same performance as the JADE.

3. Estimators of Akuzawa's algorithm are little bit worse than other two
methods because the source signals used here are not mutually inde-
pendent indeed.

4. The means of CPU time spended for calculating estimators are 7.1045,
13.8989, 5.8864 and 2.7563(sec) respectively. Therefore, including the
time for calculating initial estimators, our algorithm is much faster
than the JADE algorithm. The di�erence may be much clear in case
of lager dimensional data.

6 Discussion

In this paper, we discussed a general form of estimating functions in the noisy
ICA model, following the semiparametric statistical approach by Amari and
Cardoso(1997). Then a noisy ICA algorithm which gives a consistent es-
timator of the mixing matrix and the noise variance was proposed. This
algorithm consists of two steps: prewhitening by factor analysis and pursuit
of the independent component directions with the estimating equations. The
(3; 1)-type Hermite polynomials used in the second step can be regarded as
a modi�cation of the estimating function which appears in Jutten-Herault
algorithm.

The results of the numerical experiments support the theoretical consid-
eration. They indicate that the proposed algorithm give estimates whose
bias are very small, while a noise-free ICA algorithm with quasi-whitening
by factor analysis lead to inconsistent estimates. The JADE algorithm also
give consistent estimates, because it uses cross-kurtosis tensors which are not
inuenced by Gaussian noises. We note that our algorithm can be justi�ed
in terms of cross-kurtosis too. When the ML method of factor analysis is
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used, the �nal estimates of A and � satisfy the estimating equations (4.17),
(4.18) and

1

T

TX
t=1

h
fyj(t)g

3yk(t)� 3vjjyj(t)yk(t)� 3vjkfyj(t)g
2 + 3vjjvjk

i
= 0; (6.1)

for any j 6= k. From (4.17) we derive

vjj =
1

T

TX
t=1

fyj(t)g
2 � 1 (6.2)

vjk =
1

T

TX
t=1

yj(t)yk(t); j 6= k: (6.3)

Substituting these equations, it can be shown that the equations (6.1) are
equivalent to the estimates of the following cross-kurtosis.

dcum(yj; yj ; yj; yk)
�

1

T

TX
t=1

fyj(t)g
3yk(t)� 3

"
1

T

TX
t=1

fyj(t)g
2

# "
1

T

TX
t=1

yj(t)yk(t)

#
= 0(6.4)

This shows close relation to the JADE algorithm, that is, our algorithm also
search for the directions of the independent components by using the fact
that some of cross-kurtosis tensors should vanish. Extending this discussion,
we conjecture that estimators of the JADE algorithm have lager variances
than those of our algorithm, because the JADE algorithm contains polyno-
mials without information of the parameters.

For convenience of explanation, we assumed that the additive noise � is
subject to the normal distribution N(0;�). It is necessary to extend this
distributional assumption and other model assumptions. At least, the algo-
rithm proposed here still has consistency in the semiparametric sense under
the weaker assumption that � has the same 4th order moments structure
as the normal distribution. Furthermore, when the number of sensors are
much more than that of sources, our algorithm is expected to have good
performance even if the additive noise is not Gaussian. The reason is that
the noise part included in the quasi-whitened data y(0) is approximately
normally distributed from the central limit theorem.

In this paper we only checked performance of our algorithm and com-
pared to that of a few existing algorithms via numerical examples. Theoret-
ical analysis of their performance should be studied in the future. Although
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the presented framework of estimating functions is useful for investigation of
the noisy ICA model, it is also important to develop other kind of algorithms
such as the bias removal method and analyze their performance.
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